Urushiol-Based Antimicrobial Coatings: Molecular Mechanisms, Structural Innovations, and Multifunctional Applications
Abstract
:1. Introduction
2. Structural Characteristics and Antibacterial Mechanism of Urushiol
2.1. Structural Characteristics of Urushiol
2.2. Antibacterial Mechanism of Urushiol
3. Mechanisms of Enhanced Antibacterial Performance in Urushiol-Based Coatings
3.1. Classification of Antibacterial Materials and Their Antibacterial Properties
3.2. Enhanced Antibacterial Performance of Urushiol-Based Coatings
3.2.1. Molecular Structure-Driven Antibacterial Mechanism
3.2.2. Redox Activity-Dominated Antibacterial Mechanism
3.2.3. Structural Modification and Synergistic Enhancement Mechanism
3.3. Case Studies on the Antibacterial Performance of Urushiol-Based Coatings
4. Future Perspectives and Research Directions
4.1. Limited Antibacterial Efficiency
4.2. Poor Stability and Environmental Durability
4.3. Limited Functional Versatility
4.4. Biocompatibility and Green Manufacturing
4.5. Application Expansion and Standardization
4.6. Interdisciplinary Collaboration
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Centers for Disease Control and Prevention (U.S.). Antibiotic Resistance Threats in the United States, 2019; Centers for Disease Control and Prevention (U.S.): Atlanta, GA, USA, 2019.
- Mazhar, T.; Sheikh, T.R.; Khan, A.U.; Rahman, A.U.; Rehman, M.U.; Shaheen, R.; Daudpota, R.A.; Tareen, A.R. Global Trends in Antimicrobial Resistance: A Systematic Review of Surveillance Data. Insights J. Life Soc. Sci. 2025, 3, 153–160. [Google Scholar]
- Sarıcaoglu, F.T.; Turhan, S. Physicochemical, Antioxidant and Antimicrobial Properties of Mechanically Deboned Chicken Meat Protein Films Enriched with Various Essential Oils. Food Packag. Shelf Life 2020, 25, 100527. [Google Scholar] [CrossRef]
- Nie, C.; Du, H.; Zhang, Y.; Han, G.; Wang, H.; Yuan, D.; Wang, B.; Wang, X. Towards Efficient Solar Demulsification (I): A Solar Electrical Role on Interfacial Film of Emulsions. Sustain. Mater. Technol. 2021, 30, e00344. [Google Scholar] [CrossRef]
- Lu, R.; Kamiya, Y.; Miyakoshi, T. Applied Analysis of Lacquer Films Based on Pyrolysis-Gas Chromatography/Mass Spectrometry. Talanta 2006, 70, 370–376. [Google Scholar] [CrossRef]
- Vogl, O. Oriental Lacquer, Poison Ivy, and Drying Oils. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 4327–4335. [Google Scholar] [CrossRef]
- Yang, L.; Wang, C.; Li, L.; Zhu, F.; Ren, X.; Huang, Q.; Cheng, Y.; Li, Y. Bioinspired Integration of Naturally Occurring Molecules towards Universal and Smart Antibacterial Coatings. Adv. Funct. Mater. 2022, 32, 2108749. [Google Scholar] [CrossRef]
- Niimura, N.; Miyakoshi, T. Characterization of Natural Resin Films and Identification of Ancient Coating. J. Mass Spectrom. Soc. Jpn. 2003, 51, 439–457. [Google Scholar] [CrossRef]
- Zhan, Y.; Yu, S.; Amirfazli, A.; Siddiqui, A.R.; Li, W. Recent Advances in Antibacterial Superhydrophobic Coatings. Adv. Eng. Mater. 2022, 24, 2101053. [Google Scholar] [CrossRef]
- Duncan, C.J.; Scott, S. What Caused the Black Death? Postgrad. Med. J. 2005, 81, 315–320. [Google Scholar] [CrossRef]
- Donlan, R.M. Biofilms and Device-Associated Infections. Emerg. Infect. Dis. 2001, 7, 277–281. [Google Scholar] [CrossRef]
- Rizou, M.; Galanakis, I.M.; Aldawoud, T.M.S.; Galanakis, C.M. Safety of Foods, Food Supply Chain and Environment within the COVID-19 Pandemic. Trends Food Sci. Technol. 2020, 102, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Balu, S.K.; Sampath, V.; Andra, S.; Alagar, S.; Manisha Vidyavathy, S. Fabrication of Carbon and Silver Nanomaterials Incorporated Hydroxyapatite Nanocomposites: Enhanced Biological and Mechanical Performances for Biomedical Applications. Mater. Sci. Eng. C 2021, 128, 112296. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, L.; Chen, S.; Fan, B.; Huang, S.; Chen, Q. Enhanced Phosphorus Mobility in a Calcareous Soil with Organic Amendments Additions: Insights from a Long Term Study with Equal Phosphorus Input. J. Environ. Manag. 2022, 306, 114451. [Google Scholar] [CrossRef]
- Xu, Y.; Bai, W.; Luo, Z.; Jin, Y.; Peng, B.; Feng, L.; Hu, B.; Lin, J. Effects of drying time on the surface morphology evolution of urushiol–formaldehyde diethylenetriamine polymer microporous films. Appl. Surf. Sci. 2012, 258, 5141–5145. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, L.; Zhang, J.; Hu, J.; Duan, G.; Liu, X.; Li, Y.; Gu, Z. Polydopamine antibacterial materials. Mater. Horiz. 2021, 8, 1618–1633. [Google Scholar] [CrossRef]
- Cha, H.S.; Shin, D.H. Antibacterial capacity of cavity disinfectants against Streptococcus mutans and their effects on shear bond strength of a self-etch adhesive. Dent. Mater. J. 2016, 35, 147–152. [Google Scholar] [CrossRef]
- Jeong, H.; Cho, Y.A.; Cho, Y.; Cho, Y.; Kang, E.; Ahn, H.W.; Hong, J. Durable urushiol-based nanofilm with water repellency for clear overlay appliances in dentistry. ACS Biomater. Sci. Eng. 2016, 2, 344–348. [Google Scholar] [CrossRef]
- Suk, K.T.; Baik, S.K.; Kim, H.S.; Park, S.M.; Paeng, K.J.; Uh, Y.; Jang, I.H.; Cho, M.Y.; Choi, E.H.; Kim, M.J.; et al. Antibacterial effects of the urushiol component in the sap of the lacquer tree (Rhus verniciflua Stokes) on Helicobacter pylori: Urushiol and Helicobacter pylori. Helicobacter 2011, 16, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. Preparation, Mechanism, and Application of Rare Earth–Silver Inorganic Antibacterial Materials. Master’s Thesis, Kunming University of Science and Technology, Kunming, China, 2020. (In Chinese). [Google Scholar]
- Rostami, N.; Alidadi, H.; Zarrinfar, H.; Ketabi, D.; Tabesh, H. Interventional effect of nanosilver paint on fungal load of indoor air in a hospital ward. Can. J. Infect. Dis. Med. Microbiol. 2021, 2021, 8658600. [Google Scholar] [CrossRef]
- Deng, Y.; Song, G.L.; Zheng, D.; Zhang, Y. Fabrication and synergistic antibacterial and antifouling effect of an organic/inorganic hybrid coating embedded with nanocomposite Ag@TA-SiO2 particles. Colloids Surf. A Physicochem. Eng. Asp. 2021, 613, 126085. [Google Scholar] [CrossRef]
- Gao, J.; Zhao, C.; Zhou, J.; Li, C.; Shao, Y.; Shi, C.; Zhu, Y. Plasma sprayed rutile titania-nanosilver antibacterial coatings. Appl. Surf. Sci. 2015, 355, 593–601. [Google Scholar] [CrossRef]
- Choudhary, P.; Parandhaman, T.; Ramalingam, B.; Duraipandy, N.; Kiran, M.S.; Das, S.K. Fabrication of nontoxic reduced graphene oxide protein nanoframework as sustained antimicrobial coating for biomedical application. ACS Appl. Mater. Interfaces 2017, 9, 38255–38269. [Google Scholar] [CrossRef] [PubMed]
- Massa, M.A.; Covarrubias, C.; Bittner, M.; Fuentevilla, I.A.; Capetillo, P.; Von Marttens, A.; Carvajal, J.C. Synthesis of new antibacterial composite coating for titanium based on highly ordered nanoporous silica and silver nanoparticles. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 45, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Zhang, X.; Huang, Y.; Ding, Q.; Pang, X. Antibacterial and bioactivity of silver substituted hydroxyapatite/TiO2 nanotube composite coatings on titanium. Appl. Surf. Sci. 2014, 314, 348–357. [Google Scholar] [CrossRef]
- Chen, S.; Guo, Y.; Zhong, H.; Chen, S.; Li, J.; Ge, Z.; Tang, J. Synergistic antibacterial mechanism and coating application of copper/titanium dioxide nanoparticles. Chem. Eng. J. 2014, 256, 238–246. [Google Scholar] [CrossRef]
- Li, M.; Chen, Z.; Yang, L.; Li, J.; Xu, J.; Chen, C.; Wu, Q.; Yang, M.; Liu, T. Antibacterial activity and mechanism of GO/Cu2O/ZnO coating on ultrafine glass fiber. Nanomaterials 2022, 12, 1857. [Google Scholar] [CrossRef]
- Croes, M.; Bakhshandeh, S.; van Hengel, I.A.J.; Lietaert, K.; van Kessel, K.; Pouran, B.; van der Wal, B.; Vogely, H.; Van Hecke, W.; Fluit, A.; et al. Antibacterial and immunogenic behavior of silver coatings on additively manufactured porous titanium. Acta Biomater. 2018, 81, 315–327. [Google Scholar] [CrossRef]
- Karakurt, I.; Ozaltin, K.; Pištěková, H.; Vesela, D.; Michael-Lindhard, J.; Humpolícek, P.; Mozetič, M.; Lehocky, M. Effect of saccharides coating on antibacterial potential and drug loading and releasing capability of plasma treated polylactic acid films. Int. J. Mol. Sci. 2022, 23, 8821. [Google Scholar] [CrossRef]
- Tomane, S.; Sautrot-Ba, P.; Mazeran, P.E.; Lalevée, J.; Graff, B.; Morlet-Savary, F.; Abbad-Andaloussi, S.; Langlois, V.; Versace, D. Photoinitiating systems based on anthraquinone derivatives: Synthesis of antifouling and biocide coatings. ChemPlusChem 2017, 82, 1298–1307. [Google Scholar] [CrossRef]
- Wei, X.; Li, Q.; Wu, C.; Sun, T.; Li, X. Preparation, characterization and antibacterial mechanism of the chitosan coatings modified by Ag/ZnO microspheres. J. Sci. Food Agric. 2020, 100, 5527–5538. [Google Scholar] [CrossRef]
- Zhao, Y. Synthesis of Hydrophilic Polyacrylate and Its Application in Self-Cleaning Coatings. New Chem. Mater. 2016, 44, 213–215, 219. (In Chinese) [Google Scholar]
- Li, Z.; Yang, X.; Liu, H.; Yang, X.; Shan, Y.; Xu, X.; Shang, S.; Song, Z. Dual-functional antimicrobial coating based on a quaternary ammonium salt from rosin acid with in vitro and in vivo antimicrobial and antifouling properties. Chem. Eng. J. 2019, 374, 564–575. [Google Scholar] [CrossRef]
- Cheng, L.; Ren, S.; Lu, X. Application of eco-friendly waterborne polyurethane composite coating incorporated with nano cellulose crystalline and silver nano particles on wood antibacterial board. Polymers 2020, 12, 407. [Google Scholar] [CrossRef]
- Xu, K.; Xie, H.; Sun, C.; Lin, W.; You, Z.; Zheng, G.; Zheng, X.; Xu, Y.; Chen, J.; Lin, F. Sustainable coating based on zwitterionic functionalized polyurushiol with antifouling and antibacterial properties. Molecules 2023, 28, 8040. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Wang, C.; Jiang, J. Biochemical activity and application progress of urushiol. Biomass Chem. Eng. 2018, 52, 60–66. (In Chinese) [Google Scholar]
- Suk, K.T.; Kim, H.S.; Kim, M.Y.; Kim, J.W.; Uh, Y.; Jang, I.H.; Kim, S.K.; Choi, E.H.; Kim, M.J.; Joo, J.S.; et al. In vitro antibacterial and morphological effects of the urushiol component of the sap of the Korean lacquer tree (Rhus vernicifera Stokes) on Helicobacter pylori. J. Korean Med. Sci. 2010, 25, 399. [Google Scholar] [CrossRef]
- He, Y. Structural Modification and Biological Activity Study of Urushiol From Raw Lacquer. Ph.D. Thesis, Chinese Academy of Forestry, Beijing, China, 2013. (In Chinese). [Google Scholar]
- Liu, Y.; Xia, J.; Lin, J. Characterization and conductive property of polyurushiol/silver conductive coatings prepared under UV irradiation. Prog. Org. Coat. 2011, 71, 117–120. [Google Scholar] [CrossRef]
- Hu, J.; Liu, C.; Liu, B.; Li, H.; Zheng, X.; Chen, D. Preparation of Urushiol Modified Cu-carrying Attapulgite Antibacterial Agent and Its Application in Thermoplastic Polyurethane. Polyurethane Ind. 2023, 38, 10–15. (In Chinese) [Google Scholar] [CrossRef]
- Wang, D.; Zhang, M.; Bai, W.; Xu, Y.; Lin, J. Preparation and Antibacterial Properties of Urushiol-Derived Capsaicin-Like Compounds. J. Chin. Lacq. 2015, 34, 74–94. (In Chinese) [Google Scholar] [CrossRef]
- Jie, X.; Shiu, B.C.; Zhang, Y.; Ye, Y.; Fang, R. Chitosan-urushiol nanofiber membrane with enhanced acid resistance and broad-spectrum antibacterial activity. Carbohydr. Polym. 2023, 312, 120792. [Google Scholar] [CrossRef]
- GB/T 21866-2008; Measurement of antibacterial activity on plastic surfaces. Standardization Administration of China: Beijing, China, 2008.
- GB 4789.2-2010; National Food Safety Standard—Food Microbiological Examination: Enumeration of Total Bacterial Count. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2010.
- Juillerat-Jeanneret, L. The Targeted Delivery of Cancer Drugs across the Blood–Brain Barrier: Chemical Modifications of Drugs or Drug-Nanoparticles? Drug Discov. Today 2008, 13, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Wan, F.; Wong, F.; Collins, J.J.; De La Fuente-Nunez, C. Machine Learning for Antimicrobial Peptide Identification and Design. Nat. Rev. Bioeng. 2024, 2, 392–407. [Google Scholar] [CrossRef]
- Barabadi, H.; Mojab, F.; Vahidi, H.; Marashi, B.; Talank, N.; Hosseini, O.; Saravanan, M. Green Synthesis, Characterization, Antibacterial and Biofilm Inhibitory Activity of Silver Nanoparticles Compared to Commercial Silver Nanoparticles. Inorg. Chem. Commun. 2021, 129, 108647. [Google Scholar] [CrossRef]
- Rizki, I.N.; Klaypradit, W. Patmawati Utilization of Marine Organisms for the Green Synthesis of Silver and Gold Nanoparticles and Their Applications: A Review. Sustain. Chem. Pharm. 2023, 31, 100888. [Google Scholar] [CrossRef]
- Hodek, J.; Zajícová, V.; Lovětinská-Šlamborová, I.; Stibor, I.; Müllerová, J.; Weber, J. Protective Hybrid Coating Containing Silver, Copper and Zinc Cations Effective against Human Immunodeficiency Virus and Other Enveloped Viruses. BMC Microbiol. 2016, 16, 56. [Google Scholar] [CrossRef]
- Ghafari-Nazari, A.; Moztarzadeh, F.; Rabiee, S.M.; Rajabloo, T.; Mozafari, M.; Tayebi, L. Antibacterial Activity of Silver Photodeposited Nepheline Thin Film Coatings. Ceram. Int. 2012, 38, 5445–5451. [Google Scholar] [CrossRef]
- Erdem Büyükkiraz, M.; Kesmen, Z. Antimicrobial Peptides (AMPs): A Promising Class of Antimicrobial Compounds. J. Appl. Microbiol. 2022, 132, 1573–1596. [Google Scholar] [CrossRef]
- Li, G.; Lai, Z.; Shan, A. Advances of Antimicrobial Peptide—based Biomaterials for the Treatment of Bacterial Infections. Adv. Sci. 2023, 10, 2206602. [Google Scholar] [CrossRef] [PubMed]
- Çetin, B.; Çakmakçi, S.; Çakmakçi, R. The Investigation of Antimicrobial Activity of Thyme and Oregano Essential Oils. Turk. J. Agric. For. 2011, 35, 145–154. [Google Scholar] [CrossRef]
- Juven, B.J.; Kanner, J.; Schved, F.; Weisslowicz, H. Factors That Interact with the Antibacterial Action of Thyme Essential Oil and Its Active Constituents. J. Appl. Bacteriol. 1994, 76, 626–631. [Google Scholar] [CrossRef]
- Hammami, A.; Al-Ghuilani, N. Durability and Environmental Degradation of Glass-Vinylester Composites. Polym. Compos. 2004, 25, 609–616. [Google Scholar] [CrossRef]
- Chang, B.P.; Mohanty, A.K.; Misra, M. Studies on Durability of Sustainable Biobased Composites: A Review. RSC Adv. 2020, 10, 17955–17999. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yu, R.; Guo, B. Shape-Memory and Self-Healing Polymers Based on Dynamic Covalent Bonds and Dynamic Noncovalent Interactions: Synthesis, Mechanism, and Application. ACS Appl. Bio Mater. 2021, 4, 5926–5943. [Google Scholar] [CrossRef] [PubMed]
- Campoccia, D.; Montanaro, L.; Arciola, C.R. A Review of the Clinical Implications of Anti-Infective Biomaterials and Infection-Resistant Surfaces. Biomaterials 2013, 34, 8018–8029. [Google Scholar] [CrossRef]
- Agnihotri, S.; Dhiman, N.K. Development of Nano-Antimicrobial Biomaterials for Biomedical Applications. Adv. Biomater. Biomed. Appl. 2017, 66, 479–545. [Google Scholar]
- ISO 22196; Measurement of Antibacterial Activity on Plastics and Other Non-Porous Surfaces. International Organization for Standardization: Geneva, Switzerland, 2011.
- JIS Z 2801; Antibacterial Products—Test for Antibacterial Activity and Efficacy. Japanese Standards Association: Tokyo, Japan, 2010.
- Zhu, Y.W.; Zhang, H.Z.; Sun, X.C.; Feng, S.Q.; Xu, J.; Zhao, Q.; Xiang, B.; Wang, R.M.; Yu, D.P. Efficient Field Emission from ZnO Nanoneedle Arrays. Appl. Phys. Lett. 2003, 83, 144–146. [Google Scholar] [CrossRef]
Sample Serial Number | Clamp Count/Individual | Antibacterial Ratio/% | |
---|---|---|---|
E. coli | GZC-1 | 0 | 100 |
GZC-2 | 0 | 100 | |
GZC-3 | 0 | 100 | |
Control group | 630 | / | |
S. aureus | GZC-1 | 0 | 100 |
GZC-2 | 0 | 100 | |
GZC-3 | 0 | 100 | |
Control group | 210 | / |
Sample ID | A | B | C | D |
---|---|---|---|---|
Staphylococcus aureus inhibition rate/% | 0 | 97 | 98.7 | 100 |
Escherichia coli inhibition rate/% | 0 | 80 | 90 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Hou, J.; Wang, Y.; Feng, X.; Liu, X. Urushiol-Based Antimicrobial Coatings: Molecular Mechanisms, Structural Innovations, and Multifunctional Applications. Polymers 2025, 17, 1500. https://doi.org/10.3390/polym17111500
Wang T, Hou J, Wang Y, Feng X, Liu X. Urushiol-Based Antimicrobial Coatings: Molecular Mechanisms, Structural Innovations, and Multifunctional Applications. Polymers. 2025; 17(11):1500. https://doi.org/10.3390/polym17111500
Chicago/Turabian StyleWang, Tianyi, Jiangyan Hou, Yao Wang, Xinhao Feng, and Xinyou Liu. 2025. "Urushiol-Based Antimicrobial Coatings: Molecular Mechanisms, Structural Innovations, and Multifunctional Applications" Polymers 17, no. 11: 1500. https://doi.org/10.3390/polym17111500
APA StyleWang, T., Hou, J., Wang, Y., Feng, X., & Liu, X. (2025). Urushiol-Based Antimicrobial Coatings: Molecular Mechanisms, Structural Innovations, and Multifunctional Applications. Polymers, 17(11), 1500. https://doi.org/10.3390/polym17111500