- Article
Bayesian Network-Based Failure Risk Assessment and Inference Modeling for Biomethane Supply Chain
- Yue Wang,
- Siqi Wang and
- Fang Wang
To identify and evaluate the failure issues in the livestock manure-to-biomethane supply chain, this study employs a Bayesian network approach with three inference analysis methods: diagnostic analysis, sensitivity analysis, and maximum causal chain inference. First, the main hazard categories affecting the failure of the supply chain are identified, establishing risk indicators for feedstock collection, pretreatment, anaerobic digestion, purification and upgrading, transportation, and biomethane end-use. Then, the half-interval method and possibility superiority comparison are used to calculate and rank the severity of related accidents, obtaining the severity ranking of secondary indicators as well as the severity ranking of work items and risk items. Finally, Bayesian forward inference is applied to investigate the failure probability of the supply chain, combined with backward inference to identify the risk factors most likely to cause supply chain failures and trace the formation of failure hazards. The Bayesian sensitivity analysis method is ultimately applied to determine the key hazards affecting supply chain failures and the correlations between accident hazards, followed by validation. The results show that the failure probability of the supply chain through causal inference is approximately 54.76%, indicating relatively high failure risk. The three factors with the highest posterior probabilities are mechanical stirring failure C3 (88.11%), corrosion-induced ammonia leakage poisoning D6, and equipment explosion caused by excessive pressure due to overheating during dehumidification heating D9, which are the hazards most likely to cause failures in the supply chain. Improper operations and the toxicity of related chemicals are key hazards leading to supply chain failures, with the correlation between accident hazards presented as a hazard chain by integrating severity and accident probability, and the key risk points in the supply chain are identified.
14 January 2026




