Pharmaceutical Packaging Materials and Medication Safety: A Mini-Review
Abstract
1. Introduction
2. Methods
2.1. Literature Search and Screening
2.2. Data Analysis and Quality Assessment
3. Classification of Pharmaceutical Packaging
3.1. External Packing
3.2. Immediate Packing
4. Common Pharmaceutical Packaging Materials
4.1. Glass
4.2. Metals
4.3. Plastics
4.4. Rubbers
5. Impact on Medication Safety
5.1. Barrier Performance
5.2. Mechanical Performance
5.3. Migration Phenomenon
5.4. Adsorption Effect
5.5. Microbial Contamination Risk
6. Standards for Pharmaceutical Packaging Materials
7. Novel Materials for Pharmaceutical Packaging
7.1. Nanomaterials
7.2. Intelligent Packaging Materials
7.3. Green Packaging Materials
8. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Number | Name of Standard |
---|---|
<87> | Biological Reactivity Tests, In Vitro [122] |
<88> | Biological Reactivity Tests, In Vivo |
<381> | Elastomeric Closures For Injections |
<659> | Packaging And Storage Requirements |
<660> | Containers—Glass |
<661> | Plastic Packaging Systems And Their Materials Of Construction |
<661.1> | Plastic Materials Of Construction |
<661.2> | Plastic Packaging Systems For Pharmaceutical Use |
<661.3> | Pharmaceutical Components And Systems Used In The Manufacturing |
<665> | Polymeric Components Used In The Manufacturing Of Pharmaceutical And Biopharmaceutical Drug Products |
<670> | Auxiliary Packaging Components [123] |
<671> | Containers—Performance Testing |
<1031> | The Biocompatibility Of Materials Used In Drug Containers, Medical Devices, And Implants |
<1136> | Packaging Repackaging-Single-Unitcontainers |
<1177> | Good Repackaging Practices |
<1178> | Good Packaging Practices |
<1207> | Package Integrity Evaluation-Sterile Products |
<1207.1> | Package Integrity Testing In The Product Life Cycle- Test Method Selection And Validation |
<1207.2> | Package Integrity Leak Test Technologies |
<1207.3> | Package Seal Quality Test Technologies |
<1660> | Evaluation Of The Inner Surface Durability Of Glass Containers |
<1661> | Evaluation Of Plastic Packaging Systems And Their Materials Of Construction With Respect To Their User Safety Impact [124] |
<1663> | Assessment Of Extractables Associated With Pharmaceutical Packaging/Delivery Systems |
<1664> | Assessment Of Drug Product Leachables Associated With Pharmaceutical Packaging/Delivery Systems |
<1665> | Plastic Components And Systems Used To Manufacture Pharmaceutical Drug Products |
Number | Name of Standard |
---|---|
3.1 | Materials Used For The Manufacture of Containers |
3.1.3 | Polyolefines [125] |
3.1.4 | Polyethylenes Without Additives For Containers For Parenteral Preparations And For Ophthalmic Preparations |
3.1.5 | Polyethylenes With Additives For Containers For Parenteral Preparations And For Ophthalmic Preparations |
3.1.6 | Polypropylene For Containers And Closures For Parenteral Preparations And Ophthalmic Preparations |
3.1.7 | Polyethylene-Vinyl Acetate For Containers And Tubing For Total Parenteral Nutrition Preparations |
3.1.8 | Silicone Oil Used As A Lubricant |
3.1.9 | Silicone Elastomer For Closures And Tubing |
3.1.10 | Materials Based On Non-Plasticised Poly (Vinyl Chloride) For Containers For Non- Injectable, Aqueous Solutions |
3.1.11 | Materials Based On Non-Plasticised Poly (Vinyl Chloride) For Containers For Dry Dosage Forms For Oral Administration |
3.1.13 | Plastic Additives [126] |
3.1.14 | Materials Based On Plasticised Poly (Vinyl Chloride) For Containers For Aqueous Solutions For Intravenous Infusion |
3.1.15 | Polyethylene Terephthalate For Containers For Preparations Not For Parenteral Use |
3.2 | Containers |
3.2.1 | Glass Containers For Pharmaceutical Use |
3.2.2 | Plastic Containers And Closures For Pharmaceutical Use |
3.2.2.1 | Plastic Containers For Aqueous Solutions For Infusion |
3.2.9 | Rubber Closures For Containers For Aqueous Parenteral Preparations, For Powders And For Freeze-Dried Powders |
Number | Name of Standard |
---|---|
7 | Test methods for container packaging materials |
7.01 | Test methods for glass containers for injection |
7.02 | Test methods for plastic containers for pharmaceutical products [127] |
7.03 | Test methods for rubber plugs for infusion |
References
- Ibrahim, I.D.; Hamam, Y.; Sadiku, E.R.; Ndambuki, J.M.; Kupolati, W.K.; Jamiru, T.; Eze, A.A.; Snyman, J. Need for Sustainable Packaging: An Overview. Polymers 2022, 14, 4430. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.-T.; Linh, T.T.T.; Vo, T.-K.; Nguyen, Q.H.; Van, T.-K. Analytical Techniques for Determination of Heavy Metal Migration from Different Types of Locally Made Plastic Food Packaging Materials Using ICP-MS. Food Sci. Nutr. 2023, 11, 4030–4037. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, Q.; Wei, Y.; Qiao, Y.; Duan, X.; Li, L.; Chen, Y.; Qian, Z. Vitrification of Cerium(III) Fluoride in Iron Phosphoborate Glasses: A Study on Redox, Structure, and Stability. Ceram. Int. 2024, 50, 38435–38444. [Google Scholar] [CrossRef]
- Olawore, O.; Ogunmola, M.; Desai, S. Engineered Nanomaterial Coatings for Food Packaging: Design, Manufacturing, Regulatory, and Sustainability Implications. Micromachines 2024, 15, 245. [Google Scholar] [CrossRef] [PubMed]
- Kim, O.T. Patient Safety as a Global Health Priority. Cardiovasc. Ther. Prev. 2022, 21, 3427. [Google Scholar] [CrossRef]
- Cheng, H.; Xu, H.; McClements, D.J.; Chen, L.; Jiao, A.; Tian, Y.; Miao, M.; Jin, Z. Recent Advances in Intelligent Food Packaging Materials: Principles, Preparation and Applications. Food Chem. 2022, 375, 131738. [Google Scholar] [CrossRef] [PubMed]
- Gomes, K.L.G.; da Silva, R.E.; da Silva Junior, J.B.; Bosio, C.G.P.; Novaes, M.R.C.G. Post-Marketing Authorisation Safety and Efficacy Surveillance of Advanced Therapy Medicinal Products in Brazil, the European Union, the United States and Japan. Cytotherapy 2023, 25, 1113–1123. [Google Scholar] [CrossRef] [PubMed]
- Gil-Pérez, I.; Rebollar, R.; Lidón, I.; Martín, J.; van Trijp, H.C.M.; Piqueras-Fiszman, B. Hot or Not? Conveying Sensory Information on Food Packaging Through the Spiciness-Shape Correspondence. Food Qual. Prefer. 2019, 71, 197–208. [Google Scholar] [CrossRef]
- Pattnaik, R.; Panda, S.K.; Biswas, S.; De, S.; Satahrada, S.; Kumar, S. Prospects and Challenges of Nanomaterials in Sustainable Food Preservation and Packaging: A Review. Discov. Nano 2024, 19, 178. [Google Scholar] [CrossRef] [PubMed]
- Song, T.; Qian, S.; Lan, T.; Wu, Y.; Liu, J.; Zhang, H. Recent Advances in Bio-Based Smart Active Packaging Materials. Foods 2022, 11, 2228. [Google Scholar] [CrossRef] [PubMed]
- Sustainability Team. Back to Sustainable Value Creation. How Sustainable Is Packaging? Sustain. Team Discuss. Pap. 2009, 2–3. [Google Scholar]
- Yang, R.; Liu, H.; Ding, Z.; Zheng, J.; Mauro, J.C.; Kim, S.H.; Zheng, Q. Chemical Durability of Borosilicate Pharmaceutical Glasses: Mixed Alkaline Earth Effect with Varying [MgO]/[CaO] Ratio. J. Am. Ceram. Soc. 2021, 104, 3973–3981. [Google Scholar] [CrossRef]
- Mathaes, R.; Streubel, A. Parenteral Container Closure Systems. In Challenges in Protein Product Development; Warne, N., Mahler, H.C., Eds.; AAPS Advances in the Pharmaceutical Sciences Series; Springer: Cham, Switzerland, 2018; pp. 191–202. [Google Scholar]
- Tian, Y.L. Pharmaceutical Glass; Chemical Industry Press: Beijing, China, 2015; pp. 8–10. [Google Scholar]
- YBB00142002-2015; Guidelines for Compatibility Testing of Pharmaceutical Packaging Materials and Drugs. National Medical Products Administration: Beijing, China, 2015; pp. 446–448.
- de Oliveira, D.P.; Costa, J.S.R.; Oliveira-Nascimento, L. Sustainability of Blisters for Medicines in Tablet Form. Sustain. Chem. Pharm. 2021, 21, 100423. [Google Scholar] [CrossRef]
- Müller, S.; Weygand, S.M. Finite Element Simulation of Stretch Forming of Aluminium-Polymer Laminate Foils Used for Pharmaceutical Packaging. MATEC Web Conf. 2016, 80, 16001. [Google Scholar] [CrossRef]
- Lebreton, L.; Andrady, A. Future Scenarios of Global Plastic Waste Generation and Disposal. Palgrave Commun. 2019, 5, 1–11. [Google Scholar] [CrossRef]
- Rahman, M.H.; Bhoi, P.R. An Overview of Non-Biodegradable Bioplastics. J. Clean. Prod. 2021, 294, 126218. [Google Scholar] [CrossRef]
- Sid, S.; Mor, R.S.; Kishore, A.; Sharanagat, V.S. Bio-Sourced Polymers as Alternatives to Conventional Food Packaging Materials: A Review. Trends Food Sci. Technol. 2021, 115, 87–104. [Google Scholar] [CrossRef]
- Yu, D.; Basumatary, I.B.; Liu, Y.; Zhang, X.; Kumar, S.; Ye, F.; Dutta, J. Chitosan-Photocatalyst Nanocomposite on Polyethylene Films as Antimicrobial Coating for Food Packaging. Prog. Org. Coat. 2024, 186, 108069. [Google Scholar] [CrossRef]
- Falk, Y.Z.; Runnsjö, A.; Pettigrew, A.; Scherer, D.; Engblom, J.; Kocherbitov, V. Interactions of Perfluorohexyloctane with Polyethylene and Polypropylene Pharmaceutical Packaging Materials. J. Pharm. Sci. 2020, 109, 2180–2188. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.; Ansari, J.R.; Sadeghi, K.; Seo, J. Applicability of Polypropylene/Polyethylene Glycol/Molecular Sieve Composites as Desiccant Pharmaceutical Packaging Materials. Food Packag. Shelf Life 2024, 42, 101266. [Google Scholar] [CrossRef]
- Hazer, B.; Ashby, R.D. Synthesis of Polyvinyl Chloride/Chlorinated Polypropylene-Active Natural Substance Derivatives for Potential Packaging Materials Application. Tannic Acid, Menthol and Lipoic Acid. Food Chem. 2023, 403, 134475. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, H.; Morsy, M.; Ateia, M.A.; Abdel-Haleem, F.M. Ultrafast Response Humidity Sensors Based on Polyvinyl Chloride/Graphene Oxide Nanocomposites for Intelligent Food Packaging. Sens. Actuators A Phys. 2021, 331, 112918. [Google Scholar] [CrossRef]
- Veronica, N.; Heng, P.W.S.; Liew, C.V. Relative Humidity Cycling: Implications on the Stability of Moisture-Sensitive Drugs in Solid Pharmaceutical Products. Mol. Pharm. 2023, 20, 1072–1085. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Li, J. Package Technology for Pharmaceutical Packing Blister Film; Tsinghua University Press: Beijing, China, 2024; pp. 25–39. [Google Scholar]
- Nakayama, T.; Osako, M. Plastic Trade-Off: Impact of Export and Import of Waste Plastic on Plastic Dynamics in Asian Region. Ecol. Model. 2024, 489, 110624. [Google Scholar] [CrossRef]
- Meng, W.J.; Qiu, Y.X.; Yu, P.F.; Qi, Y.H.; Deng, Z.W. Research Progress on Regulations Related to Pharmaceutical Packaging Materials in China and Analytical Methods for Compatibility of Halogenated Butyl Rubber Stoppers with Drugs. Chin. J. Pharm. Anal. 2021, 41, 1860–1867. [Google Scholar]
- Jia, F.F.; Zhao, X.; Yang, H.Y.; Xiao, X.Y. Research Progress on Common Vulcanization Systems and Compatibility of Halogenated Butyl Rubber Stoppers for Pharmaceutical Use. Chin. Pharm. Aff. 2022, 36, 913–920. [Google Scholar]
- Sharma, R.K.; Mohanty, S.; Gupta, V. Advances in Butyl Rubber Synthesis via Cationic Polymerization: An Overview. Polym. Int. 2021, 70, 1165–1175. [Google Scholar] [CrossRef]
- McDonald, M.F.; Shaffer, T.D.; Tsou, A.H. Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Aoshima, S.; Kanaoka, S. A Renaissance in Living Cationic Polymerization. Chem. Rev. 2009, 109, 5245–5287. [Google Scholar] [CrossRef] [PubMed]
- Kostjuk, S.V.; Ganachaud, F. Cationic Polymerization of Vinyl Ethers: A Critical Reappraisal. Acc. Chem. Res. 2010, 43, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Kostjuk, S.V. Recent Progress in the Cationic Polymerization of (Meth)Allyl Monomers and Macromolecular Engineering. RSC Adv. 2015, 5, 13125–13144. [Google Scholar] [CrossRef]
- Fortuna, L.; Rizzo, A.; Sinatra, M.; Xibilia, M.G. Soft analyzers for a sulfur recovery unit. Control Eng. Pract. 2003, 11, 1491–1500. [Google Scholar] [CrossRef]
- Li, C.H.; Xue, W.L.; Xing, S.; Hang, B.J.; You, P.F. Determination of Leaching and Migration Amounts of 11 Antioxidants and Free Sulfur in Brominated Butyl Rubber Stoppers by HPLC. Chin. J. Anal. Lab. 2020, 39, 91–96. [Google Scholar]
- Feng, J.; Cai, X.Y.; Liu, Y. Determination of Antioxidant-BHT and Vulcanizing Agent-Extractable Sulphur in Medicinal Butyl Rubber. Chin. J. Pharm. Anal. 2017, 37, 702–706. [Google Scholar]
- Li, Y.; Liang, T.T.; Sun, H.M. HPLC Determination of Antioxidant 1010 and Vulcanizing Agent Migration from Halogenated Butyl Rubber Stoppers for Freeze-Dried Injections into Drug Solutions. Chin. Pharm. Aff. 2019, 33, 283–289. [Google Scholar]
- Li, Y.; Yang, H.Y.; Wang, F.; Sun, H.M. Study on the Detection of Extractable Sulfur in Halogenated Butyl Rubber Stoppers for Pharmaceutical Use. Chin. Pharm. Aff. 2014, 28, 1257–1260. [Google Scholar]
- Zhu, B.J.; Li, T.T.; Sun, H.M.; Hu, X.Y.; He, J.Y.; Luo, Y.H. Simultaneous Determination of Five Antioxidants and Free Sulfur in Halogenated Butyl Rubber Stoppers for Pharmaceutical Use by HPLC. China Pharm. 2018, 29, 2475–2479. [Google Scholar]
- Gera, A.K.; Burra, R.K. Design of hollow tapered PMMA polymeric microneedles for enhanced structural stability and drug delivery efficiency. AIP Adv. 2025, 15, 015034. [Google Scholar] [CrossRef]
- Hopkins, G.H. Elastomeric Closures for Pharmaceutical Packaging. J. Pharm. Sci. 1965, 54, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Rech, J.; Fradkin, A.; Krueger, A.; Kraft, C.; Paskiet, D. Evaluation of Particle Techniques for the Characterization of Subvisible Particles from Elastomeric Closure Components. J. Pharm. Sci. 2020, 109, 1725–1735. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.B.; Xu, H.; Xie, X.Y.; Fang, M. Research Progress on Compatibility of Chemical Drug Injections with Pharmaceutical Glass. Guangzhou Chem. Ind. 2016, 44, 50–52. [Google Scholar]
- Almeter, P.J.; Isaacs, J.T.; Hunter, A.N.; Henderson, B.S.; Platt, T.; Mitchell, B.J.; Do, D.; Brainard, A.B.; Brown, J.E.; Stone, R.M.; et al. FDA Approaches in Monitoring Drug Quality, Forces Impacting the Drug Quality, and Recent Alternative Strategies to Assess Quality in the US Drug Supply. J. Pharm. Innov. 2022, 17, 269–282. [Google Scholar] [CrossRef] [PubMed]
- Seidling, H.M.; Woltersdorf, R. Improving Drug Therapy Safety with and for the Patient. Bundesgesundheitsblatt 2018, 61, 1082–1087. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.P. Silanization Treatment of Glass Containers for Pharmaceutical Packaging. Master’s Thesis, Hangzhou Normal University, Hangzhou, China, 2023. [Google Scholar]
- Bucci, M.; Deane, C.; Miura, G.; Song, Y. Research Highlights. Nat. Chem. Biol. 2019, 15, 651. [Google Scholar]
- Dewhirst, R.A.; Fry, S.C. The Oxidation of Dehydroascorbic Acid and 2,3-Diketogulonate by Distinct Reactive Oxygen Species. Biochem. J. 2018, 475, 3451–3470. [Google Scholar] [CrossRef] [PubMed]
- Eichie, F.E.; Okor, R.S.; Groning, R. Structure and Barrier Property of Acrylate-Methacrylate Film Coating in Aspirin Microcapsules. J. Appl. Polym. Sci. 2006, 99, 725–727. [Google Scholar] [CrossRef]
- Mostafa, I.M.; Mohamed, A.A.; Alahmadi, Y.; Shehata, A.M.; Almikhlafi, M.A.; Omar, M.A. Facile, Eco-Friendly and Sensitive Fluorimetric Approach for Detection of Chlorpromazine: Application in Biological Fluids and Tablet Formulations as Well as Greenness Evaluation of the Analytical Method. Luminescence 2024, 39, e4897. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S.; Bilal, M.; Rasool, N.; Imran, M. Photochemical Reactions as Synthetic Tool for Pharmaceutical Industries. Chin. Chem. Lett. 2024, 35, 109498. [Google Scholar] [CrossRef]
- Bochet, C.G. On the Sustainability of Photochemical Reactions. Chimia 2019, 73, 720–723. [Google Scholar] [CrossRef] [PubMed]
- Egawa, G.; Kabashima, K. Barrier Dysfunction in the Skin Allergy. Allergol. Int. 2018, 67, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Cortes, M.; Robles-Diaz, M.; Stephens, C.; Ortega-Alonso, A.; Lucena, M.I.; Andrade, R.J. Drug Induced Liver Injury: An Update. Arch. Toxicol. 2020, 94, 3381–3407. [Google Scholar] [CrossRef] [PubMed]
- Antón, N.; González-Fernández, Á.; Villarino, A. Reliability and Mechanical Properties of Materials Recycled from Multilayer Flexible Packages. Materials 2020, 13, 3992. [Google Scholar] [CrossRef] [PubMed]
- Vrabić-Brodnjak, U.; Yavorov, N.; Lasheva, V.; Todorova, D. Chitosan-Coated Packaging Papers—Strength and Thermal Stability. Coatings 2023, 13, 828. [Google Scholar] [CrossRef]
- Gajewski, T.; Grabski, J.K.; Cornaggia, A.; Garbowski, T. On the Use of Artificial Intelligence in Predicting the Compressive Strength of Various Cardboard Packaging. Packag. Technol. Sci. 2024, 37, 97–105. [Google Scholar] [CrossRef]
- Rahmadiawan, D.; Abral, H.; Railis, R.M.; Iby, I.C.; Mahardika, M.; Handayani, D.; Natrana, K.D.; Juliadmi, D.; Akbar, F. The Enhanced Moisture Absorption and Tensile Strength of PVA/Uncaria gambir Extract by Boric Acid as a Highly Moisture-Resistant, Anti-UV, and Strong Film for Food Packaging Applications. J. Compos. Sci. 2022, 6, 337. [Google Scholar] [CrossRef]
- Maurya, D.K.; Upadhyay, C.S.; Kumari, P. A Green Light-Weight Material for Packaging and Impact Resistant Structures. Ind. Crops Prod. 2024, 216, 118711. [Google Scholar] [CrossRef]
- Pathak, A.; Rao, N.R.; Grover, P.; Sharma, V.; Malik, A.; Rawat, A.P.; Singh, S.; Maurya, A. Ecofriendly Pharmaceutical Packaging Material: A Review. Mater. Today Proc. 2024, 103, 423–431. [Google Scholar]
- Matos, A.M.; Bonin, E.; Carvalho, V.M.; Duarte, V.; Tagiariolli, M.A.; Costa e Silva, L.F.; do Prado, R.M.; Vital, A.C.P.; do Prado, I.N. Effect of Film Packaging or Vacuum Packaging on Characteristics Before and After Maturation of Beef from Feedlot-Finished Cattle. PUBVET 2020, 14, 1–11. [Google Scholar]
- Li, H.; Pei, Q.-X.; Sha, Z.-D.; Branicio, P.S. Intrinsic and Extrinsic Effects on the Fracture Toughness of Ductile Metallic Glasses. Mech. Mater. 2021, 162, 104066. [Google Scholar] [CrossRef]
- Shukla, S.; Halli, P.; Khalid, M.K.; Lundström, M. Waste Pharmaceutical Blister Packages as a Source of Secondary Aluminum. Jom 2022, 74, 612–621. [Google Scholar] [CrossRef]
- Ciavarella, M.; Papangelo, A.; McMeeking, R. Crack Propagation at the Interface Between Viscoelastic and Elastic Materials. Eng. Fract. Mech. 2021, 257, 108009. [Google Scholar] [CrossRef]
- Mohammed, Y.H.; Namjoshi, S.N.; Telaprolu, K.C.; Jung, N.; Shewan, H.M.; Stokes, J.R.; Benson, H.A.E.; Grice, J.E.; Raney, S.G.; Rantou, E.; et al. Impact of Different Packaging Configurations on a Topical Cream Product. Pharm. Res. 2024, 41, 2043–2056. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Pipliya, S.; Karunanithi, S.; Eswaran U, G.M.; Kumar, S.; Mandliya, S.; Srivastav, P.P.; Suthar, T.; Shaikh, A.M.; Harsányi, E.; et al. Migration of Chemical Compounds from Packaging Materials into Packaged Foods: Interaction, Mechanism, Assessment, and Regulations. Foods 2024, 13, 3125. [Google Scholar] [CrossRef] [PubMed]
- Galmán Graíño, S.; Sendón, R.; López Hernández, J.; Rodríguez-Bernaldo de Quirós, A. GC-MS Screening Analysis for the Identification of Potential Migrants in Plastic and Paper-Based Candy Wrappers. Polymers 2018, 10, 802. [Google Scholar] [CrossRef] [PubMed]
- Kwansa, A.L.; Pani, R.C.; DeLoach, J.A.; Tieppo, A.; Moskala, E.J.; Perri, S.T.; Yingling, Y.G. Molecular Mechanism of Plasticizer Exudation from Polyvinyl Chloride. Macromolecules 2023, 56, 4775–4786. [Google Scholar] [CrossRef]
- Wen, Y.-H.; Lee, C.-F.; Chen, Y.-J.; Chang, G.-J.; Chong, K.-Y. Risks in Induction of Platelet Aggregation and Enhanced Blood Clot Formation in Platelet Lysate Therapy: A Pilot Study. J. Clin. Med. 2022, 11, 3972. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C. Evaluation of the Compatibility between Pharmaceutical Packaging Materials and Drugs Based on National Standards of Pharmaceutical Packaging Materials. Eng. Manag. 2025, 6, 267–269. [Google Scholar]
- Clotea, D.; Ungureanu, E.; Mustatea, G.; Popa, M. Chemical Contamination in Packaging Material of Pharmaceutical Use. In Bulletin of the Transilvania University of Brasov. Series I-Engineering Sciences; Transilvania University Press: Braşov, Romania, 2021; pp. 1–8. [Google Scholar]
- Gotardo, M.A.; Monteiro, M. Migration of diethylhexyl phthalate from PVC bags into intravenous cyclosporine solutions. J. Pharm. Biomed. Anal. 2005, 38, 709–713. [Google Scholar] [CrossRef] [PubMed]
- Feenstra, P.; Brunsteiner, M.; Khinast, J. Investigation of Migrant–Polymer Interaction in Pharmaceutical Packaging Material Using the Linear Interaction Energy Algorithm. J. Pharm. Sci. 2014, 103, 3197–3204. [Google Scholar] [CrossRef] [PubMed]
- Bernard, L.; Cueff, R.; Chagnon, M.C.; Abdoulouhab, F.; Décaudin, B.; Breysse, C.; Kauffmann, S.; Cosserant, B.; Souweine, B.; Sautou, V.; et al. Migration of plasticizers from PVC medical devices: Development of an infusion model. Int. J. Pharm. 2015, 494, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Perou, A.L.; Laoubi, S.; Vergnaud, J.M. Effect of the thickness of food packages made of recycled and virgin polymer layers coextruded in sandwich form on the time of food protection. Comput. Theor. Polym. Sci. 1998, 8, 331–338. [Google Scholar] [CrossRef]
- Bai, F.; Chen, G.; Hu, Y.; Liu, Y.; Yang, R.; Liu, J.; Cai, H. Understanding the Effect of Plastic Food Packaging Materials on Food Flavor: A Critical Review. Trends Food Sci. Technol. 2024, 148, 104502. [Google Scholar] [CrossRef]
- Wei, B.; Zhao, Y.; Xu, M.S. Research Progress on the Relationship between Protein Structure Changes and in vitro Digestibility under Different Treatment Methods. Food Sci. 2019, 40, 327–333. [Google Scholar]
- Chen, S.; Quan, D.H.; Sam, G.; Ozberk, V.; Wang, X.T.; Halfmann, P.; Rehm, B.H.A. Assembly of Immunogenic Protein Particles toward Advanced Synthetic Vaccines. Small 2023, 19, 2205819. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Li, D.; Wang, C.; Liu, Z.; Yang, M.; Cui, Z.; Chen, X. Shape Morphing of Plastic Films. Nat. Commun. 2022, 13, 7294. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Bhatt, S.; Shukla, P.; Kumar, A. Microbial Contamination in Pharmaceutical Manufacturing. J. Drug Discov. Health Sci. 2024, 1, 21–27. [Google Scholar]
- Saeed, M.; Ilyas, N.; Arshad, M.; Sheeraz, M.; Ahmed, I.; Bhattacharya, A. Development of a Plant Microbiome Bioremediation System for Crude Oil Contamination. J. Environ. Chem. Eng. 2021, 9, 105401. [Google Scholar] [CrossRef]
- Wada, S.; Satoh, Y.; Hama, T. Massive Loss and Microbial Decomposition in Reproductive Biomass of Zostera marina. Estuar. Coast. Shelf Sci. 2022, 275, 107986. [Google Scholar] [CrossRef]
- Luoreng, Z.-M.; Wang, X.-P.; Mei, C.-G.; Zan, L.-S. Comparison of microRNA Profiles between Bovine Mammary Glands Infected with Staphylococcus aureus and Escherichia coli. Int. J. Biol. Sci. 2018, 14, 87–99. [Google Scholar] [CrossRef] [PubMed]
- GB 50591-2010; Code for Construction and Acceptance of Cleanrooms. China Architecture & Building Press: Beijing, China, 2010.
- GB/T 16293-16294-2010; Test Method for Airborne Microbe in Clean Room (Zone) of the Pharmaceutical Industry. General Administration of Quality Supervision, Inspection and Quarantine of China & Standardization Administration of China: Beijing, China, 2010.
- Herber, O.R.; Gies, V.; Schwappach, D.; Thürmann, P.; Wilm, S. Patient Information Leaflets: Informing or Frightening? A Focus Group Study Exploring Patients’ Emotional Reactions and Subsequent Behavior towards Package Leaflets of Commonly Prescribed Medications in Family Practices. BMC Fam. Pract. 2014, 15, 163. [Google Scholar] [CrossRef] [PubMed]
- White, N.D.; Kibalama, W. Prevention of Pediatric Pharmaceutical Poisonings. Am. J. Lifestyle Med. 2018, 12, 117–119. [Google Scholar] [CrossRef] [PubMed]
- Jafarzadeh, S.; Nooshkam, M.; Zargar, M. Green Synthesis of Nanomaterials for Smart Biopolymer Packaging: Challenges and Outlooks. J. Nanostruct. Chem. 2024, 14, 113–136. [Google Scholar] [CrossRef]
- Rukmanikrishnan, B.; Ismail, F.R.M.; Manoharan, R.K.; Kim, S.S.; Lee, J. Blends of Gellan Gum/Xanthan Gum/Zinc Oxide Based Nanocomposites for Packaging Application: Rheological and Anti-Microbial Properties. Int. J. Biol. Macromol. 2020, 148, 1182–1189. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.S.; Waghmare, R.D.; Pawar, S.P. Photophysical Insights of Highly Transparent, Flexible and Re-emissive PVA@WTR-CDs Composite Thin Films: A Next Generation Food Packaging Material for UV Blocking Applications. J. Photochem. Photobiol. A 2020, 400, 112647. [Google Scholar] [CrossRef]
- Razali, M.H.; Ismail, N.A.; Amin, K.A.M. Titanium Dioxide Nanotubes Incorporated Gellan Gum Bio-nanocomposite Film for Wound Healing: Effect of TiO2 Nanotubes Concentration. Int. J. Biol. Macromol. 2020, 153, 1117–1135. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Xiong, H.; Tang, S.; Zou, P. A Starch-Based Biodegradable Film Modified by Nano Silicon Dioxide. J. Appl. Polym. Sci. 2009, 113, 34–40. [Google Scholar] [CrossRef]
- Ramakanth, D.; Singh, S.; Maji, P.K. Advanced Packaging for Distribution and Storage of COVID-19 Vaccines: A Review. Environ. Chem. Lett. 2021, 19, 3597–3608. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.K.; Gupta, P. Internet of Things: The New Rx for Pharmaceutical Manufacturing and Supply Chains. In An Industrial IoT Approach for Pharmaceutical Industry Growth; Academic Press: London, UK, 2020; pp. 257–288. [Google Scholar]
- Saha, E.; Rathore, P.; Parida, R.; Rana, N.P. The Interplay of Emerging Technologies in Pharmaceutical Supply Chain Performance: An Empirical Investigation for the Rise of Pharma 4.0. Technol. Forecast. Soc. Change 2022, 181, 121799. [Google Scholar] [CrossRef]
- Woudhuysen, J.; Rivers, P. Rethinking packaging: How electronic packs for pharmaceuticals work with mobile IT to improve patient adherence to medication regimens. In Smart Design: First International Conference Proceedings; Springer: London, UK, 2012; pp. 1–11. [Google Scholar]
- Botcha, K.M.; Chakravarthy, V.V. Enhancing Traceability in Pharmaceutical Supply Chain Using Internet of Things (IoT) and Blockchain. In Proceedings of the 2019 IEEE International Conference on Intelligent Systems and Green Technology (ICISGT), Visakhapatnam, India, 29–30 June 2019; pp. 445–453. [Google Scholar]
- Kumarka, A.; Guptanv, B.; Lalasap, C. A Review on Packaging Materials with Anti-Counterfeit, Tamper-Evident Features for Pharmaceuticals. Int. J. Drug Dev. Res. 2013, 5, 26–34. [Google Scholar]
- Leem, J.W.; Jeon, H.; Ji, Y.; Park, S.M.; Kwak, Y.; Park, J.; Kim, K.; Kim, S.; Kim, Y.L. Edible Matrix Code with Photogenic Silk Proteins. ACS Cent. Sci. 2022, 8, 513–526. [Google Scholar] [CrossRef] [PubMed]
- Lotoshynska, N.; Izonin, I.; Nazarkevych, M. Consumer-Centered Design of the Secondary Packaging for Industrial Pharmaceuticals. CIRP J. Manuf. Sci. Technol. 2021, 32, 257–265. [Google Scholar] [CrossRef]
- Wang, S.; Yu, P.; Fan, G. Application Research of Smart Pharmaceutical Packaging Materials in the Multisensory Dimension. Packag. Eng. 2022, 43, 76–87. [Google Scholar]
- Zadbuken, N.; Shahi, S.; Gulecha, B. Recent Trends and Future of Pharmaceutical Packaging Technology. J. Pharm. Bioallied Sci. 2013, 5, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Xiong, L. Intelligent Design of Pharmaceutical Packaging under the Background of Healthy China Initiative. Packag. Eng. 2022, 43, 235–239. [Google Scholar]
- Udayakumar, G.P.; Muthusamy, S.; Selvaganesh, B. Biopolymers and Composites: Properties, Characterization and Their Applications in Food, Medical and Pharmaceutical Industries. J. Environ. Chem. Eng. 2021, 9, 105322. [Google Scholar] [CrossRef]
- Lin, H.; Tian, S.; Mei, L. Research Progress of Pharmaceutical Packaging Materials. Chin. J. Pharm. 2023, 54, 339–346. [Google Scholar]
- Mohammadi, S.; Babaei, A. Poly(vinyl alcohol)/Chitosan/Polyethylene Glycol-Assembled Graphene Oxide Bionanocomposites as a Prosperous Candidate for Biomedical Applications and Drug/Food Packaging Industry. Int. J. Biol. Macromol. 2022, 201, 528–538. [Google Scholar] [CrossRef] [PubMed]
- Khalil, H.P.S.A.; Davoudpour, Y.; Saurabh, C.K. A Review on Nanocellulosic Fibres as New Material for Sustainable Packaging: Process and Applications. Renew. Sustain. Energy Rev. 2016, 64, 823–836. [Google Scholar] [CrossRef]
- Yuan, C.; Hou, H. Application and Prospect of Bioplastics in Food and Pharmaceutical Packaging. Chin. J. Pharm. 2020, 51, 1356–1363. [Google Scholar]
- Ren, Y.; Ren, J. Polylactic Acid Pharmaceutical Packaging Material, Its Preparation Method and Application. CN Patent 101914273A, 16 August 2010. [Google Scholar]
- Dejene, B.K.; Gudayu, A.D. Eco-Friendly Packaging Innovations: Integrating Natural Fibers and ZnO Nanofillers in Polylactic Acid (PLA) Based Green Composites—A Review. Polym.-Plast. Technol. Mater. 2024, 63, 1645–1681. [Google Scholar] [CrossRef]
- Zhu, X. Discussion on the Optimal Application of Pharmaceutical Packaging Materials and the Development Trend of New Materials. China Packag. 2022, 42, 30–34. [Google Scholar]
- Thyavihalli Girijappa, Y.G.; Mavinkere Rangappa, S.; Parameswaranpillai, J.; Siengchin, S. Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review. Front. Mater. 2019, 6, 226. [Google Scholar] [CrossRef]
- Sanjay, M.R.; Arpitha, G.R.; Naik, L.L. Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review. Nat. Resour. J. 2016, 7, 108–114. [Google Scholar]
- Faruk, O.; Bledzki, A.K.; Fink, H.P.; Sain, M. Biocomposites Reinforced with Natural Fibers: 2000–2010. Prog. Polym. Sci. 2014, 39, 9–26. [Google Scholar] [CrossRef]
- Xie, B.; Bai, R.R.; Sun, H.S. Research Progress on the Synthesis, Biodegradation and Waste Disposal of Polylactic Acid Plastics. Chin. J. Biotechnol. 2023, 39, 1912–1929. [Google Scholar]
- Cheng, Y.Z.; Ding, X.; Wu, Y. Research Progress on the Preparation of Bioplastics from Crop Wastes. Eng. Plast. Appl. 2022, 50, 172–176. [Google Scholar]
- Zhang, Z.C.; Sun, Z.Y.; Wang, X. Research Progress and Prospect of Cellulose-Based Biodegradable Plastics. Eng. Plast. Appl. 2022, 50, 168–172. [Google Scholar]
- Zhang, J.X.; Wang, Y.Z.; Chen, H. Research Progress of Bio-Based Plastics Based on Animal and Plant Proteins. Leather Sci. Eng. 2021, 31, 9–15. [Google Scholar]
- Lei, Y.J. Reading the “Script” of Plastic Reduction from the Source of Production and Use. Environ. Econ. 2021, 19, 18–23. [Google Scholar]
- Valant, J.; Drobne, D. Biological reactivity of TiO2 nanoparticles assessed by ex vivo testing. Protoplasma 2012, 249, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Hera, D.; Berndt, A.; Gunther, T.; Schmiel, S.; Harendt, C.; Zimmermann, A. Flexible packaging by film-assisted molding for microintegration of inertia sensors. Sensors 2017, 17, 1511. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.R.; de Azevedo, A.R.G.; Cecchin, D.; Marvila, M.T.; Amran, M.; Fediuk, R.; Vatin, N.; Karelina, M.; Klyuev, S.; Szelag, M. Application of Plastic Wastes in Construction Materials: A Review Using the Concept of Life-Cycle Assessment in the Context of Recent Research for Future Perspectives. Materials 2021, 14, 3549. [Google Scholar] [CrossRef] [PubMed]
- Kurbanova, R.V. Research of Structural Features and Properties of Dressed Hybrid Nanocomposites Based on Polyolefines. Inorg. Mater. 2020, 21, 258–267. [Google Scholar]
- Lahimer, M.C.; Ayed, N.; Horriche, J.; Belgaied, S. Characterization of plastic packaging additives: Food contact, stability and toxicity. Arab. J. Chem. 2017, 10 (Suppl. S2), S1938–S1954. [Google Scholar] [CrossRef]
- Perkola, N.; Äystö, L.; Hagström, M.; Kauppi, S.; Fjäder, P. Pharmaceutical residues in plastic tablet containers: Impacts on recycling and the environment. Waste Manag. 2024, 189, 159–165. [Google Scholar] [CrossRef] [PubMed]
Type of Plastics | O2 (cm3/m2∙Day) 1 | N2(cm3/m2∙Day) 1 | CO2 (g/m2∙Day) 2 | H2O Vapor (g/m2∙Day) 2 |
---|---|---|---|---|
PVDC | 4~10 | 0.1~0.8 | 0.3~0.7 | 0.4~1.0 |
(Polyamide) PA6 | 35 | - | 43~59 | 93~155 |
PP [23,24] | 300 | 60 | 1200 | 3.6~10.2 |
PVA | 0.1~1 | 0.05~0.5 | 0.2~0.4 | 300~400 |
(Polyethylene terephthalate) PET | 74~138 | 12~24 | 35~50 | 27.4~46.7 |
PVC [25,26] | 77~310 | - | 140~400 | 13.2~71.3 |
(Low density polyethylene) LDPE | 500~700 | 200~400 | 2000~4000 | 15.2~23.4 |
(High density polyethylene) HDPE | 200~500 | 13~300 | 2000~4000 | 3.5~11.1 |
(Polystyrene) PS | 600~800 | 40~50 | 2000~4000 | 10.5~33.6 |
(Polyacrylonitrile) PAN | 11.6 | - | 6 | 31~47.2 |
EVOH (32% ethylene) | 0.2 | 0.02 | 0.9 | 47 |
EVOH (44% ethylene) | 1.8 | 0.13 | 1.4 | 95 |
Detection Items | Detection Methods | Detection Standard |
---|---|---|
Temperature (°C) | Code for Construction and Acceptance of Cleanrooms (GB 50591—2010) [86] | 18–26 °C (or adapted to the production process) |
Relative Humidity (%) | 45–65% (or adapted to the production process) | |
Static Pressure Difference (Pa) | To the outside: ≥10 Between different cleanliness levels: ≥10 To nonclean areas: ≥10 | |
Air Change Rate (times/h) | D—class: ≥20 | |
Illuminance (lx) | Main workrooms >300, other workrooms >150 | |
Maximum Permissible Number of Dust Particles (particles/m3) | Test Methods for Floating Bacteria and Settling Bacteria in Cleanrooms (Areas) of Pharmaceutical Industry (GB/T 16293-16294-2010) [87] | D—class: ≥0.5 μm, 3,520,000 particles; ≥5 μm, 29,000 particles |
Maximum Permissible Number of Microorganisms (pieces/m3 or pieces/dish) | D—class:
|
Type of Standard | Number | Name of Standard |
---|---|---|
Testing methods for glass containers | <4001> | Determination method for water resistance of glass particles at 121 °C |
Material identification testing methods | <4002> | Packaging materials—infrared spectroscopic determination method |
Testing methods for glass containers | <4003> | Glass internal stress determination method |
Mechanical performance testing methods | <4004> | Peel strength determination method |
Mechanical performance testing methods | <4005> | Tensile testing method |
Testing methods for glass containers | <4006> | Method for determination of internal surface water resistance |
Barrier performance testing methods | <4007> | Gas permeability measurement method |
Mechanical performance testing methods | <4008> | Thermal strength determination method |
Testing methods for glass containers | <4009> | Boron trioxide determination method |
Barrier performance testing methods | <4010> | Determination method for water vapor permeability |
Biosafety testing methods | <4011> | Acute systemic toxicity test method for drug packaging materials |
Material identification testing methods | <4012> | Method for determining the density of pharmaceutical packaging materials |
Biosafety testing methods | <4013> | Hemolysis test method for drug packaging materials |
Biosafety testing methods | <4014> | Cell toxicity testing method for drug packaging materials |
Mechanical performance testing methods | <4015> | Test method for puncture force of rubber stoppers and gaskets for injection |
Mechanical performance testing methods | <4016> | Determination method for puncture debris of injection plugs and gaskets |
Guiding principle | <9621> | Guiding principles for general requirements of pharmaceutical packaging materials |
Guiding principle | <9622> | Guidelines for medicinal glass materials and containers |
Bio-Derived Plastics | Characteristics |
---|---|
Polylactic acid-based biodegradable plastics [117] | Good mechanical and physical properties, but poor impact resistance and high brittleness. |
Starch-based biodegradable plastics [118] | Good mechanical strength and strong flexibility, impact resistance, and temperature resistance. |
Cellulose-based biodegradable plastics [119] | Wide source, low cost, non-toxic, and pollution-free. |
Protein-based biodegradable plastics [120] | Widely sourced, environmentally friendly, biocompatible, easily biodegradable, etc. |
Bioactive plastic “shrelk” [121] | Sturdier and can also be used as fertilizer. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Y.; Liu, N.; Chen, C.; Cai, Z.; Li, J. Pharmaceutical Packaging Materials and Medication Safety: A Mini-Review. Safety 2025, 11, 69. https://doi.org/10.3390/safety11030069
Lv Y, Liu N, Chen C, Cai Z, Li J. Pharmaceutical Packaging Materials and Medication Safety: A Mini-Review. Safety. 2025; 11(3):69. https://doi.org/10.3390/safety11030069
Chicago/Turabian StyleLv, Yaokang, Nianyu Liu, Chao Chen, Zhiwei Cai, and Jianhang Li. 2025. "Pharmaceutical Packaging Materials and Medication Safety: A Mini-Review" Safety 11, no. 3: 69. https://doi.org/10.3390/safety11030069
APA StyleLv, Y., Liu, N., Chen, C., Cai, Z., & Li, J. (2025). Pharmaceutical Packaging Materials and Medication Safety: A Mini-Review. Safety, 11(3), 69. https://doi.org/10.3390/safety11030069