Upscaling Frameworks Drive Prediction Accuracy and Uncertainty When Mapping Aboveground Biomass Density from the Synergism of Spaceborne LiDAR, SAR, and Passive Optical Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field AGBD Data Collection and Processing
2.3. Data Acquisition and Processing
2.3.1. GEDI Aboveground Biomass Density
2.3.2. Remote Sensing Predictors of AGBD
- 1.
- Harmonized Landsat Sentinel (HLS)
- 2.
- Sentinel 1C
- 3.
- Ancillary imagery
2.4. Covariates Metrics and Imagery Stacking
2.5. AGBD Modeling and Wall-to-Wall Mapping
2.5.1. Upscaling Framework 1: Single Step Based on GEDI and Imagery Data
2.5.2. Upscaling Framework 2: Two-Stage Based on GEDI and Imagery Data
2.5.3. Upscaling Framework 3: Three-Stage Based on GEDI, Imagery Data, and In Situ-Derived Allometries
2.5.4. Modeling and Internal Validation
2.6. Map Accuracy and Uncertainty Assessment
2.6.1. Error Propagation and Map Uncertainty Assessment
2.6.2. Map External Validation with In Situ Observations
3. Results
3.1. AGBD Modeling Performance and Internal Validation
3.2. AGBD Wall-to-Wall Maps Predictions and Uncertainties
3.3. AGBD Map Accuracy and External Validation
4. Discussion
4.1. Integration of GEDI with Other Remote Sensing Sources
4.2. Evaluation of AGBD Upscaling Frameworks and Methodological Design
4.3. Map Uncertainty Analysis
4.4. Challenges and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, L.; Coops, N.C.; Innes, J.L.; Sheppard, S.R.J.; Fu, L.; Ruan, H.; She, G. Estimation of Forest Biomass Dynamics in Subtropical Forests Using Multi-Temporal Airborne LiDAR Data. Remote Sens. Environ. 2016, 178, 158–171. [Google Scholar] [CrossRef]
- Vargas-Larreta, B.; López-Martínez, J.O.; González, E.J.; Corral-Rivas, J.J.; Hernández, F.J. Assessing Above-Ground Biomass-Functional Diversity Relationships in Temperate Forests in Northern Mexico. For. Ecosyst. 2021, 8, 8. [Google Scholar] [CrossRef]
- Erb, K.-H.; Kastner, T.; Plutzar, C.; Bais, A.L.S.; Carvalhais, N.; Fetzel, T.; Gingrich, S.; Haberl, H.; Lauk, C.; Niedertscheider, M.; et al. Unexpectedly Large Impact of Forest Management and Grazing on Global Vegetation Biomass. Nature 2018, 553, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; van Dijk, A.I.J.M.; de Jeu, R.A.M.; Canadell, J.G.; McCabe, M.F.; Evans, J.P.; Wang, G. Recent Reversal in Loss of Global Terrestrial Biomass. Nat. Clim. Change 2015, 5, 470–474. [Google Scholar] [CrossRef]
- Thum, T.; MacBean, N.; Peylin, P.; Bacour, C.; Santaren, D.; Longdoz, B.; Loustau, D.; Ciais, P. The Potential Benefit of Using Forest Biomass Data in Addition to Carbon and Water Flux Measurements to Constrain Ecosystem Model Parameters: Case Studies at Two Temperate Forest Sites. Agric. For. Meteorol. 2017, 234–235, 48–65. [Google Scholar] [CrossRef]
- Cantarello, E.; Newton, A.C.; Martin, P.A.; Evans, P.M.; Gosal, A.; Lucash, M.S. Quantifying Resilience of Multiple Ecosystem Services and Biodiversity in a Temperate Forest Landscape. Ecol. Evol. 2017, 7, 9661–9675. [Google Scholar] [CrossRef]
- Johnston, M.; Lindner, M.; Parrotta, J.; Giessen, L. Adaptation and Mitigation Options for Forests and Forest Management in a Changing Climate. For. Policy Econ. 2012, 24, 1–2. [Google Scholar] [CrossRef]
- Galidaki, G.; Zianis, D.; Gitas, I.; Radoglou, K.; Karathanassi, V.; Tsakiri–Strati, M.; Woodhouse, I.; Mallinis, G. Vegetation Biomass Estimation with Remote Sensing: Focus on Forest and Other Wooded Land over the Mediterranean Ecosystem. Int. J. Remote Sens. 2017, 38, 1940–1966. [Google Scholar] [CrossRef]
- Liu, X.; Neigh, C.S.R.; Pardini, M.; Forkel, M. Estimating Forest Height and Above-Ground Biomass in Tropical Forests Using P-Band TomoSAR and GEDI Observations. Int. J. Remote Sens. 2024, 45, 3129–3148. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A Survey of Remote Sensing-Based Aboveground Biomass Estimation Methods in Forest Ecosystems. Int. J. Digit. Earth 2016, 9, 63–105. [Google Scholar] [CrossRef]
- Silva, C.A.; Duncanson, L.; Hancock, S.; Neuenschwander, A.; Thomas, N.; Hofton, M.; Fatoyinbo, L.; Simard, M.; Marshak, C.Z.; Armston, J.; et al. Fusing Simulated GEDI, ICESat-2 and NISAR Data for Regional Aboveground Biomass Mapping. Remote Sens. Environ. 2021, 253, 112234. [Google Scholar] [CrossRef]
- Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S.; et al. The Global Ecosystem Dynamics Investigation: High-Resolution Laser Ranging of the Earth’s Forests and Topography. Sci. Remote Sens. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Duncanson, L.; Kellner, J.R.; Armston, J.; Dubayah, R.; Minor, D.M.; Hancock, S.; Healey, S.P.; Patterson, P.L.; Saarela, S.; Marselis, S.; et al. Aboveground Biomass Density Models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) Lidar Mission. Remote Sens. Environ. 2022, 270, 112845. [Google Scholar] [CrossRef]
- Dubayah, R.; Armston, J.; Healey, S.P.; Bruening, J.M.; Patterson, P.L.; Kellner, J.R.; Duncanson, L.; Saarela, S.; Ståhl, G.; Yang, Z.; et al. GEDI Launches a New Era of Biomass Inference from Space. Environ. Res. Lett. 2022, 17, 095001. [Google Scholar] [CrossRef]
- Mohite, J.; Sawant, S.; Pandit, A.; Sakkan, M.; Pappula, S.; Parmar, A. Forest Aboveground Biomass Estimation by GEDI and Multi-Source EO Data Fusion over Indian Forest. Int. J. Remote Sens. 2024, 45, 1304–1338. [Google Scholar] [CrossRef]
- Shendryk, Y. Fusing GEDI with Earth Observation Data for Large Area Aboveground Biomass Mapping. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103108. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Goulden, T. State-Wide Forest Canopy Height and Aboveground Biomass Map for New York with 10 m Resolution, Integrating GEDI, Sentinel-1, and Sentinel-2 Data. Ecol. Inform. 2024, 79, 102404. [Google Scholar] [CrossRef]
- Kanmegne Tamga, D.; Latifi, H.; Ullmann, T.; Baumhauer, R.; Bayala, J.; Thiel, M. Estimation of Aboveground Biomass in Agroforestry Systems over Three Climatic Regions in West Africa Using Sentinel-1, Sentinel-2, ALOS, and GEDI Data. Sensors 2022, 23, 349. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, W.; Ji, Y.; Marino, A.; Li, C.; Wang, L.; Zhao, H.; Wang, M. Estimation of Aboveground Biomass for Different Forest Types Using Data from Sentinel-1, Sentinel-2, ALOS PALSAR-2, and GEDI. Forests 2024, 15, 215. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, W.; Han, J.; Wei, W.; Xu, J. Urban Above-Ground Biomass Estimation Using GEDI Laser Data and Optical Remote Sensing Images. Remote Sens. 2024, 16, 1229. [Google Scholar] [CrossRef]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E.; et al. Mapping Global Forest Canopy Height through Integration of GEDI and Landsat Data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
- Campbell, M.J.; Dennison, P.E.; Kerr, K.L.; Brewer, S.C.; Anderegg, W.R.L. Scaled Biomass Estimation in Woodland Ecosystems: Testing the Individual and Combined Capacities of Satellite Multispectral and Lidar Data. Remote Sens. Environ. 2021, 262, 112511. [Google Scholar] [CrossRef]
- Qi, W.; Saarela, S.; Armston, J.; Ståhl, G.; Dubayah, R. Forest Biomass Estimation over Three Distinct Forest Types Using TanDEM-X InSAR Data and Simulated GEDI Lidar Data. Remote Sens. Environ. 2019, 232, 111283. [Google Scholar] [CrossRef]
- Hernández-Martínez, L.A.; Dupuy-Rada, J.M.; Medel-Narváez, A.; Portillo-Quintero, C.; Hernández-Stefanoni, J.L. Improving Aboveground Biomass Density Mapping of Arid and Semi-Arid Vegetation by Combining GEDI LiDAR, Sentinel-1/2 Imagery and Field Data. Sci. Remote Sens. 2025, 11, 100204. [Google Scholar] [CrossRef]
- Perpinyà-Vallès, M.; Cendagorta-Galarza, D.; Ameztegui, A.; Huertas, C.; Escorihuela, M.J.; Romero, L. High-Resolution Aboveground Biomass Mapping: The Benefits of Biome-Specific Deep Learning Models. Remote Sens. 2025, 17, 1268. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, L.; Yan, M.; Zuo, J.; Dong, Y.; Chen, B. High-Resolution Mapping of Forest Parameters in Tropical Rainforests Through AutoML Integration of GEDI With Sentinel-1/2, Landsat 8, and ALOS-2 Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 9084–9118. [Google Scholar] [CrossRef]
- Clark, M.L.; Roberts, D.A.; Ewel, J.J.; Clark, D.B. Estimation of Tropical Rain Forest Aboveground Biomass with Small-Footprint Lidar and Hyperspectral Sensors. Remote Sens. Environ. 2011, 115, 2931–2942. [Google Scholar] [CrossRef]
- Feng, Y.; Lu, D.; Chen, Q.; Keller, M.; Moran, E.; Dos-Santos, M.N.; Bolfe, E.L.; Batistella, M. Examining Effective Use of Data Sources and Modeling Algorithms for Improving Biomass Estimation in a Moist Tropical Forest of the Brazilian Amazon. Int. J. Digit. Earth 2017, 10, 996–1016. [Google Scholar] [CrossRef]
- Bruening, J.M.; Fischer, R.; Bohn, F.J.; Armston, J.; Armstrong, A.H.; Knapp, N.; Tang, H.; Huth, A.; Dubayah, R. Challenges to Aboveground Biomass Prediction from Waveform Lidar. Environ. Res. Lett. 2021, 16, 125013. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Padalia, H.; Prakash, A.; Watham, T. Modelling Aboveground Biomass of a Multistage Managed Forest through Synergistic Use of Landsat-OLI, ALOS-2 L-Band SAR and GEDI Metrics. Ecol. Inform. 2023, 77, 102234. [Google Scholar] [CrossRef]
- Mitsuhashi, R.; Sawada, Y.; Tsutsui, K.; Hirayama, H.; Imai, T.; Sumita, T.; Kajiwara, K.; Honda, Y. Re-Estimating GEDI Ground Elevation Using Deep Learning: Impacts on Canopy Height and Aboveground Biomass. Remote Sens. 2024, 16, 4597. [Google Scholar] [CrossRef]
- Chojnacky, D.C.; Heath, L.S.; Jenkins, J.C. Updated Generalized Biomass Equations for North American Tree Species. Forestry 2014, 87, 129–151. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Ewel, K.C. Comparative Biomass and Growth of Cypress in Florida Wetlands. Am. Midl. Nat. 1979, 101, 417–426. [Google Scholar] [CrossRef]
- Gonzalez-Benecke, C.A.; Gezan, S.A.; Albaugh, T.J.; Allen, H.L.; Burkhart, H.E.; Fox, T.R.; Jokela, E.J.; Maier, C.A.; Martin, T.A.; Rubilar, R.A.; et al. Local and General Above-Stump Biomass Functions for Loblolly Pine and Slash Pine Trees. For. Ecol. Manage. 2014, 334, 254–276. [Google Scholar] [CrossRef]
- Gonzalez-Benecke, C.; Zhao, D.; Samuelson, L.; Martin, T.; Leduc, D.; Jack, S. Local and General Above-Ground Biomass Functions for Pinus Palustris Trees. Forests 2018, 9, 310. [Google Scholar] [CrossRef]
- Brown, C.F.; Brumby, S.P.; Guzder-Williams, B.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Czerwinski, W.; Pasquarella, V.J.; Haertel, R.; Ilyushchenko, S.; et al. Dynamic World, Near Real-Time Global 10 m Land Use Land Cover Mapping. Sci. Data 2022, 9, 251. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 Surface Reflectance Data Set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Mullissa, A.; Vollrath, A.; Odongo-Braun, C.; Slagter, B.; Balling, J.; Gou, Y.; Gorelick, N.; Reiche, J. Sentinel-1 SAR Backscatter Analysis Ready Data Preparation in Google Earth Engine. Remote Sens. 2021, 13, 1954. [Google Scholar] [CrossRef]
- Ren, C.; Jiang, H.; Xi, Y.; Liu, P.; Li, H. Quantifying Temperate Forest Diversity by Integrating GEDI LiDAR and Multi-Temporal Sentinel-2 Imagery. Remote Sens. 2023, 15, 375. [Google Scholar] [CrossRef]
- Conners, R.W.; Trivedi, M.M.; Harlow, C.A. Segmentation of a High-Resolution Urban Scene Using Texture Operators. Comput. Vision, Graph. Image Process. 1984, 25, 273–310. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural Features for Image Classification. IEEE Trans. Syst. man Cybern. 1973, 6, 610–621. [Google Scholar] [CrossRef]
- Wu, Q. Geemap: A Python Package for Interactive Mapping with Google Earth Engine. J. Open Source Softw. 2020, 5, 2305. [Google Scholar] [CrossRef]
- Curran, P.J. The Semivariogram in Remote Sensing: An Introduction. Remote Sens. Environ. 1988, 24, 493–507. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Müller, A.; Nothman, J.; Louppe, G.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Silva, C.A.; Hamamura, C.; Valbuena, R.; Hancock, S.; Cardil, A.; Broadbent, E.N.; Almeida, D.R.A.; Silva Junior, C.H.L.; Klauberg, C. RGEDI: An R Package for NASA’s Global Ecosystem Dynamics Investigation (GEDI) Data Visualizing and Processing. Available online: https://github.com/carlos-alberto-silva/rGEDI (accessed on 15 October 2024).
- USGS FL_Peninsular_FDEM_2018_D19_DRRA. Available online: https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/metadata/FL_Peninsular_FDEM_2018_D19_DRRA/USGS_FL_Peninsular_FDEM_2018_D19_DRRA_Project_Report.pdf (accessed on 5 May 2025).
- Köhler, P.; Huth, A. Towards Ground-Truthing of Spaceborne Estimates of above-Ground Life Biomass and Leaf Area Index in Tropical Rain Forests. Biogeosciences 2010, 7, 2531–2543. [Google Scholar] [CrossRef]
- Breslow, N. A Generalized Kruskal-Wallis Test for Comparing K Samples Subject to Unequal Patterns of Censorship. Biometrika 1970, 57, 579–594. [Google Scholar] [CrossRef]
- Wilcoxon, F. Individual Comparisons of Grouped Data by Ranking Methods. J. Econ. Entomol. 1946, 39, 269–270. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591. [Google Scholar] [CrossRef]
- Vogel, J.G.; Bracho, R.; Akers, M.; Amateis, R.; Bacon, A.; Burkhart, H.E.; Gonzalez-Benecke, C.A.; Grunwald, S.; Jokela, E.J.; Kane, M.B.; et al. Regional Assessment of Carbon Pool Response to Intensive Silvicultural Practices in Loblolly Pine Plantations. Forests 2021, 13, 36. [Google Scholar] [CrossRef]
- Vogel, J.G.; Suau, L.J.; Martin, T.A.; Jokela, E.J. Long-Term Effects of Weed Control and Fertilization on the Carbon and Nitrogen Pools of a Slash and Loblolly Pine Forest in North-Central Florida. Can. J. For. Res. 2011, 41, 552–567. [Google Scholar] [CrossRef]
- Xu, C.; Morgenroth, J.; Manley, B. Integrating Data from Discrete Return Airborne LiDAR and Optical Sensors to Enhance the Accuracy of Forest Description: A Review. Curr. For. Reports 2015, 1, 206–219. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, Z.; Zhang, H.; Zhang, H.; Qiu, H. Aboveground Forest Biomass Estimation Using Tent Mapping Atom Search Optimized Backpropagation Neural Network with Landsat 8 and Sentinel-1A Data. Remote Sens. 2023, 15, 5653. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, N.; Wang, Y.; Li, M. A New Strategy for Improving the Accuracy of Forest Aboveground Biomass Estimates in an Alpine Region Based on Multi-Source Remote Sensing. GIScience Remote Sens. 2023, 60, 2163574. [Google Scholar] [CrossRef]
- Chen, L.; Ren, C.; Bao, G.; Zhang, B.; Wang, Z.; Liu, M.; Man, W.; Liu, J. Improved Object-Based Estimation of Forest Aboveground Biomass by Integrating LiDAR Data from GEDI and ICESat-2 with Multi-Sensor Images in a Heterogeneous Mountainous Region. Remote Sens. 2022, 14, 2743. [Google Scholar] [CrossRef]
- Puliti, S.; Dash, J.P.; Watt, M.S.; Breidenbach, J.; Pearse, G.D. A Comparison of UAV Laser Scanning, Photogrammetry and Airborne Laser Scanning for Precision Inventory of Small-Forest Properties. Forestry 2020, 93, 150–162. [Google Scholar] [CrossRef]
- Liang, M.; Duncanson, L.; Silva, J.A.; Sedano, F. Quantifying Aboveground Biomass Dynamics from Charcoal Degradation in Mozambique Using GEDI Lidar and Landsat. Remote Sens. Environ. 2023, 284, 113367. [Google Scholar] [CrossRef]
- Li, X.; Wessels, K.; Armston, J.; Duncanson, L.; Urbazaev, M.; Naidoo, L.; Mathieu, R.; Main, R. Evaluation of GEDI Footprint Level Biomass Models in Southern African Savannas Using Airborne LiDAR and Field Measurements. Sci. Remote Sens. 2024, 10, 100161. [Google Scholar] [CrossRef]
- Saarela, S.; Holm, S.; Healey, S.P.; Patterson, P.L.; Yang, Z.; Andersen, H.E.; Dubayah, R.O.; Qi, W.; Duncanson, L.I.; Armston, J.D.; et al. Comparing Frameworks for Biomass Prediction for the Global Ecosystem Dynamics Investigation. Remote Sens. Environ. 2022, 278, 113074. [Google Scholar] [CrossRef]
- Nandy, S.; Srinet, R.; Padalia, H. Mapping Forest Height and Aboveground Biomass by Integrating ICESat-2, Sentinel-1 and Sentinel-2 Data Using Random Forest Algorithm in Northwest Himalayan Foothills of India. Geophys. Res. Lett. 2021, 48, e2021GL093799. [Google Scholar] [CrossRef]
- Wang, C.; Jia, D.; Lei, S.; Numata, I.; Tian, L. Accuracy Assessment and Impact Factor Analysis of GEDI Leaf Area Index Product in Temperate Forest. Remote Sens. 2023, 15, 1535. [Google Scholar] [CrossRef]
- Bullock, E.L.; Healey, S.P.; Yang, Z.; Acosta, R.; Villalba, H.; Insfrán, K.P.; Melo, J.B.; Wilson, S.; Duncanson, L.; Næsset, E.; et al. Estimating Aboveground Biomass Density Using Hybrid Statistical Inference with GEDI Lidar Data and Paraguay’s National Forest Inventory. Environ. Res. Lett. 2023, 18, 085001. [Google Scholar] [CrossRef]
- Réjou-Méchain, M.; Barbier, N.; Couteron, P.; Ploton, P.; Vincent, G.; Herold, M.; Mermoz, S.; Saatchi, S.; Chave, J.; de Boissieu, F.; et al. Upscaling Forest Biomass from Field to Satellite Measurements: Sources of Errors and Ways to Reduce Them. Surv. Geophys. 2019, 40, 881–911. [Google Scholar] [CrossRef]
- Chave, J.; Condit, R.; Aguilar, S.; Hernandez, A.; Lao, S.; Perez, R. Error Propagation and Scaling for Tropical Forest Biomass Estimates. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 2004, 359, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Indirabai, I.; Nilsson, M. Estimation of above Ground Biomass in Tropical Heterogeneous Forests in India Using GEDI. Ecol. Inform. 2024, 82, 102712. [Google Scholar] [CrossRef]
- Fararoda, R.; Reddy, R.S.; Rajashekar, G.; Chand, T.R.K.; Jha, C.S.; Dadhwal, V.K. Improving Forest above Ground Biomass Estimates over Indian Forests Using Multi Source Data Sets with Machine Learning Algorithm. Ecol. Inform. 2021, 65, 101392. [Google Scholar] [CrossRef]
- Urbazaev, M.; Thiel, C.; Cremer, F.; Dubayah, R.; Migliavacca, M.; Reichstein, M.; Schmullius, C. Estimation of Forest Aboveground Biomass and Uncertainties by Integration of Field Measurements, Airborne LiDAR, and SAR and Optical Satellite Data in Mexico. Carbon Balance Manag. 2018, 13, 5. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Cheng, X.; Chen, Z. Performance Evaluation of GEDI and ICESat-2 Laser Altimeter Data for Terrain and Canopy Height Retrievals. Remote Sens. Environ. 2021, 264, 112571. [Google Scholar] [CrossRef]
- Wang, C.; Elmore, A.J.; Numata, I.; Cochrane, M.A.; Shaogang, L.; Huang, J.; Zhao, Y.; Li, Y. Factors Affecting Relative Height and Ground Elevation Estimations of GEDI among Forest Types across the Conterminous USA. GIScience Remote Sens. 2022, 59, 975–999. [Google Scholar] [CrossRef]
- Babcock, C.; Finley, A.O.; Cook, B.D.; Weiskittel, A.; Woodall, C.W. Modeling Forest Biomass and Growth: Coupling Long-Term Inventory and LiDAR Data. Remote Sens. Environ. 2016, 182, 1–12. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, W.; Liu, B.; Tian, X.; Chen, S.; Wang, H.; Mao, Y. Forest Carbon Flux Simulation Using Multi-Source Data and Incorporation of Remotely Sensed Model with Process-Based Model. Remote Sens. 2022, 14, 4766. [Google Scholar] [CrossRef]
- Vincini, M.; Frazzi, E.; D’Alessio, P. A Broad-Band Leaf Chlorophyll Vegetation Index at the Canopy Scale. Precis. Agric. 2008, 9, 303–319. [Google Scholar] [CrossRef]
- Drury, S.A. Image Interpretation in Geology, 2nd ed.; Routledge: London, UK, 1987. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.; Gao, X.; Ferreira, L. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Ceccato, P.; Gobron, N.; Flasse, S.; Pinty, B.; Tarantola, S. Designing a Spectral Index to Estimate Vegetation Water Content from Remote Sensing Data: Part 1. Remote Sens. Environ. 2002, 82, 188–197. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote Estimation of Canopy Chlorophyll Content in Crops. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Campos-Taberner, M.; Moreno-Martínez, Á.; Walther, S.; Duveiller, G.; Cescatti, A.; Mahecha, M.D.; Muñoz-Marí, J.; García-Haro, F.J.; Guanter, L.; et al. A Unified Vegetation Index for Quantifying the Terrestrial Biosphere. Sci. Adv. 2021, 7. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, Washington, DC, USA, 10–14 December 2014; NASA: Washington, DC, USA, 1974; pp. 309–317. [Google Scholar]
- Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Gitelson, A.A. Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Schlund, M.; Erasmi, S. Sentinel-1 Time Series Data for Monitoring the Phenology of Winter Wheat. Remote Sens. Environ. 2020, 246, 111814. [Google Scholar] [CrossRef]
- NASA. NASADEM Merged DEM Global 1 Arc Second V001; NASA Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA. [CrossRef]
- Irons, J.R.; Petersen, G.W. Texture Transforms of Remote Sensing Data. Remote Sens. Environ. 1981, 11, 359–370. [Google Scholar] [CrossRef]
Species | AGB Equations | Reference |
---|---|---|
Taxodium spp. | [34] | |
Pinus taeda | [35] | |
Pinus palustris | [36] | |
Pinus elliottii | [35] | |
Fagaceae | [33] |
Site | Upscaling Framework | ||||
---|---|---|---|---|---|
Austin Cary Forest | 1 | 151.1 ± 164.7 a | 6784.4 | 82.4 a | 54.5 |
2 | 115.1 ± 134.0 b | 4489.2 | 67.0 b | 58.2 | |
3 | 140.9 ± 183.2 c | 8394.2 | 91.6 c | 65.0 | |
FAS Millhopper Unit | 1 | 131.0 ± 153.7 a | 5907.5 | 76.9 a | 58.7 |
2 | 92.6 ± 117.0 b | 3422.7 | 58.5 b | 63.2 | |
3 | 125.1 ± 167.1 c | 6977.0 | 83.5 c | 66.3 | |
Myakka State Forest | 1 | 36.4 ± 60.4 a | 911.0 | 30.2 a | 83.0 |
2 | 18.5 ± 42.1 b | 442.3 | 21.0 b | 113.5 | |
3 | 39.7 ± 70.5 c | 1242.1 | 35.2 c | 88.7 | |
Okaloacoochee Slough State Forest | 1 | 65.4 ± 130.9 a | 4281.0 | 65.4 a | 100.0 |
2 | 48.4 ± 78.8 b | 1551.6 | 39.4 b | 81.4 | |
3 | 44.4 ± 90.1 c | 2031.2 | 45.2 c | 101.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bueno, I.T.; Silva, C.A.; Schlickmann, M.B.; Donovan, V.M.; Atkins, J.W.; Brock, K.M.; Xia, J.; Valle, D.R.; Qiu, J.; Vogel, J.; et al. Upscaling Frameworks Drive Prediction Accuracy and Uncertainty When Mapping Aboveground Biomass Density from the Synergism of Spaceborne LiDAR, SAR, and Passive Optical Data. Remote Sens. 2025, 17, 2340. https://doi.org/10.3390/rs17142340
Bueno IT, Silva CA, Schlickmann MB, Donovan VM, Atkins JW, Brock KM, Xia J, Valle DR, Qiu J, Vogel J, et al. Upscaling Frameworks Drive Prediction Accuracy and Uncertainty When Mapping Aboveground Biomass Density from the Synergism of Spaceborne LiDAR, SAR, and Passive Optical Data. Remote Sensing. 2025; 17(14):2340. https://doi.org/10.3390/rs17142340
Chicago/Turabian StyleBueno, Inacio T., Carlos A. Silva, Monique B. Schlickmann, Victoria M. Donovan, Jeff W. Atkins, Kody M. Brock, Jinyi Xia, Denis R. Valle, Jiangxiao Qiu, Jason Vogel, and et al. 2025. "Upscaling Frameworks Drive Prediction Accuracy and Uncertainty When Mapping Aboveground Biomass Density from the Synergism of Spaceborne LiDAR, SAR, and Passive Optical Data" Remote Sensing 17, no. 14: 2340. https://doi.org/10.3390/rs17142340
APA StyleBueno, I. T., Silva, C. A., Schlickmann, M. B., Donovan, V. M., Atkins, J. W., Brock, K. M., Xia, J., Valle, D. R., Qiu, J., Vogel, J., Susaeta, A., Sharma, A., Klauberg, C., Mohan, M., & Dalla Corte, A. P. (2025). Upscaling Frameworks Drive Prediction Accuracy and Uncertainty When Mapping Aboveground Biomass Density from the Synergism of Spaceborne LiDAR, SAR, and Passive Optical Data. Remote Sensing, 17(14), 2340. https://doi.org/10.3390/rs17142340