Research on Volatile Allergenic Substances in Chinese Lacquer: An Integrated Analysis of Their Composition, Detection, Mechanisms, and Prevention
Abstract
:1. Introduction
2. Main Components and Characteristics of Chinese Lacquer
2.1. Composition and Structure of Chinese Lacquer
2.1.1. Composition of Lacquer
2.1.2. Chemical Structure of Lacquer
2.2. Properties of Lacquer
2.2.1. Morphological Characteristics of Lacquer
2.2.2. Gloss Properties
2.2.3. Mechanical Properties
2.2.4. Corrosion Resistance
2.2.5. Weather Resistance
2.2.6. Insulation Properties
2.2.7. Allergy
2.2.8. Antimicrobial Properties
2.2.9. Drying Mechanisms and Construction Performance
2.2.10. Decorative Applications
2.3. Chinese Lacquer Volatile Compounds
2.3.1. Unit Phenols
2.3.2. Aldehydes and Ketones
2.3.3. Terpenes
3. Detection Techniques
3.1. Static Analytical Techniques: Headspace–GCMS Coupling
3.2. Photoionization Detector (PID)
3.3. Fourier Transform Infrared Spectroscopy (FTIR)
3.4. Comparative Evaluation of Analytical Methods
4. Mechanisms
4.1. Unit Phenolics
4.2. Aldehydes and Ketones
4.3. Terpenes
4.4. Toxicological Relevance of Major VOC Classes in Lacquer Processing
5. Prevention
5.1. Prevention and Control Strategies Based on Detection Technologies
5.2. Prevention and Control Strategies Based on Sensitization Mechanisms
5.2.1. For Unit Phenols
5.2.2. For Aldehydes and Ketones
5.2.3. For Terpenes
5.3. Cyclodextrin and Chitosan Embedding Technology
5.4. Laccase Active Site-Directed Modification
5.5. Nanofiber Membrane High-Efficiency Interception Technology
5.6. Policies and Regulations
5.7. Comparison of Preventive Strategies
6. Summary
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kumanotani, J. Urushi (oriental lacquer)—A natural aesthetic durable and future-promising coating. Prog. Org. Coat. 1995, 26, 163–195. [Google Scholar] [CrossRef]
- McSharry, C.; Faulkner, R.; Rivers, S.; Shaffer, M.S.P.; Welton, T. The chemistry of East Asian lacquer: A review of the scientific literature. Stud. Conserv. 2007, 52, 29–40. [Google Scholar] [CrossRef]
- Zhang, F. Research on the inheritance and development of Chinese lacquer craft. Chin. Lacquer 2007, 26, 10–31. [Google Scholar] [CrossRef]
- Shi, S.; Xiao, Y.; Ma, C.; Fu, Y.; Chen, Z.; Shi, D.; Wei, S. Identification of laccol as a paint binder in Neolithic pottery from China. J. Archaeol. Sci. 2025, 173, 106119. [Google Scholar] [CrossRef]
- Zhou, P.; Fang, P.; Liu, D.; Jing, Y.; Wu, P. Application of lacquer in the conservation and restoration of clay sculptures at Guanyin Temple in Xinjin, Sichuan. Conserv. Archaeol. Sci. 2011, 23, 84–88. [Google Scholar] [CrossRef]
- Ma, X.; Lu, R.; Miyakoshi, T. Recent advances in research on lacquer allergy. Allergol. Int. 2012, 61, 45–50. [Google Scholar] [CrossRef]
- Dewulf, J.O.; Van Langenhove, H.; Wittmann, G. Analysis of volatile organic compounds using gas chromatography. TrAC Trends Anal. Chem. 2002, 21, 637–646. [Google Scholar] [CrossRef]
- Wolfender, J.L. HPLC in natural product analysis: The detection issue. Planta Med. 2009, 75, 719–734. [Google Scholar] [CrossRef]
- Corvino, A.; Khomenko, I.; Betta, E.; Brigante, F.I.; Bontempo, L.; Biasioli, F.; Capozzi, V. Rapid profiling of volatile organic compounds associated with plant-based milks versus bovine milk using an integrated PTR-ToF-MS and GC-MS approach. Molecules 2025, 30, 761. [Google Scholar] [CrossRef]
- Bartus, J.; Simonsick, W.J., Jr.; Garner, C.; Nishiura, T.; Kitayama, T.; Hatada, K.; Vogl, O. Oriental Lacquer III. Composition of the Urushiol Fraction of the Sap of Rhus verniciflua. Polym. J. 1994, 26, 67–78. [Google Scholar] [CrossRef]
- Harigaya, S.; Honda, T.; Rong, L.; Miyakoshi, T.; Chen. Enzymatic dehydrogenative polymerisation of urushiols in fresh exudates from the lacquer tree, Rhus vernicifera DC. J. Agric. Food Chem. 2007, 55, 2201–2208. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Yoshida, T.; Miyakoshi, T. Oriental lacquer: A natural polymer. Polym. Rev. 2013, 53, 153–191. [Google Scholar] [CrossRef]
- Oyabu, H.; Ando, N. The possibility of lacquer: Property modification and expansion use. Paint Technol. 2010, 1, 126–131. [Google Scholar]
- Kamiya, Y.; Lu, R.; Kumamoto, T.; Honda, T.; Miyakoshi, T. Deterioration of surface structure of lacquer films due to ultraviolet irradiation. Surf. Interface Anal. 2006, 38, 1311–1315. [Google Scholar]
- Yu, H.H.; Lim, J.A.; Lee, K.B.; Lee, Y. Improved measurements of the physical properties of oriental lacquers using atomic force microscopy and a nanoindenter. Polymers 2021, 13, 1395. [Google Scholar] [CrossRef]
- Lee, H.; Han, H.; Kim, D.; Lee, B.; Cho, J.H.; Lee, Y.; Lee, S.-S.; Lim, J.A. Mixed urushiol and laccol compositions in Chinese lacquers: Convenient evaluation method and its effect on the physicochemical properties of lacquer coatings. Prog. Org. Coat. 2021, 154, 106195. [Google Scholar] [CrossRef]
- Karpova, E.; Nefedov, A.; Mamatyuk, V.; Polosmak, N.; Kundo, L. Multi-analytical approach (SEM-EDS, FTIR, Py-GC/MS) to characterise the lacquer objects from Xiongnu burial complex (Noin-Ula, Mongolia). Microchem. J. 2017, 130, 336–344. [Google Scholar] [CrossRef]
- Zheng, X.; Weng, J.; Li, S.; Liu, H.; Hu, B.; Li, Y.; Meng, X.; Ruan, H. Anticorrosive ultrathin film derived from bio-based urushiol-Ti by layer-by-layer self-assembly. Chem. Eng. J. 2014, 245, 265–275. [Google Scholar] [CrossRef]
- Miyakoshi, T.; Nagase, K.; Yoshida, T. Progress of Lacquer Chemistry; IPC: Hiroshima, Japan, 1999; p. 38. [Google Scholar]
- Yang, G. Prevention and control of lacquer poisoning. Chin. Lacquer 2001, 33, 33–37. [Google Scholar]
- Kawai, K.; Nakagawa, M.; Kawai, K.; Liew, F.M.; Yasuno, H. Hyposensitization to urushiol among Japanese lacquer craftsmen. Contact Dermat. 1991, 24, 146–147. [Google Scholar] [CrossRef]
- Kawai, K.; Nakagawa, M.; Kawai, K.; Miyakoshi, T.; Miyashita, K.; Asami, T. Heat treatment of Japanese lacquerware renders it hypoallergenic. Contact Dermat. 1992, 27, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Kawai, K.; Nakagawa, M.; Zhang, X.M.; Kawai, K.; Ikeda, Y.; Yasuno, H.; Konishi, H. Evaluation of structure-activity relationships for the allergenicities of urushiol analogs by using patch tests and lymphocyte stimulation tests in humans. Environ. Dermatol. 1996, 3 (Suppl. 1), 73–81. [Google Scholar]
- Polak, L. Immunological Aspects of Contact Sensitivity. In Monographs in Allergy; S. Karger: Switzerland, Basel, 1980; Volume 15. [Google Scholar]
- Benezra, C.; Ducombs, G.; Sell, Y.; Foussereau, J. Immunologic and Molecular Aspects of Plant Contact Dermatitis: Plant Contact Dermatitis; Decker: Philadelphia, PA, USA, 1985; pp. 21–28. [Google Scholar]
- Kim, H.S.; Yeum, J.H.; Choi, S.W.; Lee, J.Y.; Cheong, I.W. Urushiol/polyurethane-urea dispersions and their film properties. Prog. Org. Coat. 2009, 65, 341–347. [Google Scholar] [CrossRef]
- Suk, K.T.; Baik, S.K.; Kim, H.S.; Park, S.M.; Paeng, K.J.; Uh, Y.; Jang, I.H.; Cho, M.Y.; Choi, E.H.; Kim, M.J.; et al. Antibacterial effects of the urushiol component in the sap of the lacquer tree (Rhus verniciflua stokes) on Helicobacter pylori. Helicobacter 2011, 16, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Miyakoshi, T. Chemistry in traditional lacquer technology. Chin. Lacquer 2010, 29, 27–31. [Google Scholar] [CrossRef]
- Snyder, D.M. An overview of oriental lacquer: Art and chemistry of the original high-tech coating. J. Chem. Educ. 1989, 66, 977. [Google Scholar] [CrossRef]
- Wang, S.X. Study of Traditional Chinese Lacquer Crafts Explained in the Book of Painting and Decorating; Cultural Relics Publishing House: Beijing, China, 1998; pp. 34–38. [Google Scholar]
- Wang, Z.; Wu, C. Preliminary Study on Volatiles of Raw Lacquer. Zhongguo Shengqi (Chin. Raw Lacq.) 1990, 9, 23–25. [Google Scholar]
- Gan, J. Chemistry of Lacquer; Science Press: Beijing, China, 1984; pp. 1–2. [Google Scholar]
- Wen, Y.; Wang, S.; Hu, C. A New Laccol in Chinese Raw Lacquer. Zhongguo Shengqi (Chin. Raw Lacq.) 1984, 4, 1–2. [Google Scholar]
- Fu, K.W. (Ed.) Chemical Pollution of the Agro-Environment; Agricultural Press: Beijing, China, 1985. [Google Scholar]
- Native Products and Fruit Bureau of the National Supply and Marketing Cooperation (Ed.) Lacquer Trees and Lacquer; Agricultural Publishing House: Beijing, China, 1980. [Google Scholar]
- Wu, B.; Tang, D.; Ma, Y.; Wang, W. Study on the separation effect of HPLC on aldehydes and ketones. Dly. Electr. Appl. 2018, 1, 34–37, 46. [Google Scholar] [CrossRef]
- Yang, S. Study on the current status of aldehydes and ketones pollution in the atmosphere. Agric. Technol. 2021, 41, 116–118. [Google Scholar] [CrossRef]
- Silvestre, A.J.D.; Gandini, A. Terpenes: Major Sources, Properties and Applications. In Monomers, Polymers and Composites from Renewable Resources; Belgacem, M.N., Gandini, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 17–38. [Google Scholar] [CrossRef]
- Langenheim, J.H. Plant Resins: Chemistry, Evolution, Ecology, and Ethnobotany; Timber Press: Portland, OR, USA, 2003. [Google Scholar]
- Karlberg, A.-T.; Lepoittevin, J.-P. One Hundred Years of Allergic Contact Dermatitis Due to Oxidised Terpenes: What We Can Learn from Old Research on Turpentine Allergy. Contact Dermat. 2021, 85, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Jin, K.S.; Jun, M.R.; Park, M.J.; Ok, S.; Jeong, J.H.; Kang, H.S.; Jo, W.K.; Lim, H.J.; Jeong, W.S. Promises and Risks of Unsaturated Volatile Organic Compounds: Limonene, Pinene, and Isoprene. Food Sci. Biotechnol. 2008, 17, 447–456. [Google Scholar]
- Serrano, A.; Gallego, M.; Silva, M. Enhancing Sensitivity in Headspace-Mass Spectrometric Determination of BTEX in Drinking Water. Anal. Chem. 2007, 79, 2997–3002. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Han, B.; Bai, H.Y.; Chen, J.H.; Liu, X.M.; Zheng, L.; Wang, X.R. Fast Analysis of Benzene Series (BTEX) in Seawater by Headspace Solid Phase Microextraction Coupled with GC-MS. J. Instrum. Anal. 2014, 33, 1–6. [Google Scholar]
- Arthur, C.L.; Pawliszyn, J. Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Voice, T.C.; Kolb, B. Comparison of European and American Techniques for the Analysis of Volatile Organic Compounds in Environmental Matrices. J. Chromatogr. Sci. 1994, 32, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, S.F.; Wang, X.Y.; Yan, Q.P.; Fu, Y.F.; Zhang, X.B.; Xie, F.W. Analysis of Olfactory Aroma Components of Cigarette Tobacco by Blowing Trapping-Gas Chromatography/Mass Spectrometry. Tob. Sci. Technol. 2013, 4, 63–70. [Google Scholar]
- Liu, C.B.; Lu, S.M.; Li, X.Q.; Ni, Z.M.; Dong, X.C.; Miao, M.M. Determination of Volatile Organic Compounds in Cigarette Packing Materials by Purge and Trap-Gas Chromatography. Tob. Sci. Technol. 2009, 2, 42–45. [Google Scholar]
- Gong, S.G.; Kong, B.; Tuo, S.X.; Dai, Y.H.; Wu, M.J.; Tan, L.Q.; Liu, W. Simultaneous Determination of 23 Ester Compounds in Cigarette Water-Borne Adhesives by Liquid–Liquid Extraction and Gas Chromatography-Mass Spectrometry. Chin. J. Chromatogr. 2013, 31, 989–994. [Google Scholar] [CrossRef]
- Hasebe, H.; Suhara, S. The Quality Estimation of Different Tobacco Types Examined by Headspace Vapour Analysis. Beitr. Tabakforsch. Int. 1999, 18, 213–222. [Google Scholar]
- Turazzi, F.C.; Morés, L.; Merib, J.; Carasek, E.; Narain, N.; Lima, L.K.; Nunes, M.L. Evaluation of Volatile Profiles Obtained for Minimally-Processed Pineapple Fruit Samples During Storage by Headspace-Solid Phase Microextraction Gas Chromatography-Mass Spectrometry. Food Sci. Technol. 2017, 37, 663–672. [Google Scholar] [CrossRef]
- Sithersingh, M.J.; Snow, N.H. Headspace Gas Chromatography. In Gas Chromatography; Elsevier: Amsterdam, The Netherlands, 2021; pp. 251–265. [Google Scholar]
- Deng, H.; He, R.; Huang, R.; Pang, C.; Ma, Y.; Xia, H.; Liang, D.; Liao, L.; Xiong, B.; Wang, X.; et al. Optimization of a Static Headspace GC-MS Method and Its Application in Metabolic Fingerprinting of the Leaf Volatiles of 42 Citrus Cultivars. Plant Sci. 2022, 13, 1050289. [Google Scholar] [CrossRef]
- Desmedt, B.; Canfyn, M.; Pype, M.; Baudewyns, S.; Hanot, V.; Courselle, P.; De Beer, J.O.; Rogers, V.; De Paepe, K.; Deconinck, E. HS-GC-MS Method for the Analysis of Fragrance Allergens in Complex Cosmetic Matrices. Talanta 2015, 131, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Colomb, A.; Yassaa, N.; Williams, J.; Peeken, I.; Lochte, K. Screening Volatile Organic Compounds (VOCs) Emissions from Five Marine Phytoplankton Species by Headspace Gas Chromatography/Mass Spectrometry (HS-GC/MS). J. Environ. Monit. 2008, 10, 325–330. [Google Scholar] [CrossRef]
- Ma, X.H.; He, J.; Liu, F.; Han, R.; Zhang, Z.; Li, J.; Li, H. Determination of Dimethylamine and Diethylamine in Aqueous Environment by HS-GC/MS Coupling Technique. Environ. Sci. Res. 2010, 23, 112–115. [Google Scholar] [CrossRef]
- Li, G.G. Vacuum Ultraviolet Photoionisation Detector and Its Application in Environmental Monitoring. Mod. Sci. Instrum. 2004, 1, 18–22. [Google Scholar]
- Zhou, Q.; Zhang, S.X.; Zhou, W.; Wang, X.C.; Li, Z.D. Experimental Study of Photoionisation Detector Based on VOC Detection. Sens. Microsyst. 2017, 36, 39–41. [Google Scholar] [CrossRef]
- Liu, H.Y.; Meng, G.; Dang, Z.H.; Li, M.; Chang, J.Q.; Dai, T.T.; Fang, X.D. Advances in Recognition and Detection of VOCs Molecules by Semiconductor-Based Sensors. J. Phys. Chem. 2022, 38, 32–48. [Google Scholar]
- Naumann, A. A Novel Procedure for Strain Classification of Fungal Mycelium by Cluster and Artificial Neural Network Analysis of Fourier Transform Infrared (FTIR) Spectra. Analyst 2009, 134, 1215–1223. [Google Scholar] [CrossRef]
- Wang, K. Research on Rapid Measurement Method of Plant Volatiles Based on Infrared Spectroscopy. Ph.D. Thesis, Guilin University of Electronic Science and Technology, Guilin, China, 2023. [Google Scholar]
- Interpretation of Infrared Spectra, a Practical Approach. In Encyclopaedia of Analytical Chemistry; Wiley: Hoboken, NJ, USA, 2000; Volume 12, pp. 10815–10837.
- Morrin, A. Endogenous and Microbial Volatile Organic Compounds in Cutaneous Health and Disease. arXiv 2020, arXiv:2007.15507v2. [Google Scholar]
- Magrone, T.; Jirillo, E. Influence of Polyphenols on Allergic Immune Reactions: Mechanisms of Action. Proc. Nutr. Soc. 2012, 71, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.C. Oxygen Radicals in the Human Body. Chem. Educ. 2003, 24, 4–6. [Google Scholar]
- Pereira, D.M. The Chemical Space of Terpenes: Insights from Data Science and AI. arXiv 2021, arXiv:2110.15047v1. [Google Scholar]
- Hayashi, G.; Cortopassi, G. Oxidative Stress in Inherited Mitochondrial Diseases. Free Radic. Biol. Med. 2015, 88, 10–17. [Google Scholar] [CrossRef]
- Dandekar, A.; Mendez, R.; Zhang, K. Cross Talk Between ER Stress, Oxidative Stress, and Inflammation in Health and Disease. In Stress Responses: Methods and Protocols; Oslowski, C.M., Ed.; Springer: New York, NY, USA, 2015; pp. 205–214. [Google Scholar]
- Jiang, T.; Sun, Q.; Chen, S. Oxidative Stress: A Major Pathogenesis and Potential Therapeutic Target of Antioxidative Agents in Parkinson’s Disease and Alzheimer’s Disease. Prog. Neurobiol. 2016, 147, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Ma, X. Study on the Pollution Status of Aldehydes and Ketones in the Summer Atmosphere of Linyi City. Sichuan Environ. 2022, 41, 97–103. [Google Scholar]
- Wang, B.; Liu, C.; Lu, W.; Shao, M.; Zhang, Y. Pollution Characteristics and Sources of Volatile Aldehydes and Ketones in the Atmosphere of Guangzhou, China. Environ. Sci. 2009, 30, 631–636. [Google Scholar]
- Zhang, T.; Tan, P.; San, H.; Fang, X.; Dong, X. Determination of Aldehydes and Ketones in Surface Water by Gas Chromatography. Rock Miner. Anal. 2007, 26, 363–366. [Google Scholar]
- Kong, F.-T.; Wang, K.; Zhao, F.-H.; Jiang, H.-M. Method Validation for the Determination of Aldehydes and Ketones in Soil by High Performance Liquid Chromatography. Henan Sci. Technol. 2019, 28, 133–137. [Google Scholar]
- Widmark, G.; Blohm, S.-G. A Comparative Study of the Autoxidation of Δ3-Carene, α-Pinene, β-Pinene and (+)-Limonene. Acta Chem. Scand. 1957, 11, 392–394. [Google Scholar] [CrossRef]
- Widmark, G. Investigations in the Field of Terpenes. Svensk Kem. Tidskr. 1975, 69, 175–184. [Google Scholar]
- Karlberg, A.-T.; Bergström, M.A.; Börje, A.; Luthman, K.; Nilsson, J.L.G. Allergic Contact Dermatitis: Formation, Structural Requirements, and Reactivity of Skin Sensitizers. Chem. Res. Toxicol. 2008, 21, 53–69. [Google Scholar] [CrossRef] [PubMed]
- Karlberg, A.-T.; Börje, A.; Johansen, J.D.; Liden, C.; Rastogi, S.; Roberts, D.; Uter, W.; White, I.R. Activation of Nonsensitising or Low-Sensitising Fragrance Substances into Potent Sensitizers: Prehaptens and Prohaptens. Contact Dermat. 2013, 69, 323–334. [Google Scholar] [CrossRef]
- Hennen, J.; Silva e Sousa, M.; Sahli, F.; Lichter, J.; Lepoittevin, J.P.; Giménez-Arnau, E.; Blömeke, B. Sensitization Potential and Potency of Terpene Hydroperoxides in the Cocultured Activation Test Method. Contact Dermat. 2019, 81, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Johansson, S.; Giménez-Arnau, E.; Grøtli, M.; Karlberg, A.-T.; Börje, A. Carbon- and Oxygen-Centred Radicals Are Equally Important Haptens of Allylic Hydroperoxides in Allergic Contact Dermatitis. Chem. Res. Toxicol. 2008, 21, 1536–1547. [Google Scholar] [CrossRef]
- Kao, D.; Chaintreau, A.; Lepoittevin, J.-P.; Giménez-Arnau, E. Investigation on the Covalent Modification of Amino Acids by Chemicals via Carbon-Radical Intermediates: Mechanisms to Explain the Reactivity of Sensitising Allylic Hydroperoxides. Chem. Res. Toxicol. 2014, 27, 278–289. [Google Scholar] [CrossRef]
- Kuresepi, S.; Vileno, B.; Lepoittevin, J.-P.; Giménez-Arnau, E. Mechanistic Insights on Skin Sensitization to Linalool Hydroperoxides: EPR Evidence on Radical Intermediates Formation in Reconstructed Human Epidermis and 13C-NMR Reactivity Studies with Thiol Residues. Chem. Res. Toxicol. 2020, 33, 1922–1932. [Google Scholar] [CrossRef]
- Sköld, M.; Karlberg, A.-T.; Matura, M.; Borje, A. The Fragrance Chemical Beta-Caryophyllene—Air Oxidation and Skin Sensitization. Food Chem. Toxicol. 2006, 44, 538–545. [Google Scholar] [CrossRef]
- Karlberg, A.T.; Bergstedt, E.V.A.; Boman, A.; Bohlinder, K.; Liden, C.; Lars, J.; Nilsson, G.; Wahlberg, J.E. Is Abietic Acid the Allergenic Component of Colophony? Contact Dermat. 1985, 13, 209–215. [Google Scholar] [CrossRef]
- Karlberg, A.-T.; Bohlinder, K.; Boman, A.; Hacksell, U.; Hermansson, J.; Jacobsson, S.; Nilsson, J.L.G. Identification of 15-Hydroperoxyabietic Acid as a Contact Allergen in Portuguese Colophony. J. Pharm. Pharmacol. 1988, 40, 42–47. [Google Scholar] [CrossRef]
- Tan, W.; Chen, L.; Wang, Y.; Hu, L.; Xiong, W.; Shang, Y.; Yao, S. Protectin DX Exhibits Protective Effects in Mouse Model of Lipopolysaccharide-Induced Acute Lung Injury. Chin. Med. J. 2018, 131, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Zhang, L.; Hu, J.; Jiang, P.; Li, Z.Y.; Yuan, L. Synthesis and Free Radical Scavenging Properties of Vitamin C Acetal Derivatives. Appl. Chem. Eng. 2020, 49, 63–68. [Google Scholar]
- Xu, S.; Yu, J.; Xue, L.; Sun, Y.; Xie, D. Effect of Layered Double Hydroxides on Ultraviolet Aging Resistance of SBS-Modified Bitumen Membrane. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2015, 30, 494–499. [Google Scholar] [CrossRef]
- Tang, J. Study on the Antioxidant Mechanism of Gallic Acid and Its Ester Derivatives: Molecular Simulation and Experiment. Master’s Thesis, Beijing University of Chemical Technology, Beijing, China, 2021. [Google Scholar]
- Beijing Fructus Bio-Technology Co. Preparation Method of Non-Irritating Shiratako Active and Its Application. CN Patent 202010098151.0, 4 June 2021. [Google Scholar]
- Yang, A.; Liu, H.; Li, Z.; Li, L.; Li, W.; Liu, K. Green Synthesis of β-Cyclodextrin Metal–Organic Frameworks and the Adsorption of Quercetin and Emodin. Polyhedron 2018, 127, 112–119. [Google Scholar] [CrossRef]
- Sonia, T.A.; Sharma, C.P. Chitosan and Its Derivatives for Drug Delivery Perspective. In Chitosan for Biomaterials I; Jayakumar, R., Prabaharan, M., Muzzarelli, R.A.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 23–53. [Google Scholar] [CrossRef]
- Dou, J.; Cai, H.; Ji, F.; Cui, W.; Wang, J.; Bao, Y.; An, L. Genetically Engineered Fixed-Point Mutation of Gln49-Phospholipase A2 and Analysis of Enzyme Activity. Chin. J. Biomed. Eng. 2007, 27, 21–27. [Google Scholar]
- Preparation of TiO2/Activated Carbon Nanofibre Filter Media and Research on Its Filtration Performance. Master’s Thesis, Donghua University, Shanghai, China, 2014.
- Hao, M. Experiment and Simulation of the Factors Influencing Melt Electrospinning. Master’s Thesis, Beijing University of Chemical Technology, Beijing, China, 2011. [Google Scholar]
- GB 18581-2020; Limit of Harmful Substances of Wood Coatings. China Standards Press: Beijing, China, 2020.
Component | Source Tree Species | Biological Relevance of Side Chain |
---|---|---|
Urushiol | Rhus vernicifera | High allergenicity: Unsaturated chains readily oxidize to quinones, forming potent skin-sensitizing haptens |
Laccol | Rhus succedanea | Reduced sensitization: Saturated chains resist oxidation, decreasing hapten formation and allergic responses |
Thitsiol | Melanorrhoea usitata | Dual reactivity: Aromatic groups enable radical-based polymerization while aliphatic chains modulate tissue penetration |
Number | Retention Time (min) | Peak Area (%) | Chemical Composition |
---|---|---|---|
1 | 7.1 | 49.3 | Ethyl formate |
2 | 9.4 | 1.5 | ethyl acetate |
3 | 11.6 | 6.5 | 2-Propanol |
4 | 11.8 | 4.8 | ethanol |
5 | 14.0 | 0.3 | MHC (monoterpene hydrocarbons) |
6 | 15.8 | 0.7 | MHC (monoterpene hydrocarbons) |
7 | 16.8 | 31.4 | 1-Propanol |
8 | 19.4 | 0.5 | MHC (monoterpene hydrocarbons) |
9 | 23.7 | 0.1 | MHC (monoterpene hydrocarbons) |
10 | 25.9 | 4.3 | butanol |
11 | 29.9 | 0.4 | MHC (monoterpene hydrocarbons) |
12 | 33.0 | 0.2 | limonene |
13 | 46.8 | 7.0 | acetic acid (CH3COOH) |
14 | 47.7 | 30.4 | α-Longifolene |
15 | 48.2 | 0.5 | alpha-Elangene |
16 | 48.4 | 0.5 | alpha-Cobalene |
17 | 48.9 | 0.9 | SHC (Sesquiterpene Hydrocarbon) |
18 | 53.0 | 6.3 | propanoic acid |
19 | 53.1 | 2.9 | alpha-Cedrene |
20 | 54.9 | 4.0 | isobutyric acid |
21 | 56.3 | 1.6 | α-Bergamotene |
22 | 58.4 | 3.4 | butyric acid |
23 | 59.1 | 0.8 | alpha-Himalayan alkene |
24 | 61.2 | 3.4 | isovaleric acid |
25 | 61.3 | 3.0 | alpha-Serpentene |
26 | 64.1 | 0.9 | β-Celestene |
27 | 65.6 | 11.7 | valeric acid |
28 | 70.4 | 0.3 | δ-Cadinene |
29 | 71.2 | 3.0 | hexanoic acid |
Aldehydes | Ketones | Aromatic Aldehydes |
---|---|---|
Formaldehyde, Acetaldehyde, Propionaldehyde, Butyraldehyde, Pentanal, Hexanal, Acrolein, Crotonaldehyde | Acetone Butanone Cyclohexanone | Benzaldehyde m-Tolualdehyde p-Tolualdehyde 2,5-Dimethylbenzaldehyde |
Characterization | Aldehyde | Ketone |
---|---|---|
Boiling point range | 19.5 °C~179 °C | 56.05 °C~155.6 °C |
volatility | Very strong | Medium |
Density range (g/cm3) | 0.788 (acetaldehyde)~1.044 (benzaldehyde) | 0.784 (acetone)~0.948 (cyclohexanone) |
Solubility (water) | Small molecules are soluble Macromolecule insoluble | small molecules miscible Low solubility of macromolecules |
Odour characteristics | Irritating or peculiar odour | Mild or distinctive odour |
Melting point range | −123.5 °C~−26 °C | −94.7 °C~−45 °C |
environmental impacts | high risk of respiratory exposure | High density substances |
Causality | Limonene | Pinene | Isoprene |
---|---|---|---|
Chemical name | p-Mentha-1,8-diene | - | 2-Methyl-1,3-butadiene |
Synonyms | 4-Isopropenyl-1-methylcyclohexene | - | Beta-methylbivinyl,2-methylbutadiene |
Enantiomer (chemistry) | D-Limonene (R-type) L-Limonene (S-type) | α-Pinene β-Pinene | |
Racemate | DL-Limonene (Dipentene) | - | - |
Chemical formula | C10H16 | C10H16 | C5H8 |
Molecular mass | 136.24 g/mol | 136.24 g/mol | 68.11 g/mol |
Appearances | Transparent colourless liquid | Transparent colourless liquid | Transparent colourless liquid |
Melting point | −95.2 °C | −64 °C | −145.95 °C |
Boiling | 176 °C | 155 °C | 34.067 °C |
Density (20° C) | 0.8411 g/cm3 | 0.858 g/cm3 | 0.681 g/cm3 |
SMILES (1) | CC1=CCC(CC1)(C)C=C | CC1(C)C2CC1C(C)=CC2 | C=C(C)C=C |
CAS No. (2) | 138-86-3 | 80-56-8 | 78-79-5 |
IARC Class (3) | 3 | 3 | 2B |
Technique | Sensitivity | Throughput | Cost | Key Applications |
---|---|---|---|---|
HS-GC/MS | 0.1–10 ppb | Low–Medium | High | Lab-based speciation, quantification |
PID | 0.1–100 ppm | High | Low–Medium | Real-time field screening |
FTIR | 1–100 ppm | Medium | Medium–High | Multi-component monitoring |
Class | Typical Concentration Ranges (Lacquer Processing) | Major Allergy Mechanisms |
---|---|---|
Phenols | 0.01–0.5 mg/m3 (monomeric phenols); skin contact: 10–100 μg/cm2 (urushiol) | Oxidation to ortho-quinones (haptens) → protein conjugation → Type IV hypersensitivity (Th2 response). |
Aldehydes | Formaldehyde: 0.05–5 ppm; Acrolein: 0.1–5 mg/m3 | Protein crosslinking → antigenic epitopes → T-cell-mediated allergic activation. |
Ketones | Acetone: 50–200 mg/m3; Cyclohexanone: 5–20 mg/m3 | Skin barrier disruption → enhanced allergen penetration; epigenetic inflammation promotion. |
Terpenes | α-Pinene: 10–500 mg/m3; Limonene: 5–100 mg/m3 | Oxidation products (hydroperoxides) → NLRP3 inflammasome activation → Th2-skewed immunity |
Mitigation Strategy | Key Experimental Support | Limitations | Industrial Challenges |
---|---|---|---|
Cyclodextrin/Chitosan Embedding | Encapsulates urushiol via hydrophobic cavities and spatial barriers. | No quantitative efficiency data; potential impact on film properties. | Compatibility with traditional recipes; process optimization needed. |
Laccase Modification | Targeted mutations reduce quinone byproducts through altered catalytic pathways. | Complex genetic engineering and microbial expression requirements. | High production costs; acceptance in traditional craftsmanship. |
Antioxidant Protective Equipment | Antioxidant additives (e.g., vitamin C) inhibit free radical formation. | Short-lived efficacy; limited protection against airborne VOCs. | Disposable equipment costs; worker compliance with PPE. |
Terpene Oxidation Control | Antioxidants (e.g., propyl gallate) delay oxidation; controlled humidity and temperature reduces reaction rates. | Requires energy-intensive environmental control; potential storage stability issues. | Retrofitting production lines; additive–resin compatibility. |
Nanofiber Membrane Filtration | High-surface-area membranes adsorb and filter VOCs for PPE and ventilation. | Clogging risk with high VOC loads; balance between breathability and efficiency. | Scalable manufacturing costs; long-term material durability. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Hou, J.; Wang, T.; Feng, X.; Liu, X. Research on Volatile Allergenic Substances in Chinese Lacquer: An Integrated Analysis of Their Composition, Detection, Mechanisms, and Prevention. Polymers 2025, 17, 1722. https://doi.org/10.3390/polym17131722
Wang Y, Hou J, Wang T, Feng X, Liu X. Research on Volatile Allergenic Substances in Chinese Lacquer: An Integrated Analysis of Their Composition, Detection, Mechanisms, and Prevention. Polymers. 2025; 17(13):1722. https://doi.org/10.3390/polym17131722
Chicago/Turabian StyleWang, Yao, Jiangyan Hou, Tianyi Wang, Xinhao Feng, and Xinyou Liu. 2025. "Research on Volatile Allergenic Substances in Chinese Lacquer: An Integrated Analysis of Their Composition, Detection, Mechanisms, and Prevention" Polymers 17, no. 13: 1722. https://doi.org/10.3390/polym17131722
APA StyleWang, Y., Hou, J., Wang, T., Feng, X., & Liu, X. (2025). Research on Volatile Allergenic Substances in Chinese Lacquer: An Integrated Analysis of Their Composition, Detection, Mechanisms, and Prevention. Polymers, 17(13), 1722. https://doi.org/10.3390/polym17131722