polymers-logo

Journal Browser

Journal Browser

Sustainable Polymer Composites from Renewable Resources: Functionality and Applications

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Composites and Nanocomposites".

Deadline for manuscript submissions: 10 May 2025 | Viewed by 99197

Special Issue Editors

School of Chemical and Biological Technology, Taiyuan University of Science and Technology, Taiyuan, China
Interests: bio-based polymers and chemicals; polymer engineering; polymer functional modification; polymer composites; cellulose engineering; polymer chemistry and physics; mechanical properties; thermal properties; crystallization behavior; modification of waste plastics
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Polymer Materials and Engineering, School of Materials Science and Engineering, North University of China, Taiyuan, China
Interests: photoelectric functional polymer materials and their flexible devices; preparation and interface research of organic/inorganic photoelectric functional materials; preparation and performance regulation of photosensitive layer materials for novel hybrid solar cells

E-Mail Website
Guest Editor
Department of Polymer Materials and Engineering, School of Materials Science and Engineering, North University of China, Taiyuan, China
Interests: high-value recycling of waste plastics for electronic appliances; engineering plasticization of polyester bottle flakes; flotation of difficult-to-separate waste plastics; halogen-free flame retardant nylon materials; synthesis and modification of long carbon chain engineering plastics

Special Issue Information

Dear Colleagues,

In recent decades, the production and application of polymers and their composites have increased exponentially. However, the consumption of nonrenewable resources, the disposal of waste polymers and related issues, as well as government policies have led to growing interest in sustainable polymer composites prepared from renewable resources.

At present, sustainable polymers and their composites prepared from renewable resources mainly include polymers and their composites based on biodegradable plastics (PLA, PHBV, PBAT, PHB, PHA, etc.); polymers and their composites based on bio-based polymers (cellulose, chitosan, protein, etc.); modified polymer composites filled with agricultural and forestry wastes; the modification and regeneration of waste plastics.

The aim of this Special Issue is to highlight the progress in the preparation, characterization, properties and applications of polymers, blends and composites prepared from renewable resources.

Dr. Bo Wang
Prof. Dr. Jie Li
Prof. Dr. Yingchun Li
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bio-based polymers
  • biodegradable polymers
  • sustainable polymer composites
  • biomass-derived materials
  • natural polymers and derivatives
  • natural fiber composites
  • renewable resources
  • modification and regeneration of waste plastics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (28 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 5928 KiB  
Article
Enhancing Bone Regeneration Using Blended Poly(L-lactide-co-D, L-lactide) and β-Tricalcium Phosphate Nanofibrous Periodontal Biodegradable Membranes
by Princess Joy Naig, Zih-Yin Kuo, Min-Fan Chung, Chih-Hao Chen, Chi-Yun Wang and Kuo-Yung Hung
Polymers 2025, 17(3), 256; https://doi.org/10.3390/polym17030256 - 21 Jan 2025
Viewed by 1059
Abstract
In regenerative periodontal treatment, barrier membranes restore periodontal support and aid tissue healing, but slow hard tissue regeneration can disrupt healing and cause tooth instability. This study aimed to fabricate a periodontal membrane through electrospinning poly(L-lactide-co-D, L-lactide) with varying β-tricalcium phosphate (β-TCP) percentages [...] Read more.
In regenerative periodontal treatment, barrier membranes restore periodontal support and aid tissue healing, but slow hard tissue regeneration can disrupt healing and cause tooth instability. This study aimed to fabricate a periodontal membrane through electrospinning poly(L-lactide-co-D, L-lactide) with varying β-tricalcium phosphate (β-TCP) percentages (0%, 10%, 30%, and 40%) treated with hyaluronic acid to enhance bone regeneration in alveolar bone defects. Their ability to promote biomimetic mineralization was characterized using field emission scanning electron microscopy (FESEM) analysis, wettability, and mechanical properties. Biocompatibility and osteogenic differentiation were evaluated by examining BMSCs’ behavior. In vivo, the PLA/β-TCP membrane’s potential to promote bone regeneration was assessed through CT imaging and histological examination. FESEM analysis revealed β-TCP agglomerations within PLA fibers, increasing tensile strength. Water contact angle measurements showed better wettability and higher cell viability after hyaluronic acid treatment, indicating non-cytotoxicity. Membranes with 10% and 30% (w/w) β-TCP significantly enhanced cellular activities, including proliferation and osteogenic differentiation. Animal tests showed a significant bone growth rate increase to 28.9% in the experimental group compared to 24.9% with the commercial product Epi-Guide after three months. Overall, PLA with 30% β-TCP optimally promoted periodontal hard tissue repair and potentially enhanced bone regeneration. Full article
Show Figures

Graphical abstract

17 pages, 5916 KiB  
Article
A Novel Exopolysaccharide Produced by Sphingomonas sp. MT01 and Its Potential Application in Enhanced Oil Recovery
by Mengting Lu, Xiaoxiao Lu, Weiyi Tao, Junzhang Lin, Caifeng Li and Shuang Li
Polymers 2025, 17(2), 186; https://doi.org/10.3390/polym17020186 - 14 Jan 2025
Viewed by 781
Abstract
Sphingan is a crucial exopolysaccharide (EPS) produced by Sphingomonas genus bacteria with wide-ranging applications in fields such as food, medicine, and petroleum. In this study, a novel sphingan, named MT gum, was overproduced from the wild-type strain Sphingomonas sp. MT01 at a yield [...] Read more.
Sphingan is a crucial exopolysaccharide (EPS) produced by Sphingomonas genus bacteria with wide-ranging applications in fields such as food, medicine, and petroleum. In this study, a novel sphingan, named MT gum, was overproduced from the wild-type strain Sphingomonas sp. MT01 at a yield of 25.6 g/L in a 5 L fermenter for 52 h at 35 °C. The MT gum was mainly composed of D-glucose (65.91%) and L-guluronic acid (30.69%), as confirmed by RP-HPLC, with Mw 7.24 × 105 Da. The MT gum exhibited excellent rheology and pseudoplasticity characteristics while maintaining function in high-temperature and high-salinity environments. The viscosity retention rates of MT gum (0.1%, w/v) were 54.06% (80 °C, 50,000 mg/L salinity) and 34.78% (90 °C, 50,000 mg/L salinity), respectively. The apparent viscosity of MT solutions (0.1%, w/v) was much higher than that of welan solutions under the same conditions. The MT gum also had the property of instant dissolution and completely swelled in 40 min. Meanwhile, the MT gum was resistant to 3–10 mg/L Fe2+ in the reservoir conditions, ensuring its application in offshore oil fields. These findings suggested that the biopolymer MT gum produced by the strain MT01 had significant potential in enhanced oil recovery (EOR) of high-temperature and high-salinity oil reservoirs. Full article
Show Figures

Figure 1

19 pages, 2403 KiB  
Article
Biorefinery of Lignocellulosic and Marine Resources for Obtaining Active PVA/Chitosan/Phenol Films for Application in Intelligent Food Packaging
by Mary Isabel Lopretti Correa, Diego Batista-Menezes, Stephany Cunha de Rezende, Arantzazu Santamaria-Echart, Maria-Filomena Barreiro and Jose Roberto Vega-Baudrit
Polymers 2025, 17(1), 82; https://doi.org/10.3390/polym17010082 - 31 Dec 2024
Viewed by 813
Abstract
This study focuses on the extraction of phenolic compounds from the fermentation of Phanerochaete chrysosporium and Gloeophyllum trabeum. The main goal was to synthesize phenol/chitosan microspheres and PVA films and characterized using FTIR, TGA, DSC, SEM, and mechanical tests to evaluate their [...] Read more.
This study focuses on the extraction of phenolic compounds from the fermentation of Phanerochaete chrysosporium and Gloeophyllum trabeum. The main goal was to synthesize phenol/chitosan microspheres and PVA films and characterized using FTIR, TGA, DSC, SEM, and mechanical tests to evaluate their physical, chemical, and mechanical properties for antimicrobial packaging applications. Homogeneous chitosan microspheres loaded with lignin-derived phenols were obtained, showing controlled release of antimicrobial compounds. The incorporation of phenolic microspheres into PVA/chitosan films resulted in significant improvements in mechanical properties: the films exhibited an elastic modulus of 36.14 ± 3.73 MPa, tensile strength of 12.01 ± 1.14 MPa, and elongation at break of 65.19 ± 5.96%. Thermal tests revealed that chitosan-containing films had enhanced thermal stability, with decomposition temperatures (T10) reaching 116.77 °C, compared to 89.28 °C for pure PVA. In terms of antimicrobial activity, PVA/chitosan/phenol films effectively reduced Lactobacillus growth and milk acidity, maintaining quality for up to 96 h at room temperature, outperforming controls with acetic acid and H2O2. The films also inhibit yeast growth for one week. In conclusion, phenols can be effective antimicrobial agents in dairy, but their use should be monitored. Additionally, PVA/chitosan-phenol films offer biodegradability, antimicrobial properties, and sustainability for diverse applications. Full article
Show Figures

Figure 1

22 pages, 5553 KiB  
Article
The Catalytic Degradation of Waste PU and the Preparation of Recycled Materials
by Xiaohua Gu, Jiahao Xu, Shangwen Zhu, Qinglong Zhao, Shaochun Sun, Yanxun Zhang, Qingyong Su and Canyan Long
Polymers 2024, 16(24), 3581; https://doi.org/10.3390/polym16243581 - 21 Dec 2024
Viewed by 1145
Abstract
In this paper, we investigated the efficient metal-free phosphorus–nitrogen (PN) catalyst and used the PN catalyst to degrade waste PU with two-component binary mixed alcohols as the alcohol solvent. We examined the effects of reaction temperature, time, and other factors on the hydroxyl [...] Read more.
In this paper, we investigated the efficient metal-free phosphorus–nitrogen (PN) catalyst and used the PN catalyst to degrade waste PU with two-component binary mixed alcohols as the alcohol solvent. We examined the effects of reaction temperature, time, and other factors on the hydroxyl value and viscosity of the degradation products; focused on the changing rules of the hydroxyl value, viscosity, and molecular weight of polyols recovered from degradation products with different dosages of the metal-free PN catalyst; and determined the optimal experimental conditions of reaction temperature 180 °C, reaction time 3 h, and PN dosage 0.08%. The optimal experimental conditions were 180 °C, 3 h reaction time, and 0.08% PN dosage, the obtained polyol viscosity was 3716 mPa·s, the hydroxyl value was 409.2 mgKOH/g, and the number average molecular weight was 2616. The FTIR, 1H, NMR, and other tests showed that the waste urethanes were degraded into oligomers successfully, the recycled polyether polyols were obtained, and a series of recycled polyurethanes with different substitution ratios were then prepared. A series of recycled polyurethane materials with different substitution rates were then prepared and characterized by FTIR, SEM, compression strength, and thermal conductivity tests, which showed that the recycled polyurethane foams had good physical properties such as compression strength and apparent density, and the SEM test at a 20% substitution rate showed that the recycled polyol helped to improve the structure of the blisters. Full article
Show Figures

Figure 1

11 pages, 4413 KiB  
Article
Scalable Engineering of 3D Printing Filaments Derived from Recycling of Plastic Drinking Water Bottle and Glass Waste
by Arafat Toghan, Omar K. Alduaij, Moustafa M. S. Sanad and Noha A. Elessawy
Polymers 2024, 16(22), 3195; https://doi.org/10.3390/polym16223195 - 17 Nov 2024
Viewed by 1675
Abstract
The most significant challenge that the world is currently facing is the development of beneficial industrial applications for solid waste. A novel strategy was implemented to produce a composite with varying loadings of glass waste nanoparticles (GWNP) in 5, 10, and 15 wt.% [...] Read more.
The most significant challenge that the world is currently facing is the development of beneficial industrial applications for solid waste. A novel strategy was implemented to produce a composite with varying loadings of glass waste nanoparticles (GWNP) in 5, 10, and 15 wt.% with recycled polyethylene terephthalate drinking water bottle waste (RPET). This strategy was based on glass and drinking water bottle waste. An analysis was conducted to evaluate the performance of the composite as filaments for 3D printer applications. This study evaluated the effect of GWNP addition on the chemical structure, thermal and mechanical characteristics of the composite. The Fourier Transform Infrared (FTIR) spectra of the filament composites and RPET composites exhibited similarities. However, the mechanical strength and thermal stability of the filament composites were enhanced due to the increased GWNP content. Furthermore, the results indicated that the filament developed could be utilized for 3D printing, as demonstrated by the successful fabrication of the filament composite, including 5 wt.% GWNP, using a 3D printer pen. The production of filaments using GWNP and RPET matrix presents a cost-effective, high-yield, and ecologically beneficial alternative. The present study may pave the way for the future advancement and utilization of 3D printing filaments by treating hazardous waste and using more ecologically friendly materials in design applications. Full article
Show Figures

Figure 1

13 pages, 4630 KiB  
Article
Preparation and Characterization of Cellulose/Silk Fibroin Composite Microparticles for Drug-Controlled Release Applications
by Suchai Tanisood, Yodthong Baimark and Prasong Srihanam
Polymers 2024, 16(21), 3020; https://doi.org/10.3390/polym16213020 - 28 Oct 2024
Cited by 2 | Viewed by 1190
Abstract
Microparticles derived from biomaterials are becoming increasingly popular for application in drug delivery systems. In this study, the water-in-oil (W/O) emulsification–diffusion method was used to create cellulose (C), silk fibroin (SF), and C/SF composite microparticles. We then observed the morphology of all obtained [...] Read more.
Microparticles derived from biomaterials are becoming increasingly popular for application in drug delivery systems. In this study, the water-in-oil (W/O) emulsification–diffusion method was used to create cellulose (C), silk fibroin (SF), and C/SF composite microparticles. We then observed the morphology of all obtained microparticles using scanning electron microscopy (SEM), evaluated their functional groups using attenuated total reflection–Fourier transform infrared spectroscopy (ATR-FTIR), and conducted thermogravimetric analysis using a thermogravimetric analyzer (TGA). SEM micrographs indicated that the native SF microparticles have the highest spherical shape with smooth surfaces. With blue dextran, the C microparticle was smaller than the native microparticle, while the drug-loaded SF microparticles were larger than the native microparticle. The morphological surfaces of the C/SF composite microparticles were varied in shape and surface depending on the C/SF ratio used. The spherical shape of the C/SF composite microparticle increased as the SF content increased. Furthermore, the size of the drug-loaded C/SF composite microparticles increased when the SF content gradually increased. The significant functional groups in the C and SF structures were identified based on the ATR-FTIR data, and a suggestion was made regarding the interaction between the functional groups of each polymer. When compared to both native polymers, the C/SF composite microparticles exhibit improved thermal stability. XRD patterns indicated that all prepared particles have crystalline structures and are directly affected by the released profile. The C/SF composite microparticle at a 1:3 ratio had the lowest drug release content, whereas the hydrophilicity of the C microparticle affected the highest drug release content. As a result, one crucial factor affecting the medication released from the microparticle is its structure stability. According to the obtained results, C, SF, and C/SF composite microparticles show promise as delivery systems for drugs with controlled release. Full article
Show Figures

Figure 1

15 pages, 3001 KiB  
Article
Development of Polymer Composites Using Surface-Modified Olive Pit Powder for Fused Granular Fabrication
by Pedro Burgos Pintos, Mirko Maturi, Alberto Sanz de León and Sergio I. Molina
Polymers 2024, 16(21), 2981; https://doi.org/10.3390/polym16212981 - 24 Oct 2024
Cited by 2 | Viewed by 1299
Abstract
In this study, olive pit agro-waste from the olive oil industry is valorized by incorporating it as an additive in a polyethylene terephthalate glycol (PETG) matrix to develop bio-based composite materials for large format additive manufacturing (LFAM). The olive pits were first ground [...] Read more.
In this study, olive pit agro-waste from the olive oil industry is valorized by incorporating it as an additive in a polyethylene terephthalate glycol (PETG) matrix to develop bio-based composite materials for large format additive manufacturing (LFAM). The olive pits were first ground into olive pit powder (OPP) and then functionalized by polymerizing poly(butylene adipate-co-terephthalate) PBAT on their surface, resulting in a hydrophobic, modified olive pit powder (MOPP) with enhanced compatibility with the PETG matrix. OPP and MOPP composites were compounded and 3D-printed via Fused Granular Fabrication (FGF) using 5, 10, and 15 wt.% concentrations. The PBAT coating increased the degradation temperature and specific heat capacity of the material, contributing to a lower melt viscosity during printing, as confirmed by MFR, MDSC, and TGA analyses. Tensile testing revealed that MOPP composites generally exhibited superior mechanical properties compared to OPP composites, likely due to the improved compatibility between PBAT on the MOPP surface and the PETG matrix. SEM analysis further validated these findings, showing a highly irregular and porous fracture surface in OPP composites, while MOPP composites displayed a smooth surface with well-integrated MOPP in the PETG matrix. Full article
Show Figures

Figure 1

15 pages, 6600 KiB  
Article
Solid Forms of Bio-Based Monomer Salts for Polyamide 512 and Their Effect on Polymer Properties
by Xiaohan Zhang, Xincao Fang, Yongliang Yan, Zihan Li, Qingshi Wen, Keke Zhang, Ming Li, Jinglan Wu, Pengpeng Yang and Junzhi Wang
Polymers 2024, 16(21), 2953; https://doi.org/10.3390/polym16212953 - 22 Oct 2024
Viewed by 931
Abstract
Polyamides’ properties are greatly influenced by the polymerization process and the type of feedstock used. The solid forms of nylon salts play a significant role in determining the final characteristics of the material. This study focuses on the long-chain bio-nylon 512. Firstly, we [...] Read more.
Polyamides’ properties are greatly influenced by the polymerization process and the type of feedstock used. The solid forms of nylon salts play a significant role in determining the final characteristics of the material. This study focuses on the long-chain bio-nylon 512. Firstly, we systematically investigated the possible solid forms of the nylon 512 salt, including crystal forms and morphologies, by massive experimental screening, single-crystal X-ray diffraction, Hirshfeld surface analysis, and TG-DSC measurements. The regulation and control of the various solid forms were achieved through solid-state transformations (SSTs) and solution-mediated phase transformations (SMPTs). Our findings shows that the nylon 512 salt exists in two crystal forms (anhydrate and dihydrate) and four morphologies (needle-like, plate-like, rod-like, and massive block crystal). Many factors will influence the formation of these solid forms, such as water activity, temperature, solvent, and ultrasonic physical fields. We can choose the right factors to regulate this as needed. On this basis, we studied the effects of different solid forms (crystal forms and morphologies) on the properties of the resulting polyamides prepared using direct solid-state polymerization (DSSP). The solid form of the salt had many effects on the polymer, including its structure, melting point, and mechanical properties. The polyamide obtained through DSSP of the anhydrate salt exhibited a higher melting point (204.22 °C) and greater elastic modulus (3.366 GPa) compared to that of the dihydrate salt, especially for the anhydrate salt of plate-like crystals. Full article
Show Figures

Graphical abstract

20 pages, 9089 KiB  
Article
Chitosan-Based Films Blended with Tannic Acid and Moringa Oleifera for Application in Food Packaging: The Preservation of Strawberries (Fragaria ananassa)
by Raja Venkatesan, Alexandre A. Vetcher, Bandar Ali Al-Asbahi and Seong-Cheol Kim
Polymers 2024, 16(7), 937; https://doi.org/10.3390/polym16070937 - 29 Mar 2024
Cited by 15 | Viewed by 2729
Abstract
Biobased plastics provide a sustainable alternative to conventional food packaging materials, thereby reducing the environmental impact. The present study investigated the effectiveness of chitosan with varying levels of Moringa oleifera seed powder (MOSP) and tannic acid (TA). Chitosan (CS) biocomposite films with tannic [...] Read more.
Biobased plastics provide a sustainable alternative to conventional food packaging materials, thereby reducing the environmental impact. The present study investigated the effectiveness of chitosan with varying levels of Moringa oleifera seed powder (MOSP) and tannic acid (TA). Chitosan (CS) biocomposite films with tannic acid acted as a cross-linker, and Moringa oleifera seed powder served as reinforcement. To enhance food packaging and film performance, Moringa oleifera seed powder was introduced at various loadings of 1.0, 3.0, 5.0, and 10.0 wt.%. Fourier-transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy analyses were performed to study the structure and morphology of the CS/TA/MOSP films. The scanning electron microscopy results confirmed that chitosan/TA with 10.0 wt.% of MOSP produced a lightly miscible droplet/matrix structure. Furthermore, mechanical properties, swelling, water solubility, optical barrier, and water contact angle properties of the film were also calculated. With increasing Moringa oleifera seed powder contents, the biocomposite films’ antimicrobial and antifungal activity increased at the 10.0 wt.% MOSP level; all of the observed bacteria [Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), Aspergillus niger (A. niger), and Candida albicans (C. albicans)] had a notably increased percentage of growth. The film, with 10.0 wt.% MOSP content, effectively preserves strawberries’ freshness, making it an ideal food packaging material. Full article
Show Figures

Figure 1

13 pages, 6594 KiB  
Article
Maltodextrin-Based Cross-Linked Electrospun Mats as Sustainable Sorbents for the Removal of Atenolol from Water
by Claudio Cecone, Valentina Fiume, Pierangiola Bracco and Marco Zanetti
Polymers 2024, 16(6), 752; https://doi.org/10.3390/polym16060752 - 9 Mar 2024
Cited by 2 | Viewed by 2105
Abstract
Maltodextrins are products of starch hydrolysis that can be processed into dry fibres through electrospinning and subsequently cured via mild thermal treatment to obtain nonwoven cross-linked polysaccharide-based mats. The sustainability of the process and the bioderived nature make this class of materials suitable [...] Read more.
Maltodextrins are products of starch hydrolysis that can be processed into dry fibres through electrospinning and subsequently cured via mild thermal treatment to obtain nonwoven cross-linked polysaccharide-based mats. The sustainability of the process and the bioderived nature make this class of materials suitable candidates to be studied as renewable sorbents for the removal of contaminants from water. In this work, electrospinning of water solutions containing 50% wt. of commercial maltodextrin (Glucidex 2®) and 16.6% wt. of citric acid was carried out at 1.2 mL/h flow and 30 kV applied voltage, followed by thermal curing at 180 °C of the dry fibres produced to obtain cross-linked mats. Well-defined fibres with a mean diameter of 1.64 ± 0.35 µm were successfully obtained and characterised by scanning electron microscopy, thermogravimetric analysis, and attenuated total reflectance Fourier transform infrared spectroscopy. Afterwards, a series of sorption tests were conducted to evaluate the effectiveness of the mats in removing atenolol from water. The results of the batch tests followed by HPLC-UV/Vis showed high sorption rates, with over 90% of the atenolol removed, and a maximum removal capacity of 7 mg/g. Furthermore, continuous fixed-bed sorption tests proved the positive interaction between the polymers and atenolol. Full article
Show Figures

Figure 1

17 pages, 3228 KiB  
Article
Synthesis of Poly-Lactic Acid by Ring Open Polymerization from Beer Spent Grain for Drug Delivery
by Snehal R. Vakati, Gary Vanderlaan, Matthew D. Gacura, Xiaoxu Ji, Longyan Chen and Davide Piovesan
Polymers 2024, 16(4), 483; https://doi.org/10.3390/polym16040483 - 8 Feb 2024
Cited by 2 | Viewed by 4622
Abstract
Poly-lactic acid (PLA) is a synthetic polymer that has gained popularity as a scaffold due to well-established manufacturing processes, predictable biomaterial properties, and sustained therapeutic release rates. However, its drawbacks include weak mechanical parameters and reduced medicinal delivery efficacy after PLA degradation. The [...] Read more.
Poly-lactic acid (PLA) is a synthetic polymer that has gained popularity as a scaffold due to well-established manufacturing processes, predictable biomaterial properties, and sustained therapeutic release rates. However, its drawbacks include weak mechanical parameters and reduced medicinal delivery efficacy after PLA degradation. The development of synthetic polymers that can release antibiotics and other medicines remains a top research priority. This study proposes a novel approach to produce PLA by converting Brewer’s spent grain (BSG) into lactic acid by bacterial fermentation followed by lactide ring polymerization with a metal catalyst. The elution properties of the PLA polymer are evaluated using modified Kirby–Bauer assays involving the antimicrobial chemotherapeutical, trimethoprim (TMP). Molded PLA polymer disks are impregnated with a known killing concentration of TMP, and the PLA is evaluated as a drug vehicle against TMP-sensitive Escherichia coli. This approach provides a practical means of assessing the polymer’s ability to release antimicrobials, which could be beneficial in exploring new drug-eluting synthetic polymer strategies. Overall, this study highlights the potential of using BSG waste materials to produce valuable biomaterials of medical value with the promise of expanded versatility of synthetic PLA polymers in the field of drug-impregnated tissue grafts. Full article
Show Figures

Figure 1

16 pages, 13214 KiB  
Article
Rice Husk with PLA: 3D Filament Making and Additive Manufacturing of Samples for Potential Structural Applications
by Gabriela Barreto, Santiago Restrepo, Carlos Mauricio Vieira, Sergio Neves Monteiro and Henry A. Colorado
Polymers 2024, 16(2), 245; https://doi.org/10.3390/polym16020245 - 15 Jan 2024
Cited by 9 | Viewed by 3661
Abstract
Additive manufacturing has garnered significant attention as a versatile method for fabricating green and complex composite materials. This study delves into the fabrication of polymer composites by employing polylactic acid (PLA) in conjunction with rice husk as a reinforcing filler. The filaments were [...] Read more.
Additive manufacturing has garnered significant attention as a versatile method for fabricating green and complex composite materials. This study delves into the fabrication of polymer composites by employing polylactic acid (PLA) in conjunction with rice husk as a reinforcing filler. The filaments were made by an extruded filament maker and then were used to make tensile and impact samples by another extrusion technology, fused deposition modeling (FDM). The structural and morphological characteristics of the composite materials were analyzed using scanning electron microscopy SEM. Results show that both the filament and samples are very reliable in producing polymer parts with this rice husk solid waste. This research contributes to increasing materials’ circularity and potentially creating a local social economy around rice production, where this waste is not much used. Full article
Show Figures

Figure 1

17 pages, 3624 KiB  
Article
Study of the Viscoelastic and Rheological Properties of Rubber-Bitumen Binders Obtained from Rubber Waste
by Anar Akkenzheyeva, Viktors Haritonovs, Akkenzhe Bussurmanova, Remo Merijs-Meri, Yerzhan Imanbayev, Arturs Riekstins, Akmaral Serikbayeva, Serik Sydykov, Murshida Aimova and Gulnara Mustapayeva
Polymers 2024, 16(1), 114; https://doi.org/10.3390/polym16010114 - 29 Dec 2023
Cited by 6 | Viewed by 1957
Abstract
According to scientific research from different countries, crumb rubber obtained from end-of-life tires (ELT) during processing can improve the properties of the asphalt mixture, thereby extending the service life of the road surface. This paper presents the modification of bitumen with industrial rubber [...] Read more.
According to scientific research from different countries, crumb rubber obtained from end-of-life tires (ELT) during processing can improve the properties of the asphalt mixture, thereby extending the service life of the road surface. This paper presents the modification of bitumen with industrial rubber waste. The modification of bitumen for roads is considered one of the most suitable and popular approaches. This research paper describes the details of using different types of crumb rubber as bitumen modifiers. The modified bitumen’s main physical and mechanical characteristics were determined after conventional tests: penetration and ductility, softening point, and Fraas brittleness point. In order to obtain a rubber–asphalt concrete mixture with improved performance characteristics, the viscoelastic and rheological properties of rubber–bitumen binders and their comparison with polymer–bitumen binders were also studied. The research results show that with increasing temperature, the values of viscosity, shear stress and complex shear modulus of all studied bitumen systems decrease, the values of the phase shift angle increase, and the size of the rubber particles has a greater influence on the properties of bitumen systems. Full article
Show Figures

Figure 1

12 pages, 2581 KiB  
Article
Ecotoxicity of Caffeine as a Bio-Protective Component of Flax-Fiber-Reinforced Epoxy-Composite Building Material
by Klára Kobetičová, Jana Nábělková, Viktor Brejcha, Martin Böhm, Miloš Jerman, Jiří Brich and Robert Černý
Polymers 2023, 15(19), 3901; https://doi.org/10.3390/polym15193901 - 27 Sep 2023
Cited by 2 | Viewed by 1365
Abstract
Caffeine is a verified bio-protective substance in the fight against the biodegradation of cellulose materials, but its ecotoxicity in this context has not yet been studied. For this reason, the ecotoxicity of flax-fiber-reinforced epoxy composite with or without caffeine was tested in the [...] Read more.
Caffeine is a verified bio-protective substance in the fight against the biodegradation of cellulose materials, but its ecotoxicity in this context has not yet been studied. For this reason, the ecotoxicity of flax-fiber-reinforced epoxy composite with or without caffeine was tested in the present study. Prepared samples of the composite material were tested on freshwater green algal species (Hematococcus pluvialis), yeasts (Saccharomyces cerevisae), and crustacean species (Daphnia magna). Aqueous eluates were prepared from the studied material (with caffeine addition (12%) and without caffeine and pure flax fibers), which were subjected to chemical analysis for the residues of caffeine or metals. The results indicate the presence of caffeine up to 0.001 mg/L. The eluate of the studied material was fully toxic for daphnids and partially for algae and yeasts, but the presence of caffeine did not increase its toxicity statistically significantly, in all cases. The final negative biological effects were probably caused by the mix of heavy metal residues and organic substances based on epoxy resins released directly from the tested composite material. Full article
Show Figures

Figure 1

16 pages, 14653 KiB  
Article
Influence of Light Conditions on the Antibacterial Performance and Mechanism of Waterborne Fluorescent Coatings Based on Waterproof Long Afterglow Phosphors/PDMS Composites
by Sinan Hao, Yuhong Qi and Zhanping Zhang
Polymers 2023, 15(19), 3873; https://doi.org/10.3390/polym15193873 - 24 Sep 2023
Cited by 5 | Viewed by 1816
Abstract
Marine microbial adhesion is the fundamental cause of large-scale biological fouling. Low surface energy coatings can prevent marine installations from biofouling; nevertheless, their static antifouling abilities are limited in the absence of shear forces produced by seawater. Novel waterborne antifouling coatings inspired by [...] Read more.
Marine microbial adhesion is the fundamental cause of large-scale biological fouling. Low surface energy coatings can prevent marine installations from biofouling; nevertheless, their static antifouling abilities are limited in the absence of shear forces produced by seawater. Novel waterborne antifouling coatings inspired by fluorescent coral were reported in this paper. Waterproof long afterglow phosphors (WLAP) were introduced into waterborne silicone elastomers by the physical blending method. The composite coatings store energy during the day, and the various colors of light emitted at night affect the regular physiological activities of marine bacteria. Due to the synergistic effect of fouling-release and fluorescence antifouling, the WLAP/polydimethylsiloxane (PDMS) composite coating showed excellent antifouling abilities. The antibacterial performance of coatings was tested under simulated day-night alternation, continuous light, and constant dark conditions, respectively. The results illustrated that the antibacterial performance of composite coatings under simulated day-night alternation conditions was significantly better than that under continuous light or darkness. The weak lights emitted by the coating can effectively inhibit the adhesion of bacteria. C-SB/PDMS showed the best antibacterial effect, with a bacterial adhesion rate (BAR) of only 3.7%. Constant strong light also affects the normal physiological behavior of bacteria, and the weak light of coatings was covered. The antibacterial ability of coatings primarily relied on their surface properties under continuous dark conditions. The fluorescent effect played a vital role in the synergetic antifouling mechanism. This study enhanced the static antifouling abilities of coatings and provided a new direction for environmentally friendly and long-acting marine antifouling coatings. Full article
Show Figures

Figure 1

13 pages, 2077 KiB  
Article
Enhancing Sustainability: Jute Fiber-Reinforced Bio-Based Sandwich Composites for Use in Battery Boxes
by Mina Arya, Else-Marie Malmek, Thomas Koch Ecoist, Jocke Pettersson, Mikael Skrifvars and Pooria Khalili
Polymers 2023, 15(18), 3842; https://doi.org/10.3390/polym15183842 - 21 Sep 2023
Cited by 7 | Viewed by 2520
Abstract
The rising industrial demand for environmentally friendly and sustainable materials has shifted the attention from synthetic to natural fibers. Natural fibers provide advantages like affordability, lightweight nature, and renewability. Jute fibers’ substantial production potential and cost-efficiency have propelled current research in this field. [...] Read more.
The rising industrial demand for environmentally friendly and sustainable materials has shifted the attention from synthetic to natural fibers. Natural fibers provide advantages like affordability, lightweight nature, and renewability. Jute fibers’ substantial production potential and cost-efficiency have propelled current research in this field. In this study, the mechanical behavior (tensile, flexural, and interlaminar shear properties) of plasma-treated jute composite laminates and the flexural behavior of jute fabric-reinforced sandwich composites were investigated. Non-woven mat fiber (MFC), jute fiber (JFC), dried jute fiber (DJFC), and plasma-treated jute fiber (TJFC) composite laminates, as well as sandwich composites consisting of jute fabric bio-based unsaturated polyester (UPE) composite as facing material and polyethylene terephthalate (PET70 and PET100) and polyvinyl chloride (PVC) as core materials were fabricated to compare their functional properties. Plasma treatment of jute composite laminate had a positive effect on some of the mechanical properties, which led to an improvement in Young’s modulus (7.17 GPa) and tensile strength (53.61 MPa) of 14% and 8.5%, respectively, as well as, in flexural strength (93.71 MPa) and flexural modulus (5.20 GPa) of 24% and 35%, respectively, compared to those of JFC. In addition, the results demonstrated that the flexural properties of jute sandwich composites can be significantly enhanced by incorporating PET100 foams as core materials. Full article
Show Figures

Figure 1

15 pages, 4169 KiB  
Article
Enhancing the Interfacial Shear Strength and Tensile Strength of Carbon Fibers through Chemical Grafting of Chitosan and Carbon Nanotubes
by Jingyue Xiao, Huigai Li, Munan Lu, Yuqiong Wang, Jin Jiang, Wengang Yang, Shuxuan Qu and Weibang Lu
Polymers 2023, 15(9), 2147; https://doi.org/10.3390/polym15092147 - 30 Apr 2023
Cited by 6 | Viewed by 3598
Abstract
Multi-scale “rigid-soft” material coating has been an effective strategy for enhancing the interfacial shear strength (IFSS) of carbon fibers (CFs), which is one of the key themes in composite research. In this study, a soft material, chitosan (CS), and a rigid material, carbon [...] Read more.
Multi-scale “rigid-soft” material coating has been an effective strategy for enhancing the interfacial shear strength (IFSS) of carbon fibers (CFs), which is one of the key themes in composite research. In this study, a soft material, chitosan (CS), and a rigid material, carbon nanotubes (CNTs), were sequentially grafted onto the CFs surface by a two-step amination reaction. The construction of the “rigid-soft” structure significantly increased the roughness and activity of the CFs surface, which improved the mechanical interlocking and chemical bonding between the CFs and resin. The interfacial shear strength (IFSS) of the CS- and CNT-modified CFs composites increased by 186.9% to 123.65 MPa compared to the desized fibers. In addition, the tensile strength of the modified CFs was also enhanced by 26.79% after coating with CS and CNTs. This strategy of establishing a “rigid-soft” gradient modulus interfacial layer with simple and non-destructive operation provides a valuable reference for obtaining high-performance CFs composites. Full article
Show Figures

Graphical abstract

13 pages, 2891 KiB  
Article
Improvement of Mechanical Properties and Solvent Resistance of Polyurethane Coating by Chemical Grafting of Graphene Oxide
by Guotao Liang, Fengbiao Yao, Yanran Qi, Ruizhi Gong, Rui Li, Baoxuan Liu, Yueying Zhao, Chenglong Lian, Luming Li, Xiaoying Dong and Yongfeng Li
Polymers 2023, 15(4), 882; https://doi.org/10.3390/polym15040882 - 10 Feb 2023
Cited by 13 | Viewed by 3068
Abstract
Waterborne polyurethane coatings (WPU) are widely used in various types of coatings due to their environmental friendliness, rich gloss, and strong adhesion. However, their inferior mechanical properties and solvent resistance limit their application on the surface of wood products. In this study, graphene [...] Read more.
Waterborne polyurethane coatings (WPU) are widely used in various types of coatings due to their environmental friendliness, rich gloss, and strong adhesion. However, their inferior mechanical properties and solvent resistance limit their application on the surface of wood products. In this study, graphene oxide (GO) with nanoscale size, large surface area, and abundant functional groups was incorporated into WPU by chemical grafting to improve the dispersion of GO in WPU, resulting in excellent mechanical properties and solvent resistance of WPU coatings. GO with abundant oxygen-containing functional groups and nanoscale size was prepared, and maintained good compatibility with WPU. When the GO concentration was 0.7 wt%, the tensile strength of GO-modified WPU coating film increased by 64.89%, and the abrasion resistance and pendulum hardness increased by 28.19% and 15.87%, respectively. In addition, GO also improved the solvent resistance of WPU coatings. The chemical grafting strategy employed in this study provides a feasible way to improve the dispersion of GO in WPU and provides a useful reference for the modification of waterborne wood coatings. Full article
Show Figures

Figure 1

10 pages, 1530 KiB  
Article
A Functionalized Polysaccharide from Sphingomonas sp. HL-1 for High-Performance Flocculation
by Haolin Huang, Jingsong Li, Weiyi Tao and Shuang Li
Polymers 2023, 15(1), 56; https://doi.org/10.3390/polym15010056 - 23 Dec 2022
Cited by 3 | Viewed by 1610
Abstract
The characterization and flocculation mechanism of a biopolymer flocculant produced by Sphingomonas sp. HL-1, were investigated. The bio-flocculant HL1 was identified as an acidic polysaccharide, mainly composed of glucose, and also contained a small amount of mannose, galacturonic acid and guluronic acid. The [...] Read more.
The characterization and flocculation mechanism of a biopolymer flocculant produced by Sphingomonas sp. HL-1, were investigated. The bio-flocculant HL1 was identified as an acidic polysaccharide, mainly composed of glucose, and also contained a small amount of mannose, galacturonic acid and guluronic acid. The flocculating activity of the purified HL1 polysaccharide could be activated by trivalent cations, and its flocculation mechanism was mainly charge neutralization and bridging. The working concentration of fermentation broth HL1 in a kaolin suspension was only 1/10,000 (v/v), in which the polysaccharide concentration was about 2 mg/L. The bio-flocculant HL1 maintained high efficiency at a wide range of pH (pH 3–10). It also exhibited good flocculating activity at a temperature range of 20–40 °C; it could even tolerate high salinity and kept activity at a mineralization degree of 50,000 mg/L. Therefore, the bio-flocculant HL1 has a good application prospect in the treatment of wastewater over a broad pH range and in high salinity. Full article
Show Figures

Figure 1

12 pages, 2188 KiB  
Article
Acrylic Resin Filling Cell Lumen Enabled Laminated Poplar Veneer Lumber as Structural Building Material
by Xudong Gao, Yiliang Liu, Yanran Qi, Ruizhi Gong, Fengbiao Yao, Jiajia Luo, Yueying Zhao, Yong Dai, Jinguo Wang, Chenglong Lian, Xiaoying Dong and Yongfeng Li
Polymers 2022, 14(23), 5277; https://doi.org/10.3390/polym14235277 - 2 Dec 2022
Cited by 9 | Viewed by 2367
Abstract
Wood is a viable alternative to traditional steel, cement, and concrete as a structural material for building applications, utilizing renewable resources and addressing the challenges of high energy consumption and environmental pollution in the construction industry. However, the vast supply of fast-growing poplar [...] Read more.
Wood is a viable alternative to traditional steel, cement, and concrete as a structural material for building applications, utilizing renewable resources and addressing the challenges of high energy consumption and environmental pollution in the construction industry. However, the vast supply of fast-growing poplar wood has bottlenecks in terms of low strength and dimensional stability, making it difficult to use as a structural material. An environmentally friendly acrylic resin system was designed and cured in this study to fill the poplar cell cavities, resulting in a new type of poplar laminated veneer lumber with improved mechanical strength and dimensional stability. The optimized acrylic resin system had a solid content of 25% and a curing agent content of 10% of the resin solid content. The cured filled poplar veneer gained 81.36% of its weight and had a density of 0.69 g/cm3. The static flexural strength and modulus of elasticity of the further prepared laminated veneer lumber were 123.12 MPa and 12,944.76 MPa, respectively, exceeding the highest flexural strength required for wood structural timber for construction (modulus of elasticity 12,500 MPa and static flexural strength 35 MPa). Its tensile strength, impact toughness, hardness, attrition value, water absorption, water absorption thickness expansion, and water absorption width expansion were 58.81%, 19.50%, 419.18%, 76.83%, 44.38%, 13.90%, and 37.60% higher than untreated laminated veneer lumber, demonstrating improved mechanical strength and dimensional stability, significantly. This method provides a novel approach to encouraging the use of low-value-added poplar wood in high-value-added structural building material applications. Full article
Show Figures

Figure 1

15 pages, 4063 KiB  
Article
Structure of Waste Hemp Stalks and Their Sound Absorbing Properties
by Shuang Su, Yuan Gao, Xinghai Zhou, Xiaoqing Xiong, Ying Wang and Lihua Lyu
Polymers 2022, 14(22), 4844; https://doi.org/10.3390/polym14224844 - 10 Nov 2022
Cited by 14 | Viewed by 2251
Abstract
To broaden the application fields of waste hemp stalks, the macromolecular, supramolecular, and morphological structures of waste hemp stalks were analyzed, and the relationship between these properties and the sound absorption properties of the hemp stalks was explored. Then, waste hemp stalk/polycaprolactone sound-absorbing [...] Read more.
To broaden the application fields of waste hemp stalks, the macromolecular, supramolecular, and morphological structures of waste hemp stalks were analyzed, and the relationship between these properties and the sound absorption properties of the hemp stalks was explored. Then, waste hemp stalk/polycaprolactone sound-absorbing composite materials were prepared by the hot pressing method. The influence of hemp stalk length and mass fraction, and the density and thickness of the composite materials on the sound absorption properties of composites prepared with the hot pressing temperature set to 140 °C, the pressure set to 8 MPa, and the pressing time set to 30 min was investigated. The results showed that, when the sound energy acts on the hemp stalk, the force between the chain segments, the unique hollow structure, and the large specific surface, act together to attenuate the sound energy and convert it into heat and mechanical energy in the process of propagation, to produce a good sound absorption effect. When the hemp stalk length and mass fraction were set to 6 mm and 50%, respectively, and the density and thickness of the material were set to 0.30 g/cm3 and 1.5 cm, respectively, the average sound absorption coefficient of the waste hemp stalk/polycaprolactone sound-absorbing composite material was 0.44, the noise reduction coefficient was 0.42, the maximum sound absorption coefficient was 1.00, and the sound-absorbing band was wide. The study provided an experimental and theoretical basis for the development of waste hemp stalk/polycaprolactone sound-absorbing composite materials, and provided a new idea for the recycling of the waste hemp stalk. Full article
Show Figures

Figure 1

Review

Jump to: Research

19 pages, 2889 KiB  
Review
Recent Advances in the Properties and Applications of Polyglycerol Fatty Acid Esters
by Mingyu Zhang and Guangyan Zhang
Polymers 2025, 17(7), 879; https://doi.org/10.3390/polym17070879 - 25 Mar 2025
Viewed by 373
Abstract
Although polyethylene glycol (PEG)-based surfactants are widely used in various industries due to their wide range of hydrophile–lipophile balance (HLB) values, their possible by-product, 1,4-dioxane, has been listed as a reasonably anticipated human carcinogen, which may limit their applications in fields closely related [...] Read more.
Although polyethylene glycol (PEG)-based surfactants are widely used in various industries due to their wide range of hydrophile–lipophile balance (HLB) values, their possible by-product, 1,4-dioxane, has been listed as a reasonably anticipated human carcinogen, which may limit their applications in fields closely related to the human body. Polyglycerol fatty acid esters (PGFEs), a class of surfactants based on polyglycerol (another polyether), also have a wide range of HLB values that can be adjust by varying the degree of polymerization of the polyglycerol, the length of the fatty acid carbon chain, or the degree of esterification, but do not have the risks caused by 1,4-dioxane. In addition, all the raw materials (glycerol and fatty acids) required for the preparation of PGFEs can be obtained via hydrolysis of renewable vegetable oils. Therefore, PGFEs, as new eco-friendly and biodegradable non-ionic surfactants, have been proposed as potential green alternatives to PEG-based non-ionic surfactants. This review summarizes the properties of PGFEs specifically including their HLB, surface properties, phase behaviors, stabilizing effect on foams and emulsions, and stability, and highlights their potential applications in food, cosmetics, and pharmaceuticals observed in the last decade. Full article
Show Figures

Figure 1

22 pages, 3536 KiB  
Review
Cellulose-Derived Battery Separators: A Minireview on Advances Towards Environmental Sustainability
by Tayse Circe Turossi, Heitor Luiz Ornaghi Júnior, Francisco Maciel Monticeli, Otávio Titton Dias and Ademir José Zattera
Polymers 2025, 17(4), 456; https://doi.org/10.3390/polym17040456 - 9 Feb 2025
Viewed by 1357
Abstract
Cellulose-derived battery separators have emerged as a viable sustainable alternative to conventional synthetic materials like polypropylene and polyethylene. Sourced from renewable and biodegradable materials, cellulose derivatives—such as nanofibers, nanocrystals, cellulose acetate, bacterial cellulose, and regenerated cellulose—exhibit a reduced environmental footprint while enhancing battery [...] Read more.
Cellulose-derived battery separators have emerged as a viable sustainable alternative to conventional synthetic materials like polypropylene and polyethylene. Sourced from renewable and biodegradable materials, cellulose derivatives—such as nanofibers, nanocrystals, cellulose acetate, bacterial cellulose, and regenerated cellulose—exhibit a reduced environmental footprint while enhancing battery safety and performance. One of the key advantages of cellulose is its ability to act as a hybrid separator, using its unique properties to improve the performance and durability of battery systems. These separators can consist of cellulose particles combined with supporting polymers, or even a pure cellulose membrane enhanced by the incorporation of additives. Nevertheless, the manufacturing of cellulose separators encounters obstacles due to the constraints of existing production techniques, including electrospinning, vacuum filtration, and phase inversion. Although these methods are effective, they pose challenges for large-scale industrial application. This review examines the characteristics of cellulose and its derivatives, alongside various processing techniques for fabricating separators and assessing their efficacy in battery applications. Additionally, it will consider the environmental implications and the primary challenges and opportunities associated with the use of cellulose separators in energy storage systems. Ultimately, the review underscores the significance of cellulose-based battery separators as a promising approach that aligns with the increasing demand for sustainable technologies in the energy storage domain. Full article
Show Figures

Figure 1

19 pages, 825 KiB  
Review
Performance of Biodegradable Active Packaging in the Preservation of Fresh-Cut Fruits: A Systematic Review
by Oscar T. Rodriguez, Manuel F. Valero, José A. Gómez-Tejedor and Luis Diaz
Polymers 2024, 16(24), 3518; https://doi.org/10.3390/polym16243518 - 18 Dec 2024
Cited by 1 | Viewed by 1675
Abstract
Fresh-cutting fruits is a common practice in markets and households, but their short shelf life is a challenge. Active packaging is a prominent strategy for extending food shelf life. A systematic review was conducted following the PRISMA guidelines to explore the performance and [...] Read more.
Fresh-cutting fruits is a common practice in markets and households, but their short shelf life is a challenge. Active packaging is a prominent strategy for extending food shelf life. A systematic review was conducted following the PRISMA guidelines to explore the performance and materials used in biodegradable active packaging for fresh-cut fruits. Sixteen studies were included from a search performed in July 2024 on Scopus and Web of Science databases. Only research articles in English on biodegradable active films tested on cut fruits were selected. Polysaccharides were the most employed polymer in film matrices (87.5%). Antioxidant and anti-browning activities were the active film properties that were most developed (62.5%), while plant extracts and essential oils were the most employed active agents (56.3%), and fresh-cut apples were the most commonly tested fruit (56.3%). Appropriate antioxidant, antibacterial, and barrier properties for fresh-cut fruit packaging were determined. Furthermore, there is a wide range of experimental designs to evaluate shelf-life improvements. In each case, shelf life was successfully extended. The findings show that different storage conditions, fruits, and material configurations can lead to different shelf-life extension performances. Thus, biodegradable active packaging for fresh-cut fruits has a strong potential for growth in innovative, sustainable, and functional ways. Full article
Show Figures

Figure 1

21 pages, 1339 KiB  
Review
Advancing the Physicochemical Properties and Therapeutic Potential of Plant Extracts Through Amorphous Solid Dispersion Systems
by Arif Budiman, Nur Parida Mahdhani Hafidz, Raden Siti Salma Azzahra, Salma Amaliah, Feggy Yustika Sitinjak, Agus Rusdin, Laila Subra and Diah Lia Aulifa
Polymers 2024, 16(24), 3489; https://doi.org/10.3390/polym16243489 - 14 Dec 2024
Viewed by 1145
Abstract
Plant extracts demonstrate significant potential as a rich source of active pharmaceutical ingredients, exhibiting diverse biological activities and minimal toxicity. However, the low aqueous solubility of extracts and their gastrointestinal permeability, as well as their poor oral bioavailability, limit clinical advancements due to [...] Read more.
Plant extracts demonstrate significant potential as a rich source of active pharmaceutical ingredients, exhibiting diverse biological activities and minimal toxicity. However, the low aqueous solubility of extracts and their gastrointestinal permeability, as well as their poor oral bioavailability, limit clinical advancements due to drug delivery problems. An amorphous solid dispersion (ASD) delivers drugs by changing an active pharmaceutical ingredient (API) into an amorphous state to increase the solubility and availability of the API to the body. This research aimed to analyze and summarize the successful advancements of ASD systems derived from plant extracts, emphasizing characterization and the effects on dissolution and pharmacological activity. The results show that ASD systems improve phytoconstituent dissolution, bioavailability, and stability, in addition to reducing dose and toxicity. This research demonstrates the significance of ASD in therapeutic formulations to augment the pharmacological activities and efficacy of medicinal plant extracts. The prospects indicate promising potential for therapeutic applications utilizing ASD systems, alongside medicinal plant extracts for clinical therapy. Full article
Show Figures

Figure 1

19 pages, 4936 KiB  
Review
Progress in Flexible and Wearable Lead-Free Polymer Composites for Radiation Protection
by Shouying Wu, Wei Zhang and Yumin Yang
Polymers 2024, 16(23), 3274; https://doi.org/10.3390/polym16233274 - 25 Nov 2024
Cited by 2 | Viewed by 1172
Abstract
The rapid development of nuclear technology has brought convenience to medical, industrial, and military fields. However, long-term exposure to a radiation environment with high energy will result in irreversible damage, especially to human health. Traditional lead-based radiation protection materials are heavy, inflexible, inconvenient [...] Read more.
The rapid development of nuclear technology has brought convenience to medical, industrial, and military fields. However, long-term exposure to a radiation environment with high energy will result in irreversible damage, especially to human health. Traditional lead-based radiation protection materials are heavy, inflexible, inconvenient for applications, and could lead to toxicity hazards and environmental problems. Therefore, it has become a mainstream topic to produce high-performance shielding materials that are lightweight, flexible, and wearable. Polymer composites are less dense and have excellent flexibility and processability, drawing great interest from researchers worldwide. Many attempts have been made to blend functional particles and polymeric matrix to produce flexible and wearable protection composites. This paper presents an extensive overview of the current status of studies on lead-free polymer composites as flexible and wearable protection materials. First, novel functional particles and polymer matrices are discussed, and recent results with potential applications are summarised. In addition, novel strategies for preparing polymeric shielding materials and their respective radiation shielding properties are analyzed. Finally, directions for developing lead-free polymeric shielding materials are indicated, and it is beneficial to provide additional references for obtaining flexible, lightweight, and high-performance wearable shielding materials. Full article
Show Figures

Graphical abstract

24 pages, 2545 KiB  
Review
Recent Developments and Formulations for Hydrophobic Modification of Carrageenan Bionanocomposites
by Rubie Mavelil-Sam, Elizabeth Mariya Ouseph, Marco Morreale, Roberto Scaffaro and Sabu Thomas
Polymers 2023, 15(7), 1650; https://doi.org/10.3390/polym15071650 - 26 Mar 2023
Cited by 25 | Viewed by 4183
Abstract
Versatility of the anionic algal polysaccharide carrageenan has long been discussed and explored, especially for their affinity towards water molecules. While this feature is advantageous in certain applications such as water remediation, wound healing, etc., the usefulness of this biopolymer is extremely limited [...] Read more.
Versatility of the anionic algal polysaccharide carrageenan has long been discussed and explored, especially for their affinity towards water molecules. While this feature is advantageous in certain applications such as water remediation, wound healing, etc., the usefulness of this biopolymer is extremely limited when it comes to applications such as food packaging. Scientists around the globe are carrying out research works on venturing diverse methods to integrate hydrophobic nature into these polysaccharides without compromising their other functionalities. Considering these foregoing studies, this review is designed to have an in-depth understanding of diverse methods and techniques adopted for tuning the hydrophobic nature of carrageenan-based bionanocomposites, both via surface alterations or by changes made to their chemical structure and attached functional groups. This review article mainly focuses on how the hydrophobicity of carrageenan bionanocomposites varies as a function of the type and refinement of carrageenan, and with the incorporation of additives including plasticisers, nanofillers, bioactive agents, etc. Incorporation of nanofillers such as polysaccharide-based nanoparticles, nanoclays, bioceramic and mineral based nanoparticles, carbon dots and nanotubes, metal oxide nanoparticles, etc., along with their synergistic effects in hybrid bionanocomposites are also dealt with in this comprehensive review article. Full article
Show Figures

Figure 1

15 pages, 339 KiB  
Review
A Review of the Use of Coconut Fiber in Cement Composites
by Flávia Regina Bianchi Martinelli, Francisco Roger Carneiro Ribeiro, Markssuel Teixeira Marvila, Sergio Neves Monteiro, Fabio da Costa Garcia Filho and Afonso Rangel Garcez de Azevedo
Polymers 2023, 15(5), 1309; https://doi.org/10.3390/polym15051309 - 6 Mar 2023
Cited by 51 | Viewed by 43308
Abstract
The use of plant fibers in cementitious composites has been gaining prominence with the need for more sustainable construction materials. It occurs due to the advantages natural fibers provide to these composites, such as the reduction of density, fragmentation, and propagation of cracks [...] Read more.
The use of plant fibers in cementitious composites has been gaining prominence with the need for more sustainable construction materials. It occurs due to the advantages natural fibers provide to these composites, such as the reduction of density, fragmentation, and propagation of cracks in concrete. The consumption of coconut, a fruit grown in tropical countries, generates shells that are improperly disposed of in the environment. The objective of this paper is to provide a comprehensive review of the use of coconut fibers and coconut fiber textile mesh in cement-based materials. For this purpose, discussions were conducted on plant fibers, the production and characteristics of coconut fibers, cementitious composites reinforced with coconut fibers, cementitious composites reinforced with textile mesh as an innovative material to absorb coconut fibers, and treatments of coconut fiber for improved product performance and durability. Finally, future perspectives on this field of study have also been highlighted. Thus, this paper aims to understand the behavior of cementitious matrices reinforced with plant fibers and demonstrate that coconut fiber has a high capacity to be used in cementitious composites instead of synthetic fibers. Full article
Back to TopTop