The Effects of Repeated Kurome Treatment on Chinese Lacquer and Its Film Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Kurome Treatment Process
2.3. Characterization of Chinese Lacquer Properties
2.3.1. Viscosity Measurement
2.3.2. Curing Time Determination
2.3.3. Fourier Transform Infrared Spectroscopy (FTIR)
2.4. Film Performance Tests
2.4.1. Color and Gloss
2.4.2. Transparency
2.4.3. Surface Roughness
2.4.4. Abrasion Resistance
2.4.5. Adhesion Strength
2.4.6. Surface Morphology (SEM)
2.5. Statistical Analysis
3. Results and Discussions
3.1. Changes in Chinese Lacquer Properties
3.2. Variations in Chinese Lacquer Film Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hatada, K.; Kitayama, T.; Nishiura, T.; Nishimoto, A.; Simonsick, W.J., Jr.; Vogl, O. Structural analysis of the components of Chinese lacquer “Kuro-urushi”. Macromol. Chem. Phys. 1994, 195, 1865–1870. [Google Scholar] [CrossRef]
- Heginbotham, A.; Chang, J.; Khanjian, H.; Schilling, M.R. Some observations on the composition of Chinese lacquer. Stud. Conserv. 2016, 61, 28–37. [Google Scholar] [CrossRef]
- Dashkovskiy, P.K.; Novikova, O.G. Chinese lacquerware from the Pazyryk burial ground Chineta II, Altai. Archaeol. Ethnol. Anthropol. Eurasia 2017, 45, 102–112. [Google Scholar] [CrossRef]
- Li, D.; Li, K.; Fang, J. Research progress on modification and application of raw lacquer. ChemistrySelect 2022, 7, e202200943. [Google Scholar] [CrossRef]
- Webb, M. Lacquer: Technology and Conservation; Butterworth-Heinemann: Oxford, UK, 2000. [Google Scholar]
- Xia, J.; Lin, J.; Xu, Y.; Chen, Q. On the UV-induced polymeric behavior of Chinese lacquer. ACS Appl. Mater. Interfaces 2011, 3, 482–489. [Google Scholar] [CrossRef]
- Hwang, I.S.; Park, J.H.; Kim, S.C. A study on the optical characteristics according to the lacquer drying conditions for the conservation of lacquerwares. J. Korean Wood Sci. Technol. 2018, 46, 610–621. [Google Scholar] [CrossRef]
- Le Hô, A.-S.; Duhamel, C.; Daher, C.; Bellot-Gurlet, L.; Paris, C.; Regert, M.; Sablier, M.; André, G.; Desroches, J.-P.; Dumas, P. Alteration of Asian lacquer: In-depth insight using a physico-chemical multiscale approach. Analyst 2013, 138, 5685–5696. [Google Scholar] [CrossRef]
- Wu, L.; Zhu, W.; Li, Z.; Li, H.; Xu, J.; Li, S.; Chen, M. Urushiol modified epoxy acrylate as UV spray painting oriental lacquer ink. RSC Adv. 2023, 13, 1106–1114. [Google Scholar] [CrossRef]
- Li, M.; Li, Y.; Zong, Y.; Song, Y.; Liao, Y.; Yang, Y.; Zhu, Y. Application of manganese-based driers in tung oil: Drying behavior, paint film properties, and drying mechanism. Ind. Crops Prod. 2023, 206, 117733. [Google Scholar] [CrossRef]
- Liu, X. Modelling the Mechanical Response of Japanese Lacquer (Urushi) to Varying Environmental Conditions. Ph.D. Thesis, Loughborough University, Loughborough, UK, 2012. [Google Scholar]
- McSharry, C.; Faulkner, R.; Rivers, S.; Shaffer, M.; Welton, T. Solvent effects on East Asian lacquer (Toxicodendron vernicifluum). In East Asian Lacquer: Material Culture, Science and Conservation; Archetype Publications: London, UK, 2011; pp. 60–74. [Google Scholar]
- Burmester, A. Technical studies of Chinese lacquer. In Urushi: Proceedings of the 1985 Urushi Study Group; The Getty Conservation Institute: Los Angeles, CA, USA, 1988; pp. 163–188. [Google Scholar]
- Honda, T.; Lu, R.; Sakai, R.; Ishimura, T.; Miyakoshi, T. Characterization and comparison of Asian lacquer saps. Prog. Org. Coat. 2008, 61, 68–75. [Google Scholar] [CrossRef]
- Mcsharry, C.; Faulkner, R.; Rivers, S.; Shaffer, M.S.; Welton, T. The chemistry of East Asian lacquer: A review of the scientific literature. Stud. Conserv. 2007, 52, 29–40. [Google Scholar] [CrossRef]
- Gao, R.; Wang, L.; Lin, Q. Effect of hexamethylenetetramine on the property of Chinese lacquer film. Prog. Org. Coat. 2019, 133, 169–173. [Google Scholar] [CrossRef]
- Lu, R.; Yoshida, T.; Miyakoshi, T. Oriental lacquer: A natural polymer. Polym. Rev. 2013, 53, 153–191. [Google Scholar] [CrossRef]
- Maldas, D.C.; Kamdem, D.P. Wettability of Extracted Southern Pine. For. Prod. J. 1999, 49, 45–50. [Google Scholar]
- Lee, B.; Han, H.; Hahn, H.-G.; Doh, J.M.; Park, S.-H.; Lee, E.; Lee, S.-S.; Park, C.; Lim, H.S.; Lim, J.A. Ecofriendly catechol lipid bioresin for low-temperature processed electrode patterns with strong durability. ACS Appl. Mater. Interfaces 2020, 12, 16864–16876. [Google Scholar] [CrossRef]
- Zhang, D.; Xia, J.; Xue, H.; Zhang, Y.; Lin, Q. Improvement on properties of Chinese lacquer by polyamidoamine. Polym. Eng. Sci. 2020, 60, 1234–1242. [Google Scholar] [CrossRef]
- Takeda, A.; Akanuma, H.; Tsuchiya, N. Analysis of admixtures found in ground layers of twelfth-century urushi works. Stud. Conserv. 2009, 54, 197–217. [Google Scholar] [CrossRef]
- Tan, J.; Li, F.; Chen, H.; Yan, H.; Zhou, Y. Amine resin-crosslinked waterborne polyurethane with excellent mechanical properties and water resistance for automotive middle coating. Prog. Org. Coat. 2025, 200, 109071. [Google Scholar] [CrossRef]
- GB/T 1728-2020; Paint Pigment (SAC/TC 5). Determination of Drying Time of Coating and Putty Films. Standards Press of China: Beijing, China, 2020.
- GB/T 6739-2022; Paint Pigment (SAC/TC 5). Paints and Varnishes—Determination of Film Hardness by Pencil Test. Standards Press of China: Beijing, China, 2022.
- Yang, J.; Deng, J.; Zhu, J.; Liu, W.; Zhou, M.; Li, D. Thermal polymerization of lacquer sap and its effects on the properties of lacquer film. Prog. Org. Coat. 2016, 94, 41–48. [Google Scholar] [CrossRef]
- Dalal, E.N.; Natale-Hoffman, K.M. The effect of gloss on color. Color Res. Appl. 1999, 24, 369–376. [Google Scholar] [CrossRef]
- Thomas, T.R. Characterization of surface roughness. Precis. Eng. 1981, 3, 97–104. [Google Scholar] [CrossRef]
- GB/T 1768-2006; Paint Pigment (SAC/TC 5). Paints and Varnishes—Determination of Resistance to Abrasion—Rotating Abrasive Rubber Wheel Method. Standards Press of China: Beijing, China, 2006.
- ASTM D4541-02; Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers. ASTM International: West Conshohocken, PA, USA,, 2002.
- Han, J.; Webb, M.; Hao, X.; Khanjian, H.; Schilling, M.R. Surface appearance and morphology changes of Asian lacquer due to artificial aging: Impacts of traditional additives. J. Cult. Herit. 2023, 63, 249–262. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, Z.; Zhou, S.; Wei, S. Comparative study of the materials and lacquering techniques of the lacquer objects from Warring States Period China. J. Archaeol. Sci. 2020, 114, 105060. [Google Scholar] [CrossRef]
- Aboudzadeh, M.A.; Mirabedini, S.M.; Atai, M. Effect of silane-based treatment on the adhesion strength of acrylic lacquers on the PP surfaces. Int. J. Adhes. Adhes. 2007, 27, 519–526. [Google Scholar] [CrossRef]
- Duan, J.; Wu, W.; Wei, Z.; Zhu, D.; Tu, H.; Zhang, A. Synthesis of functional catechols as monomers of mussel-inspired biomimetic polymers. Green Chem. 2018, 20, 912–920. [Google Scholar] [CrossRef]
- Lee, H.; Han, H.; Kim, D.; Lee, B.; Cho, J.H.; Lee, Y.; Lee, S.-S.; Lim, J.A. Mixed urushiol and laccol compositions in natural lacquers: Convenient evaluation method and its effect on the physicochemical properties of lacquer coatings. Prog. Org. Coat. 2021, 154, 106195. [Google Scholar] [CrossRef]
- Kumanotani, J. Laccase-catalyzed polymerization of urushiol in precisely confined Japanese lacquer system. Makromol. Chem. 1978, 179, 47–61. [Google Scholar] [CrossRef]
- Park, J.H.; Park, J.H.; Kim, S.C. A study on application of enzyme additives to improve drying speed of Urushi lacquer. J. Korean Wood Sci. Technol. 2020, 48, 326–344. [Google Scholar] [CrossRef]
- Miranda, T.J. Cure: The Process and Its Measurement; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- McGonigle, F.; Ciullo, P.A. Paints & Coatings. In Industrial Minerals and Their Uses; William Andrew Publishing: Norwich, NY, USA, 1996; pp. 99–159. [Google Scholar]
- Yang, J.; Zhu, J.; Liu, W.; Liu, Y.; Yu, H.; Zhang, Y. Prepolymerization of lacquer sap under pure oxygen atmosphere and its effects on the properties of lacquer film. Int. J. Polym. Sci. 2015, 2015, 517202. [Google Scholar] [CrossRef]
- Schellmann, N. Consolidation of Stressed and Lifting Decorative Coatings on Wood. Ph.D. Thesis, Hochschule der Bildenden Künste Dresden, Dresden, Germany, 2012. [Google Scholar]
- Chang, C.W.; Lee, H.L.; Lu, K.T. Manufacture and characteristics of oil-modified refined lacquer for wood coatings. Coatings 2018, 9, 11. [Google Scholar] [CrossRef]
- Besanger, T.R.; Chen, Y.; Deisingh, A.K.; Moore, R.; Thompson, M. Screening of inhibitors using enzymes entrapped in sol−gel-derived materials. Anal. Chem. 2003, 75, 2382–2391. [Google Scholar] [CrossRef] [PubMed]
- Greis, K.D. Mass spectrometry for enzyme assays and inhibitor screening: An emerging application in pharmaceutical research. Mass Spectrom. Rev. 2007, 26, 324–339. [Google Scholar] [CrossRef] [PubMed]
- Oshima, R.; Yamauchi, Y.; Watanabe, C.; Kumanotani, J. Enzymic oxidative coupling of urushiol in sap of the lac tree, Rhus vernicifera. J. Org. Chem. 1985, 50, 2613–2621. [Google Scholar] [CrossRef]
- Yan, G.; Chen, G.; Peng, Z.; Liu, X.; Liu, Y. The cross-linking mechanism and applications of catechol–metal polymer materials. Adv. Mater. Interfaces 2021, 8, 2100239. [Google Scholar] [CrossRef]
- Fernandes, M.R.C.; Huang, X.; Abbenhuis, H.C.L.; de With, G.; Esteves, A.C.C. Lignin oxidation with an organic peroxide and subsequent aromatic ring opening. Int. J. Biol. Macromol. 2019, 123, 1044–1051. [Google Scholar] [CrossRef]
- Je, H.; Won, J. Natural urushiol as a novel underwater adhesive. Chem. Eng. J. 2021, 404, 126424. [Google Scholar] [CrossRef]
- Lear, P. The Polycondensation of Formaldehyde with Phenyl Ether—A Model Study. Ph.D. Thesis, University of Surrey, Guildford, UK, 1991. [Google Scholar]
- Oh, H.J.; Hwang, J.H.; Park, M.; Lee, H.; Kim, B.J. Nano-emulsification of oriental lacquer sap by ultrasonic wave propagation: Improvement of thin-film characteristics as a natural resin. Ultrason. Sonochem. 2021, 73, 105545. [Google Scholar] [CrossRef]
- Townsend, J.H. Adhesives, Coatings and Consolidants; Taylor & Francis: London, UK, 2024. [Google Scholar]
- Chen, H.; Zhou, H.; Qi, Z.; Zhang, H.; Li, L. Urushiol oligomer preparation and evaluations of their antibacterial, antioxidant, and thermal stability. J. Biomater. Sci. Polym. Ed. 2025, 36, 481–494. [Google Scholar] [CrossRef]
- Hüttermann, A.; Mai, C.; Kharazipour, A. Modification of lignin for the production of new compounded materials. Appl. Microbiol. Biotechnol. 2001, 55, 387–394. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, R.; Xue, H.; Lin, J.; Xia, J. Performance Enhancement of Polyurethane Acrylate Resin by Urushiol: Rheological and Kinetic Studies. Polymers 2024, 16, 2716. [Google Scholar] [CrossRef]
- Webster, D.C.; Ryntz, R.A. Pigments, Paints, Polymer Coatings, Lacquers, and Printing Inks. In Handbook of Industrial Chemistry and Biotechnology; Springer: Cham, Switzerland, 2017; pp. 805–822. [Google Scholar]
- Rowland, H.D.; Sun, A.C.; Schunk, P.R.; Chou, S.Y.; Wendt, A.E. Impact of polymer film thickness and cavity size on polymer flow during embossing: Toward process design rules for nanoimprint lithography. J. Micromech. Microeng. 2005, 15, 2414–2421. [Google Scholar] [CrossRef]
- Kumanotani, J. Enzyme catalyzed durable and authentic oriental lacquer: A natural microgel-printable coating by polysaccharide–glycoprotein–phenolic lipid complexes. Prog. Org. Coat. 1998, 34, 135–146. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, G.; Zhang, G.; Lin, Z.; Liu, Q. Rapid curing and self-stratifying lacquer coating with antifouling and anticorrosive properties. Chem. Eng. J. 2021, 421, 129755. [Google Scholar] [CrossRef]
- Sato, S.; Ido, R.; Ose, T.; Matsuda, Y.; Yamada, H. Transformation of a Kurome natural lacquer film from glassy to rubbery polymer by the presence of moisture. Prog. Org. Coat. 2017, 104, 43–49. [Google Scholar] [CrossRef]
Chinese Lacquer | Viscosity (mPa·s) | Surface Dry Time (min) | Full Curing Time (h) |
---|---|---|---|
KL0 | 12,688 ± 666 | 234 ± 44 | 74 ± 13 |
KL1 | 13,520 ± 532 | 168 ± 34 | 48 ± 14 |
KL2 | 14,630 ± 583 | 41 ± 14 | 9.2 ± 2.7 |
KL3 | 15,024 ± 963 | 21 ± 6 | 3.0 ± 0.9 |
KL4 | 16,468 ± 475 | 24 ± 8 | 3.6 ± 0.6 |
p values | <0.001 | <0.001 | <0.001 |
Chinese Lacquer | Color Measurement | Gloss (GU) | Roughness | Mass Loss (g/100 r) | Adhesion (MPa) | |||||
---|---|---|---|---|---|---|---|---|---|---|
L | a | b | C | ΔE | Ra (μm) | Rz (μm) | ||||
KL0 | 29.31 a | 2.98 a | 0.53 a | 3.03 a | 0 | 88.96 a | 0.132 a | 1.487 a | 0.134 a | 9.58 a |
KL1 | 29.12 a | 2.97 a | 0.64 a | 3.04 a | 0.22 | 88.98 a | 0.138 a | 1.549 a | 0.136 a | 9.73 a |
KL2 | 28.63 a | 2.90 a | 0.67 a | 2.98 a | 0.7 | 89.80 a | 0.122 a | 1.518 a | 0.146 a | 9.71 a |
KL3 | 26.93 b | 2.96 a | 0.73 a | 3.05 a | 2.39 | 90.96 a | 0.126 a | 1.564 a | 0.126 a | 9.75 a |
KL4 | 26.89 b | 2.98 a | 0.79 a | 3.08 a | 2.43 | 90.56 a | 0.133 a | 1.540 a | 0.150 a | 9.67 a |
p Values | <0.001 | 0.359 | 0.076 | 0.269 | - | 0.157 | 0.581 | 0.088 | 0.262 | 0.551 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, J.; Wang, Y.; Wang, T.; Xu, G.; Feng, X.; Liu, X. The Effects of Repeated Kurome Treatment on Chinese Lacquer and Its Film Properties. Polymers 2025, 17, 1481. https://doi.org/10.3390/polym17111481
Hou J, Wang Y, Wang T, Xu G, Feng X, Liu X. The Effects of Repeated Kurome Treatment on Chinese Lacquer and Its Film Properties. Polymers. 2025; 17(11):1481. https://doi.org/10.3390/polym17111481
Chicago/Turabian StyleHou, Jiangyan, Yao Wang, Tianyi Wang, Guanglin Xu, Xinhao Feng, and Xinyou Liu. 2025. "The Effects of Repeated Kurome Treatment on Chinese Lacquer and Its Film Properties" Polymers 17, no. 11: 1481. https://doi.org/10.3390/polym17111481
APA StyleHou, J., Wang, Y., Wang, T., Xu, G., Feng, X., & Liu, X. (2025). The Effects of Repeated Kurome Treatment on Chinese Lacquer and Its Film Properties. Polymers, 17(11), 1481. https://doi.org/10.3390/polym17111481