- Article
Multi-Time-Scale Source–Storage–Load Coordination Scheduling Strategy for Pumped Storage with Characteristic Distribution
- Bo Yi,
- Sheliang Wang and
- Pin Zhang
- + 4 authors
To address the pressing challenges of low new energy utilization, high power system operating costs, and compromised power supply reliability in regional grids, we propose a multi-time-scale source–storage–load coordinated scheduling strategy that explicitly accounts for the characteristic distribution of grid-connected energy storage stations, including their state-of-charge constraints, round-trip efficiency profiles, and location-specific operational dynamics. A day-ahead scheduling framework is developed by integrating the multi-time-scale behavioral patterns of diverse load-side demand response resources with the dynamic operational characteristics of energy storage stations. By embedding intra-day rolling optimization and real-time corrective adjustments, we mitigate prediction errors and adapt to unforeseen system disturbances, ensuring enhanced operational accuracy. The objective function minimizes a weighted sum of system operation costs encompassing generation, transmission, and auxiliary services; wind power curtailment penalties for unused renewables; and load shedding penalties from unmet demand, balancing economic efficiency with supply quality. A mixed-integer programming model formalizes these tradeoffs, solved via MATLAB 2020b coupled CPLEX to guarantee optimality. Simulation results demonstrate that the strategy significantly cuts wind power curtailment, reduces system costs, and elevates new energy consumption—outperforming conventional single-time-scale methods in harmonizing renewable integration with grid reliability. This work offers a practical solution for enhancing grid flexibility in high-renewable penetration scenarios.
6 December 2025





