Emerging Drugs and Formulations for Pain Treatment

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Physical Pharmacy and Formulation".

Deadline for manuscript submissions: 10 October 2025 | Viewed by 2810

Special Issue Editors


E-Mail Website
Guest Editor
Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Miguel Hidalgo, Mexico City 11340, Mexico
Interests: obesity; pain; experimental pain treatment; physiopathology of pain; experimental therapeutics

E-Mail Website
Guest Editor
Centro de Investigación y Docencia en Ciencias de la Salud, Universidad Autónoma de Sinaloa, Eustaquio Buelna 91, Burócrata, Culiacan 80030, Mexico
Interests: pain; neuropathy; neuropharmacology; pain treatment; opioid drugs; cannabinoid-based medicine

Special Issue Information

Dear Colleagues,

The global burden of pain has increased in recent times, and although measuring pain is complicated, approximately 20% of the population suffers from pain of a chronic nature. In this regard, it is important to recognize that chronic pain damages the quality of life of patients, and in the same way, it results in a higher cost to private and public health systems. Although analgesic marketed drugs produce a significant release from pain, a considerable number of patients do not experience pain relief. Also, the side effects of these conventional drugs lead to the abandonment of pharmacological management of pain. Relief from pain is a human right; however, the existence of significant barriers such as the lack of individualized therapies, the increased opioid crisis, and the undertreated patients with difficult pain syndromes can make this process difficult. In response to overcoming the major barriers of pharmacological pain treatment, we are pleased to invite all researchers of preclinical and clinical areas to contribute to this Special Issue entitled “Emerging Drugs and Formulations for Pain Treatment”. Original and review articles on preclinical and clinical findings focused on new drug design, reformulations, combined therapies, drug targeting, nanomedicine, delivery and controlled-release systems for drugs, advanced pharmacogenomics and pharmacogenetics therapies, and improved pharmacokinetic and pharmacodynamics processes of analgesic drugs, which enhance the understanding of treatment and release of pain, are welcome. Research areas include (but are not limited to) chronic, neuropathic, nociplastic, oncologic, and rare syndromes of pain conditions and others.

We look forward to receiving your contributions.

Dr. Hector Isaac Rocha-González
Dr. Geovanna Nallely Quiñonez-Bastidas
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • analgesia
  • experimental pain treatment
  • preclinical models
  • pharmacotherapeutic management of pain
  • new drugs in clinical trials
  • drug development
  • psychotropic drugs
  • natural compounds
  • neuropathic Pain
  • chronic pain
  • synthetic drugs
  • new formulations

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 999 KB  
Article
Preclinical Assessment of a Metformin–Melatonin Combination: Antinociceptive Synergism
by Marcia Yvette Gauthereau-Torres, Jenny Selene Martínez-Guillen, Claudia Cervantes-Durán, Carmen Judith Gutiérrez-García, Daniel Godínez-Hernández, Asdrúbal Aguilera Méndez and Luis Fernando Ortega-Varela
Pharmaceutics 2025, 17(8), 1057; https://doi.org/10.3390/pharmaceutics17081057 - 14 Aug 2025
Viewed by 400
Abstract
Background/Objectives: Pain is a growing public health concern worldwide, and the use of combinations of drugs can improve their analgesic effects while minimizing their adverse effects. Drugs such as metformin (antidiabetic) and melatonin (sleep regulator) have analgesic potential in combination. In this study, [...] Read more.
Background/Objectives: Pain is a growing public health concern worldwide, and the use of combinations of drugs can improve their analgesic effects while minimizing their adverse effects. Drugs such as metformin (antidiabetic) and melatonin (sleep regulator) have analgesic potential in combination. In this study, we evaluated the pharmacological interaction between metformin and melatonin when orally administered in a rat model, using the formalin test. Methods: Female Wistar rats (220–350 g) were injected with 50 µL of 1% formalin in the dorsal surface of the right hind paw. Formalin produces pain-related flinching behavior, and antinociception was evaluated as the reduction in this response. The percentage of the antinociceptive effect was determined after the oral administration of metformin (30–1000 mg/kg), melatonin (10–150 mg/kg), and their combination (MMC). To establish the nature of the interaction, isobolographic analysis was performed in a fixed-dose ratio (0.5:0.5), based on the effective dose 50 (ED50) values for each drug: metformin (947.46 ± 242.60 mg/kg) and melatonin (126.86 ± 37.98 mg/kg). To evaluate the mechanism of action, the receptor antagonist for metformin compound C (dorsomorphin) for AMPK inhibition, MT1 and MT2 melatonin receptor antagonists (4-P-PDOT, luzindole), and an opioid antagonist (naloxone) were employed. The rotarod test was used to evaluate the safety profile of the combination. Results: The metformin–melatonin combination significantly reduced the number of flinches in the second phase of the formalin test. The theoretical ED50 for the combination (ED50 T) was 537.15 ± 122.76 mg/kg. Experimentally, the ED50 (ED50 E) was significantly lower (360.83 ± 23.36 mg/kg), indicating a synergistic interaction for the combination involving opioidergic pathways, MT2 receptors, and AMPK activation. Conclusions: Oral metformin–melatonin coadministration could provide a therapeutic alternative for inflammatory pain. Full article
(This article belongs to the Special Issue Emerging Drugs and Formulations for Pain Treatment)
Show Figures

Figure 1

23 pages, 2039 KB  
Article
Enhancing Chemical Stability and Bioavailability of Aneratrigine Capsules via Dry Granulation: Addressing Stability Challenges in Sodium Bicarbonate-Containing Formulations for Clinical Development
by Kwan-Ik Cha, Ga-Eon Kim, Ji-Hyung Seol, Dong-Woo Kim and Seungbeom Lee
Pharmaceutics 2025, 17(8), 1047; https://doi.org/10.3390/pharmaceutics17081047 - 12 Aug 2025
Viewed by 408
Abstract
Background: Aneratrigine, a potent selective Nav1.7 inhibitor, faced challenges in developing a clinically viable oral formulation due to its poor aqueous solubility in acidic gastric conditions (0.06 mg/mL at pH 1.2), leading to limited bioavailability in Phase 1 studies. Methods: To address [...] Read more.
Background: Aneratrigine, a potent selective Nav1.7 inhibitor, faced challenges in developing a clinically viable oral formulation due to its poor aqueous solubility in acidic gastric conditions (0.06 mg/mL at pH 1.2), leading to limited bioavailability in Phase 1 studies. Methods: To address this, a capsule formulation containing sodium bicarbonate (NaHCO3) was developed to enhance dissolution via in situ pH modulation. However, production-scale wet granulation led to stability issues, such as capsule content discoloration and excessive degradant formation, attributed to NaHCO3 decomposition under thermal and moisture stress. This raised the content pH and triggered degradation products not seen in initial compatibility tests. Consequently, dry granulation was adopted to minimize heat and moisture exposure. Results: The dry granulation process proved scalable, maintaining chemical integrity across laboratory (1.5 kg), pilot (5.4 kg), and commercial (25.9 kg) batches. The optimized formulation showed enhanced stability (total impurities < 0.05%) and improved dissolution (>80% at 30 min, pH 4.0). Conclusions: This work establishes a robust manufacturing platform that overcomes stability challenges in alkalizer-containing formulations, facilitating the successful advancement of aneratrigine to Phase 2a and providing a model for developing heat- and moisture-sensitive compounds. Full article
(This article belongs to the Special Issue Emerging Drugs and Formulations for Pain Treatment)
Show Figures

Graphical abstract

8 pages, 212 KB  
Communication
Retrospective Evaluation of L-Acetyl Carnitine and Palmitoylethanolamide as Add-On Therapy in Patients with Fibromyalgia and Small Fiber Neuropathy
by Crescenzio Bentivenga, Arrigo Francesco Giuseppe Cicero, Federica Fogacci, Natalia Evangelia Politi, Antonio Di Micoli, Eugenio Roberto Cosentino, Paolo Gionchetti and Claudio Borghi
Pharmaceutics 2025, 17(8), 1004; https://doi.org/10.3390/pharmaceutics17081004 - 31 Jul 2025
Viewed by 504
Abstract
Fibromyalgia is a complex disorder characterized by chronic widespread pain and a variety of related symptoms. Growing evidence suggests that the central and peripheral nervous systems are involved, with small fiber neuropathy playing a key role in its development. We retrospectively reviewed the [...] Read more.
Fibromyalgia is a complex disorder characterized by chronic widespread pain and a variety of related symptoms. Growing evidence suggests that the central and peripheral nervous systems are involved, with small fiber neuropathy playing a key role in its development. We retrospectively reviewed the medical records of 100 patients diagnosed with primary fibromyalgia. Those showing symptoms indicative of small fiber dysfunction who were treated with L-Acetyl Carnitine (LAC) and Palmitoylethanolamide (PEA) alongside standard care (SOC) were compared to matched controls who received only SOC. To ensure comparable groups, propensity score matching was used. Changes in Fibromyalgia Impact Questionnaire Revised (FIQR) scores over 12 weeks were analyzed using non-parametric tests due to the data’s non-normal distribution. After matching, 86 patients (43 in each group) were included. The group receiving LAC and PEA as add-on therapy experienced a significant median reduction in FIQR scores (−19.0 points, p < 0.001), while the SOC-only group showed no significant change. Comparisons between groups confirmed that the improvement was significantly greater in the LAC+PEA group (p < 0.001). These results suggest that adding LAC and PEA to standard care may provide meaningful symptom relief for fibromyalgia patients with suspected small fiber involvement. This supports the hypothesis that peripheral nervous system dysfunction contributes to the disease burden in this subgroup. However, further prospective controlled studies are needed to confirm these promising findings. Full article
(This article belongs to the Special Issue Emerging Drugs and Formulations for Pain Treatment)
16 pages, 2931 KB  
Article
Evaluation of the Antinociceptive Effect of Sesamin: Role of 5HT1A Serotonergic Receptors
by Roberto Camacho-Cruz, David Francisco Alcalá-Hernández, Juan Carlos Huerta-Cruz, Jesús Arrieta-Valencia, María Elena Sánchez-Mendoza, Francisco Javier Flores-Murrieta, Andrés Navarrete, Juan Gerardo Reyes-García and Héctor Isaac Rocha-González
Pharmaceutics 2025, 17(3), 330; https://doi.org/10.3390/pharmaceutics17030330 - 3 Mar 2025
Cited by 1 | Viewed by 1072
Abstract
Background/Objectives: Sesame (Sesamum indicum L.) is used in folk medicine to treat painful disorders. Sesamin is the main lignan found in this plant; however, its antinociceptive potential has scarcely been studied. The aim was to investigate the antinociceptive effect of sesamin on [...] Read more.
Background/Objectives: Sesame (Sesamum indicum L.) is used in folk medicine to treat painful disorders. Sesamin is the main lignan found in this plant; however, its antinociceptive potential has scarcely been studied. The aim was to investigate the antinociceptive effect of sesamin on inflammatory and neuropathic pain models, as well as the possible mechanism of action through which sesamin mediates its own antinociceptive effect. Methods: Formalin and carrageenan animal models were used to assess inflammatory pain, whereas an L5/L6-spinal-nerve-ligated rat model was employed to evaluate neuropathic pain. Results: Oral sesamin significantly reduced carrageenan-induced hyperalgesia and inflammation, formalin-induced nociception, and L5/L6-spinal-nerve-ligation-induced allodynia. Sesamin was more effective than diclofenac in the inflammatory pain models, but it was less effective than pregabalin in the neuropathic pain model. The antinociceptive effect of sesamin, in the formalin test, was prevented by the intraperitoneal administration of methiothepin (5-HT1/5 antagonist), but not by naltrexone (an opioid antagonist) or L-NAME (an NOS inhibitor). In addition, WAY-100635 (5-HT1A antagonist), but not SB-224289 (5-HT1B antagonist), BRL-15542 (5-HT1D antagonist), and SB-699551 (5-HT5A antagonist), impeded sesamin-induced antinociception. Conclusions: This study’s results support the use of sesamin to treat inflammatory pain disorders and suggest that 5-HT1A receptors influence the antinociceptive effect of this drug. Full article
(This article belongs to the Special Issue Emerging Drugs and Formulations for Pain Treatment)
Show Figures

Figure 1

Back to TopTop