Progress in Photoactive Biomaterial-Based Synergistic Combination Phototherapy

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Drug Targeting and Design".

Deadline for manuscript submissions: closed (20 February 2025) | Viewed by 3257

Special Issue Editor


E-Mail Website
Guest Editor
Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anápolis 75083-515, GO, Brazil
Interests: photodynamic therapy; photosensitizers; biomaterials; catalysis; microbiological control; green chemistry

Special Issue Information

Dear Colleagues,

Photothermal therapy (PTT) and photodynamic therapy (PDT) utilize photosensitive materials with high photothermal conversion efficiency or reactive oxygen species (ROS) production rate, achieving targeted treatment of diseases (including infections and cancer) upon light exposure. These photonics strategies have the advantages of a short treatment time, significant curative effect and few side effects. In addition, they can promote the oxidation of microorganisms' biomolecules, ultimately leading to their inactivation. With the development of phototherapy, various biomaterials are used as photosensitive drugs or effective drug carriers to improve the effect of phototherapy.

We extend an invitation for the contribution to our upcoming Special Issue of Pharmaceutics, which focuses on photoactive biomaterial-mediated photothermal therapy and photodynamic therapy. These biomaterials possess the unique ability to interact with light, thereby engendering pharmaceutical properties against cancer cells, disease cells and microorganisms. In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following: photoactive materials, phototherapy, photodynamic therapy and photothermal therapy.

We look forward to receiving your contributions.

Dr. Lucas D. Dias
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • photoactive biomaterials
  • targeted drug therapy
  • phototherapy
  • photodynamic therapy
  • biopharmaceutics
  • cancer therapy
  • antimicrobial therapy

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

33 pages, 8035 KiB  
Article
Curcumin Microcapsule Formulations for Prolong Persistence in the Photodynamic Inactivation of Aedes aegypti Larvae
by Matheus Garbuio, Larissa Marila de Souza, Lucas Danilo Dias, Jean Carlos Ferreira Machado, Natalia Mayumi Inada, Hernane da Silva Barud, Edgar Aparecido Sanches, Francisco Eduardo Gontijo Guimarães, Ana Paula da Silva, Alessandra Ramos Lima and Vanderlei Salvador Bagnato
Pharmaceutics 2025, 17(4), 496; https://doi.org/10.3390/pharmaceutics17040496 - 9 Apr 2025
Viewed by 427
Abstract
Background: Viral diseases including dengue, zika, chikungunya, and yellow fever remain a significant public health challenge, primarily due to the increasing resistance of these vectors, the Aedes aegypti mosquito, to conventional control methods. Objectives: Herein, a microencapsulated curcumin formulation was developed and characterized [...] Read more.
Background: Viral diseases including dengue, zika, chikungunya, and yellow fever remain a significant public health challenge, primarily due to the increasing resistance of these vectors, the Aedes aegypti mosquito, to conventional control methods. Objectives: Herein, a microencapsulated curcumin formulation was developed and characterized using spray-drying technology, with D-mannitol and starch as encapsulating agents. After microencapsulation, photolarvicidal tablet formulations (Formulated Curcumin Tablets—FCT) were prepared, varying the proportions of starch and pectin: FCT1 (60% starch), FCT2 (35% pectin and 25% starch), and FCT3 (42.5% pectin and 17.5% starch), while maintaining 10% curcumin and 30% D-mannitol in all formulations. The main goal was to enhance the stability and efficacy of curcumin as a photolarvicidal agent. Methods: The formulation was characterized by UV-Vis spectroscopy, confocal microscopy, thermal analysis (TG and DSC), scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), and photodegradation assays under fluorescent light. Results: The photodynamic inactivation (PDI) of Ae. aegypti larvae was evaluated under white, fluorescent light exposure, and the formulation exhibited a significantly enhanced larvicidal activity compared to free curcumin, with a 57-fold reduction in LC50 (LC50-24h = 0.27 mg/L). Additionally, the most effective formulation, FCT2, maintained its residual activity for 27 days, reinforcing that curcumin microencapsulation, combined with PDI, can extend vector control. Release studies under different pH conditions confirmed a controlled release mechanism, favoring environmental stability. Conclusions: The results indicate that microencapsulated curcumin has great potential as a sustainable photoinsecticidal agent, offering stability, efficacy, and a promising alternative for managing Ae. aegypti larval populations. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

40 pages, 1184 KiB  
Review
Enhancing Cancer Treatment Through Combined Approaches: Photodynamic Therapy in Concert with Other Modalities
by Gyeong Hong and Ji-Eun Chang
Pharmaceutics 2024, 16(11), 1420; https://doi.org/10.3390/pharmaceutics16111420 - 6 Nov 2024
Cited by 2 | Viewed by 2301
Abstract
This review explores the role of photodynamic therapy (PDT) as an adjunctive treatment for cancers, with a focus on its potential to enhance the effects of established therapies like chemotherapy, surgery, and radiotherapy. Given the limitations of conventional cancer treatments, PDT’s ability to [...] Read more.
This review explores the role of photodynamic therapy (PDT) as an adjunctive treatment for cancers, with a focus on its potential to enhance the effects of established therapies like chemotherapy, surgery, and radiotherapy. Given the limitations of conventional cancer treatments, PDT’s ability to improve therapeutic outcomes through combination strategies is examined. In cancers such as lung, breast, cholangiocarcinoma, and cervical, PDT shows promise in enhancing response rates, reducing recurrence, and minimizing adverse effects when used alongside standard modalities. This study highlights current findings on PDT’s mechanisms in complementing chemotherapy, augmenting surgical precision, and enhancing radiotherapeutic effects, thus offering a multi-faceted approach to cancer treatment. Additionally, insights into the clinical application of PDT in these cancers emphasize its potential for reducing tumor resistance and supporting more effective, personalized care. By providing an overview of PDT’s synergistic applications across diverse cancer types, this review underscores its emerging significance in oncology as a tool to address traditional treatment limitations. Ultimately, this review aims to inform and inspire researchers and clinicians seeking to refine and innovate cancer therapy strategies through PDT integration, contributing to the advancement of more effective, synergistic cancer treatments. Full article
Show Figures

Figure 1

Back to TopTop