Natural and/or Synthetic-Based Nanostructured Systems as Drug Delivery Platforms

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Nanomedicine and Nanotechnology".

Deadline for manuscript submissions: closed (31 January 2025) | Viewed by 13026

Special Issue Editor


E-Mail Website
Guest Editor
Bio and Nanomaterials Laboratory, Drug Delivery and Controlled Release, Faculty of Health Sciences, Department of Microbiology, University of Talca, Talca 3460000, Chile
Interests: polymers; hydrogels; nanoparticles; advanced materials; drug delivery system; targeted drug delivery; controlled and sustained release; multiple drug resistance

Special Issue Information

Dear Colleagues,

Natural and synthetic-based nanostructured systems as drug delivery platforms, for instance polymeric nanoparticles, micelles, liposomes, hydrogels, etc., have received increasing attention, owing to their great potential to address several challenges in applications such as those in the biomedical field. The utilization of natural or/and synthetic materials and their structural functionalization has allowed the rational design of drug delivery platforms with better chemical and biological properties. These materials are very attractive due to their intrinsic hierarchical micro‐/nanostructures (confined dimensions), unique chemical/physical properties, tailorable functionalities, modifiable structures, biocompatibility, and tunable biodegradability. These systems are being broadly investigated mainly as vehicles or scaffolds of therapeutic agents that include drugs, proteins, genes, cells, and bioactive molecules applied to anticancer treatments, antimicrobial treatments (infections commonly associated with antimicrobial resistance), immunomodulate treatments, and regeneration of tissues, among others. In this sense, this Special Issue will cover all aspects related to recent original, review and cutting-edge research works focused on natural and/or synthetic-based nanostructured systems as drug delivery platforms applied in biomedical and pharmaceutic fields.

We look forward to receiving your contributions.

Dr. Esteban F. Durán-Lara
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • synthesis and characterization
  • rational design and modelling studies
  • stimuli-responsive hydrogels
  • nanocomposites
  • dendrimers
  • polymeric nanoparticles
  • micelles
  • liposomes
  • targeted or localized and controlled drug and gene delivery, etc.
  • tissue engineering
  • anticancer treatments
  • antimicrobial treatments
  • immunomodulate treatments

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

27 pages, 9670 KiB  
Article
Application of Microsponge Drug Platform to Enhance Methotrexate Administration in Rheumatoid Arthritis Therapy
by Noemi Fiaschini, Patrizia Nadia Hanieh, Daniela Ariaudo, Rita Cimino, Carlo Abbate, Elena Romano, Francesca Cavalieri, Mariano Venanzi, Valeria Palumbo, Manuel Scimeca, Roberta Bernardini, Maurizio Mattei, Alberto Migliore and Antonio Rinaldi
Pharmaceutics 2024, 16(12), 1593; https://doi.org/10.3390/pharmaceutics16121593 - 13 Dec 2024
Viewed by 1132
Abstract
Background/Objectives: This study aimed to develop a novel nanotechnological slow-release drug delivery platform based on hyaluronic acid Microsponge (MSP) for the subcutaneous administration of methotrexate (MTX) in the treatment of rheumatoid arthritis (RA). RA is a chronic autoimmune disease characterized by joint inflammation [...] Read more.
Background/Objectives: This study aimed to develop a novel nanotechnological slow-release drug delivery platform based on hyaluronic acid Microsponge (MSP) for the subcutaneous administration of methotrexate (MTX) in the treatment of rheumatoid arthritis (RA). RA is a chronic autoimmune disease characterized by joint inflammation and damage, while MTX is a common disease-modifying antirheumatic drug (DMARD), the conventional use of which is limited by adverse effects and the lack of release control. Methods: MSP were synthesized as freeze-dried powder to increase their stability and allow for a facile reconstitution prior to administration and precise MTX dosing. Results: A highly stable and rounded-shaped micrometric MSP, characterized by an open porosity inner structure, achieved both a high MTX loading efficiency and a slow release of MTX after injection. Our drug release assays indeed demonstrated a characteristic drug release profile consisting of a very limited burst release in the first few hours, followed by a slow release of MTX sustained for over a month. By means of a preclinical rat model of RA, the administration of MTX-loaded MSP proved to nearly double the therapeutic efficacy compared to sole MTX, according to a steep reduction in arthritic score compared to control groups. The preclinical study was replicated twice to confirm this improvement in performance and the safety profile of the MSP. Conclusions: This study suggests that the MSP drug delivery platform holds significant potential for clinical use in improving RA therapy by enabling the sustained slow release of MTX, thereby enhancing therapeutic outcomes and minimizing side effects associated with conventional burst-release drug administration. Full article
Show Figures

Figure 1

17 pages, 2330 KiB  
Article
A Tunable Glycosaminoglycan–Peptide Nanoparticle Platform for the Protection of Therapeutic Peptides
by Harkanwalpreet Sodhi and Alyssa Panitch
Pharmaceutics 2024, 16(2), 173; https://doi.org/10.3390/pharmaceutics16020173 - 25 Jan 2024
Cited by 1 | Viewed by 1613
Abstract
The popularity of Glycosaminoglycans (GAGs) in drug delivery systems has grown as their innate ability to sequester and release charged molecules makes them adept in the controlled release of therapeutics. However, peptide therapeutics have been relegated to synthetic, polymeric systems, despite their high [...] Read more.
The popularity of Glycosaminoglycans (GAGs) in drug delivery systems has grown as their innate ability to sequester and release charged molecules makes them adept in the controlled release of therapeutics. However, peptide therapeutics have been relegated to synthetic, polymeric systems, despite their high specificity and efficacy as therapeutics because they are rapidly degraded in vivo when not encapsulated. We present a GAG-based nanoparticle system for the easy encapsulation of cationic peptides, which offers control over particle diameter, peptide release behavior, and swelling behavior, as well as protection from proteolytic degradation, using a singular, organic polymer and no covalent linkages. These nanoparticles can encapsulate cargo with a particle diameter range spanning 130–220 nm and can be tuned to release cargo over a pH range of 4.5 to neutral through the modulation of the degree of sulfation and the molecular weight of the GAG. This particle system also confers better in vitro performance than the unencapsulated peptide via protection from enzymatic degradation. This method provides a facile way to protect therapeutic peptides via the inclusion of the presented binding sequence and can likely be expanded to larger, more diverse cargo as well, abrogating the complexity of previously demonstrated systems while offering broader tunability. Full article
Show Figures

Figure 1

Review

Jump to: Research

34 pages, 3155 KiB  
Review
Hydrogel-Based Microneedle as a Drug Delivery System
by David Filho, Marcelo Guerrero, Manuel Pariguana, Adolfo Marican and Esteban F. Durán-Lara
Pharmaceutics 2023, 15(10), 2444; https://doi.org/10.3390/pharmaceutics15102444 - 10 Oct 2023
Cited by 24 | Viewed by 5061
Abstract
The skin is considered the largest and most accessible organ in the human body, and allows the use of noninvasive and efficient strategies for drug administration, such as the transdermal drug delivery system (TDDS). TDDSs are systems or patches, with the ability and [...] Read more.
The skin is considered the largest and most accessible organ in the human body, and allows the use of noninvasive and efficient strategies for drug administration, such as the transdermal drug delivery system (TDDS). TDDSs are systems or patches, with the ability and purpose to deliver effective and therapeutic doses of drugs through the skin. Regarding the specific interaction between hydrogels (HG) and microneedles (MNs), we seek to find out how this combination would be applied in the context of drug delivery, and we detail some possible advantages of the methods used. Depending on the components belonging to the HG matrix, we can obtain some essential characteristics that make the combination of hydrogels–microneedles (HG–MNs) very advantageous, such as the response to external stimuli, among others. Based on multiple characteristics provided by HGMNs that are depicted in this work, it is possible to obtain unique properties that include controlled, sustained, and localized drug release, as well as the possibility of a synergistic association between the components of the formulation and the combination of more than one bioactive component. In conclusion, a system based on HG–MNs can offer many advantages in the biomedical field, bringing to light a new technological and safe system for improving the pharmacokinetics and pharmacodynamics of drugs and new treatment perspectives. Full article
Show Figures

Graphical abstract

44 pages, 3907 KiB  
Review
Recent Advances in the Biomedical Applications of Functionalized Nanogels
by Kannan Badri Narayanan, Rakesh Bhaskar and Sung Soo Han
Pharmaceutics 2022, 14(12), 2832; https://doi.org/10.3390/pharmaceutics14122832 - 16 Dec 2022
Cited by 19 | Viewed by 4448
Abstract
Nanomaterials have been extensively used in several applications in the past few decades related to biomedicine and healthcare. Among them, nanogels (NGs) have emerged as an important nanoplatform with the properties of both hydrogels and nanoparticles for the controlled/sustained delivery of chemo drugs, [...] Read more.
Nanomaterials have been extensively used in several applications in the past few decades related to biomedicine and healthcare. Among them, nanogels (NGs) have emerged as an important nanoplatform with the properties of both hydrogels and nanoparticles for the controlled/sustained delivery of chemo drugs, nucleic acids, or other bioactive molecules for therapeutic or diagnostic purposes. In the recent past, significant research efforts have been invested in synthesizing NGs through various synthetic methodologies such as free radical polymerization, reversible addition-fragmentation chain-transfer method (RAFT) and atom transfer radical polymerization (ATRP), as well as emulsion techniques. With further polymeric functionalizations using activated esters, thiol–ene/yne processes, imines/oximes formation, cycloadditions, nucleophilic addition reactions of isocyanates, ring-opening, and multicomponent reactions were used to obtain functionalized NGs for targeted delivery of drug and other compounds. NGs are particularly intriguing for use in the areas of diagnosis, analytics, and biomedicine due to their nanodimensionality, material characteristics, physiological stability, tunable multi-functionality, and biocompatibility. Numerous NGs with a wide range of functionalities and various external/internal stimuli-responsive modalities have been possible with novel synthetic reliable methodologies. Such continuous development of innovative, intelligent materials with novel characteristics is crucial for nanomedicine for next-generation biomedical applications. This paper reviews the synthesis and various functionalization strategies of NGs with a focus on the recent advances in different biomedical applications of these surface modified/functionalized single-/dual-/multi-responsive NGs, with various active targeting moieties, in the fields of cancer theranostics, immunotherapy, antimicrobial/antiviral, antigen presentation for the vaccine, sensing, wound healing, thrombolysis, tissue engineering, and regenerative medicine. Full article
Show Figures

Figure 1

Back to TopTop