Cutting-Edge Drug Delivery and Nanomedicine: Innovations in Hybrid Systems, Theranostics and Targeted Therapies

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Drug Delivery and Controlled Release".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 2947

Special Issue Editors


E-Mail Website
Guest Editor
1. Laboratorio de Nanosistemas de Aplicación Biotecnológica (LANSAB), Universidad Nacional de Hurlingham (UNAHUR), Hurlingham 1688, Argentina
2. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires 1425, Argentina
3. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), La Plata 1900, Argentina
4. Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
Interests: drug delivery; nanomedicine; liposomes; lipid nanoparticles; skin cancer; topical delivery
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
1. Laboratorio de Nanomedicinas, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1113, Argentina
2. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1113, Argentina
3. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires 1425, Argentina
Interests: drug-delivery nanosystems; polymeric micelles; inhalable nanoformulation; active drug targeting; tuberculosis; mycobacterium tuberculosis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue aims to highlight the latest advancements in drug delivery systems and nanomedicine, focusing on innovative strategies that enhance therapeutic efficacy and precision in the treatment of complex conditions such as cancer and infectious diseases, among others. This Special Issue will cover a wide range of topics, including cutting-edge approaches to drug and protein delivery, the development of nanoparticles, and the use of nanoeffectors in photodynamic (PDT) and photothermal therapy (PTT). Emphasis will be placed on hybrid systems that integrate diverse strategies, such as polymeric, lipidic, and other combinatory approaches, to optimize delivery pathways and improve therapeutic outcomes. Additionally, this Special Issue will delve into targeted therapies designed to selectively engage disease sites, minimizing off-target effects and maximizing therapeutic potential, as well as theragnostic approaches that combine therapeutic and diagnostic capabilities. Furthermore, strategies for drug repurposing in the development of novel nanomedicines for alternative therapies will be included. Various administration routes, including oral, topical, intravenous, pulmonary, and localized delivery, will also be explored. This edition seeks to bring together pioneering research that is redefining the landscape of modern medicine through the integration of advanced materials and multidisciplinary approaches.

Dr. Maria Natalia Calienni
Dr. Marcela Analia Moretton
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • drug delivery
  • nanomedicine
  • hybrid nanosystems
  • targeted therapies
  • theragnostic
  • drug repurposing
  • PDT
  • PTT

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

20 pages, 7081 KiB  
Article
Albumin-Based Nanoparticles with Factorial Design as a Promising Approach for Remodeled Repaglinide: Evidence from In Silico, In Vitro, and In Vivo Evaluations
by Mennatullah M. Faisal, Eman Gomaa, Mohamed S. Attia, Rana M. Abdelnaby, Adel Ehab Ibrahim, Ahmed Al-Harrasi, Sami El Deeb and Al Zahraa G. Al Ashmawy
Pharmaceutics 2025, 17(3), 350; https://doi.org/10.3390/pharmaceutics17030350 - 9 Mar 2025
Viewed by 759
Abstract
Background/Objectives: Hyperlipidemia is a silent threat lurking in the bloodstream of millions worldwide. The nano-based platform has emerged as a promising drug delivery technology. Repaglinide, an anti-diabetic drug, was investigated recently as an antihyperlipidemic candidate that could supersede the available antihyperlipidemic drugs. Our [...] Read more.
Background/Objectives: Hyperlipidemia is a silent threat lurking in the bloodstream of millions worldwide. The nano-based platform has emerged as a promising drug delivery technology. Repaglinide, an anti-diabetic drug, was investigated recently as an antihyperlipidemic candidate that could supersede the available antihyperlipidemic drugs. Our goal was to optimize albumin-based nanoparticles loaded with Repaglinide for parenteral delivery and conduct in silico and in vivo studies to explore the efficacy of Repaglinide for the management of hyperlipidemia along with its anti-diabetic effect. Methods: The impact of three independent factors, the albumin%, acetone volume, and glutaraldehyde/albumin, on the particle size, zeta potential, and entrapment efficiency was investigated. Results: The optimized formulation was spherical, homogenous of an average diameter (~181.86 nm) with a narrow size distribution, a zeta potential of −24.26 mV, and 76.37% as the EE%. The in vitro release of Repaglinide from nanoparticles showed a sustained release pattern for 168 h, with an initial burst release after 24 h, and was fitted to the Fickian diffusion mechanism. A molecular docking simulation showed a strong affinity to several protein targets, and the results were very promising, where Repaglinide gave a score of −7.70 Kcal/mol compared to Mevastatin (−6.71 Kcal/mol) and Atorvastatin (−8.36 Kcal/mol). On conducting in vivo studies on animal models, the optimized formula recorded a statistically significant decrease in the serum levels of total cholesterol, triglyceride, and low-density lipoproteins, with an increased high-density lipoprotein. Conclusions: This study suggested albumin nanoparticles as potential nanocarriers for the parenteral delivery of Repaglinide to ameliorate its antihyperlipidemic benefits, especially in diabetic patients. Full article
Show Figures

Figure 1

23 pages, 3549 KiB  
Article
Efavirenz Repurposing Challenges: A Novel Nanomicelle-Based Antiviral Therapy Against Mosquito-Borne Flaviviruses
by Sofía Maldonado, Pedro Fuentes, Ezequiel Bernabeu, Facundo Bertera, Javier Opezzo, Eduardo Lagomarsino, Hyun J. Lee, Fleming Martínez Rodríguez, Marcelo R. Choi, María Jimena Salgueiro, Elsa B. Damonte, Christian Höcht, Marcela A. Moretton, Claudia S. Sepúlveda and Diego A. Chiappetta
Pharmaceutics 2025, 17(2), 241; https://doi.org/10.3390/pharmaceutics17020241 - 12 Feb 2025
Viewed by 768
Abstract
Background/Objective: World Health Organization latest statistics state that 17% of infectious diseases are transmitted by vectors, causing more than 700,000 deaths each year. Particularly, dengue (DENV), Zika (ZIKV) and yellow fever (YFV) viral infections have generated international awareness due to their epidemic proportion [...] Read more.
Background/Objective: World Health Organization latest statistics state that 17% of infectious diseases are transmitted by vectors, causing more than 700,000 deaths each year. Particularly, dengue (DENV), Zika (ZIKV) and yellow fever (YFV) viral infections have generated international awareness due to their epidemic proportion and risks of international spread. In this framework, the repositioning strategy of Efavirenz (EFV) represents a key clinical feature to improve different antiviral therapies. Therefore, the development of Soluplus®-based nanomicelles (NMs) loaded with EFV (10 mg/mL) for optimized oral pharmacotherapy against ZIKV, DENV and YFV infections was investigated. Methods: EFV-NMs were obtained by an acetone diffusion technique. Micellar size and in vitro micellar interaction with mucin were assessed by dynamic light scattering. In vitro cytocompatibility was investigated in A549 and Vero cells and micellar in vitro antiviral activity against ZIKV, DENV and YFV was evaluated. In vivo oral bioavailability and histological studies were assessed in Wistar rats. Results: EFV encapsulation within Soluplus® NMs increased the drug’s apparent aqueous solubility up to 4803-fold with a unimodal micellar size distribution and a micellar size of ~90 nm at 25 and 37 °C. Micellar in vitro interaction with mucin was also assessed in a pH range of 1.2–7.5 and its storage micellar physicochemical stability at 4 °C was confirmed over 2 years. In vitro cytocompatibility assays in A549 and Vero cells confirmed that EFV micellar dispersions resulted in safe nanoformulations. Interestingly, EFV-loaded NMs exhibited significantly higher in vitro antiviral activity compared with EFV solution for all the tested flaviviruses. In addition, the selectivity index (SI) values reveal that EFV-loaded NMs exhibited considerably more biological efficacy compared to EFV solution in A549 and Vero cell lines and for each viral infection (SI > 10). Further, the drug pharmacokinetics parameters were enhanced after the oral administration of EFV-loaded NMs, being biocompatible by not causing damage in the gastrointestinal segments. Conclusions: Overall, our EFV nanoformulation highlighted its potential as a novel drug delivery platform for optimized ZIKV, DENV and YFV antiviral therapy. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

19 pages, 3640 KiB  
Review
Fundamental and Targeted Approaches in Pulmonary Arterial Hypertension Treatment
by Ji Su Park, Yong Hwan Choi, Ji-Young Min, Jaeseong Lee and Gayong Shim
Pharmaceutics 2025, 17(2), 224; https://doi.org/10.3390/pharmaceutics17020224 - 10 Feb 2025
Viewed by 1001
Abstract
Pulmonary arterial hypertension (PAH) is a chronic and progressive disease marked by vascular remodeling, inflammation, and smooth muscle cell proliferation, with limited treatment options focused primarily on symptom management. The multifactorial nature of PAH, encompassing genetic, autoimmune, and connective tissue contributions, complicates its [...] Read more.
Pulmonary arterial hypertension (PAH) is a chronic and progressive disease marked by vascular remodeling, inflammation, and smooth muscle cell proliferation, with limited treatment options focused primarily on symptom management. The multifactorial nature of PAH, encompassing genetic, autoimmune, and connective tissue contributions, complicates its treatment, while irreversible vascular changes, such as fibrosis, remain unaddressed by current therapies. Fundamental research on molecular pathways and targeted delivery systems has paved the way for advanced therapeutic strategies that aim to modify disease progression rather than merely manage symptoms. Nanoparticle-based drug delivery systems, leveraging controlled release and pulmonary targeting, offer a promising avenue to overcome these challenges. Such systems enable precise localization to pulmonary vasculature, minimize systemic side effects, and support emerging approaches like gene therapy and combination treatments. Future research should focus on refining nanoparticle formulations for personalized medicine, optimizing inhalation delivery systems, and integrating multi-target approaches to achieve curative outcomes in PAH. This review explores pathophysiology of PAH, current pharmacological strategies, and innovative nanoparticle-based therapies, emphasizing their potential to transform PAH treatment and address its underlying mechanisms. Full article
Show Figures

Figure 1

Back to TopTop