Carbohydrate-Based Carriers for Drug Delivery, 2nd Edition

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Drug Delivery and Controlled Release".

Deadline for manuscript submissions: 10 October 2025 | Viewed by 4220

Special Issue Editors


E-Mail Website
Guest Editor
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 Universitaty Street, 700115 Iași, Romania
Interests: drug delivery; anti-inflammatory and analgesic effects; cyclodextrin inclusion complexes; ibuprofen derivatives; chemical synthesis; ionic liquids; polymers
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 Universitaty Street, 700115 Iași, Romania
Interests: organic synthesis; drug delivery systems (liposomes, niosomes, chitosan nanoparticles, nanofiber, nanofibers, films, sponges); molecular docking; structure-based drug design strategies; antioxidant activity; anti-inflammatory activity; diabetes mellitus type 2
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Carbohydrates, or saccharides, are among the most common molecules found in nature and have biological and structural features that allow for their use in drug delivery systems as carriers. The main classes of these molecules include monosaccharides, oligosaccharides and polisaccharides, which have shown great potential for overcoming the limitations of drugs and navigating biological barriers to achieve targeted delivery. Chitosan, cyclodextrin, alginate, gellan, xanthan gum, cellulose, dextran, pullulan, etc., are some of the most well-known carbohydrate carriers in drug delivery. By protecting the structural integrity of the drug and proving hydrophilic properties, these carriers can modulate undesirable biological properties in drugs as well as their solubility and release profile.

Carbohydrates can improve drug delivery due to their ability to selectively bind to protein receptors, thus increasing drug targeting. They also have the advantages of nontoxicity, biodegradability, good biocompatibility and increased encapsulation stability.

In recent years, carbohydrate-based drug delivery systems have been developed and improved, with their use being of great interest to researchers for the treatment of inflammation, cancer, infections, chronic wounds, diabetes mellitus and other diseases.

This Special Issue will focus on current advances in carbohydrate-based carriers and their applications in drug delivery.

Dr. Ioana Mirela Vasincu
Prof. Dr. Lenuta Profire
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanomaterials
  • drug delivery
  • release profile
  • polisaccharides
  • oligosaccharides
  • inclusion complexes
  • targeted therapy

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 9815 KB  
Article
Pinostilbene as a Potential Cytotoxic Agent in Cancer Cell Lines: Improvement of Solubility and Stability by Cyclodextrin Encapsulation
by Irene Conesa, Silvia Navarro-Orcajada, Francisco José Vidal-Sánchez, Elena Torralba-Antón, Marta Carrión-Espinosa, Adrián Matencio and José Manuel López-Nicolás
Pharmaceutics 2025, 17(9), 1219; https://doi.org/10.3390/pharmaceutics17091219 - 19 Sep 2025
Viewed by 299
Abstract
Background/Objectives: Pinostilbene is a naturally occurring methoxylated stilbene with many beneficial health properties, including antioxidant, antimicrobial and neuroprotective activities. This stilbene has also been shown to possess anticancer or cytotoxic activity in some cancers. As in the case of other stilbenes, pinostilbene is [...] Read more.
Background/Objectives: Pinostilbene is a naturally occurring methoxylated stilbene with many beneficial health properties, including antioxidant, antimicrobial and neuroprotective activities. This stilbene has also been shown to possess anticancer or cytotoxic activity in some cancers. As in the case of other stilbenes, pinostilbene is very labile, degrades rapidly under stress conditions and is poorly water-soluble, which poses a drawback to its use as a drug. This work aims to provide further insights into its cytotoxicity activity in a colon cancer cell line and to overcome its physicochemical limitations by encapsulating the molecule in cyclodextrins. Methods: The anticancer activity was evaluated in vitro in Caco-2 colorectal cells using the neutral red assay. Subsequently, a screening of cyclodextrins was carried out to determine the one with the highest encapsulation constant, as well as the encapsulation stoichiometry, using fluorescence spectroscopy and molecular docking predictions. The formation of the inclusion complexes was checked by differential scanning calorimetry and scanning electron microscopy. The protective effect of cyclodextrins on pinostilbene release was monitored through spectrophotometric measurements over time. Results: Pinostilbene showed in vitro cytotoxicity activity in Caco-2 colorectal cells by the neutral red assay. This study revealed that the cyclodextrin with the highest encapsulation constant was the hydroxypropyl-β-cyclodextrin (KF = 10,074.45 ± 503.72 M−1), and the encapsulation stoichiometry was 1:1. DSC and SEM assays confirmed the formation of these inclusion complexes. Cyclodextrins were able to satisfactorily reduce pinostilbene degradation from 31% to less than 15% after 3 months, as well as increase its water solubility up to 10 times and enhance its release as a function of the pH of the medium. Conclusions: Pinostilbene is a promising drug candidate with strong in vitro antiproliferative activity. Many of its physicochemical limitations can be overcome with cyclodextrins, which opens the door to its future use in the pharmaceutical and food industries. Full article
(This article belongs to the Special Issue Carbohydrate-Based Carriers for Drug Delivery, 2nd Edition)
Show Figures

Figure 1

23 pages, 4258 KB  
Article
Box-Behnken Design Assisted Optimization and Characterization of Chitosan Film for Simultaneous Topical Delivery of Ascorbic Acid and Metronidazole
by Bilawal Khan, Pakorn Kraisit, Supaporn Santhan and Namon Hirun
Pharmaceutics 2025, 17(5), 562; https://doi.org/10.3390/pharmaceutics17050562 - 24 Apr 2025
Viewed by 1067
Abstract
Background/Objectives: The objective of this study was to develop chitosan films plasticized with glycerol for the topical delivery of ascorbic acid and metronidazole. Methods: The films were prepared using a casting technique in which an aqueous ascorbic acid solution served as the solvent, [...] Read more.
Background/Objectives: The objective of this study was to develop chitosan films plasticized with glycerol for the topical delivery of ascorbic acid and metronidazole. Methods: The films were prepared using a casting technique in which an aqueous ascorbic acid solution served as the solvent, eliminating the need for additional mineral or organic acids. The influence of compositions on film characteristics—specifically mechanical properties and surface pH—was examined, and an optimized formulation was identified using a Box-Behnken design-response surface methodology. Relevant characterization techniques and in vitro evaluations were conducted to assess the properties and performance of the optimized film formulation. Results: Results showed that both glycerol and ascorbic acid contributed to the plasticization of the films. Fourier-transform infrared spectroscopic analysis of the optimized film revealed the formation of chitosan ascorbate and interactions between chitosan and glycerol. In addition, the thermogram and powder X-ray diffractogram demonstrated alterations in the thermal behavior and crystallinity of the embedded bioactive compounds. The developed film possessed the preferred swelling capacity. Moreover, in vitro release studies revealed a co-release pattern, delivering both bioactive compounds simultaneously. Conclusions: These findings suggest that the prepared chitosan-based film could serve as a promising platform for topical delivery. Full article
(This article belongs to the Special Issue Carbohydrate-Based Carriers for Drug Delivery, 2nd Edition)
Show Figures

Figure 1

Review

Jump to: Research

42 pages, 3161 KB  
Review
Cationic Cyclodextrin-Based Carriers for Drug and Nucleic Acid Delivery
by Adila Nazli, Milo Malanga, Tamás Sohajda and Szabolcs Béni
Pharmaceutics 2025, 17(1), 81; https://doi.org/10.3390/pharmaceutics17010081 - 9 Jan 2025
Cited by 3 | Viewed by 2275
Abstract
Cyclodextrins can serve as carriers for various payloads, utilizing their capacity to form unique host–guest inclusion complexes within their cavity and their versatile surface functionalization. Recently, cationic cyclodextrins have gained considerable attention, as they can improve drug permeability across negatively charged cell membranes [...] Read more.
Cyclodextrins can serve as carriers for various payloads, utilizing their capacity to form unique host–guest inclusion complexes within their cavity and their versatile surface functionalization. Recently, cationic cyclodextrins have gained considerable attention, as they can improve drug permeability across negatively charged cell membranes and efficiently condense negatively charged nucleic acid due to electrostatic interactions. This review focuses on state-of-the-art and recent advances in the construction of cationic cyclodextrin-based delivery systems. First, we identified different cationic moieties that are commonly employed in the design of cyclodextrins with enhanced complexation ability. Subsequently, a wide range of cationic cyclodextrin-based drug delivery systems were analyzed with emphasis on chemistry, drug release profiles, and therapeutic outcomes. The evaluation of the delivery platforms was also based on the four major types of drugs, such as anticancer, anti-inflammatory, antibacterial, and antidiabetic agents. The delivery systems for nucleic acids were also summarized while focusing on their condensation ability, transfection efficiency, and biocompatibility in comparison to commercially available vectors such as PEI 25 kDa and lipofectamine 2000. Furthermore, we highlighted the potential of cationic cyclodextrins in constructing multimodal delivery systems for the simultaneous encapsulation of both drugs and nucleic acids. Finally, the challenges and limitations associated with cationic cyclodextrin setups were discussed. Full article
(This article belongs to the Special Issue Carbohydrate-Based Carriers for Drug Delivery, 2nd Edition)
Show Figures

Figure 1

Back to TopTop