Special Issue "Zebrafish as a Powerful Tool for Drug Discovery 2021"

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Medicinal Chemistry".

Deadline for manuscript submissions: 20 November 2020.

Special Issue Editors

Prof. Yuhei Nishimura
Website
Guest Editor
Mie University Graduate School of Medicine, Tsu, Japan
Interests: pharmacology; toxicology; integrative biology; zebrafish
Special Issues and Collections in MDPI journals
Dr. Martin Distel
Website
Guest Editor
St. Anna Kinderkrebsforschung e.V., CHILDREN'S CANCER RESEARCH INSTITUTE, Innovative Cancer Models, Zimmermannplatz 10, 1090 Vienna, Austria
Interests: cancer modeling in zebrafish; xenografts; compound screening

Special Issue Information

Dear Colleagues,

Our scientific and technological knowledge has grown tremendously. The number of drugs approved relative to the costs, however, has continuously decreased. Various approaches have emerged to increase the efficacy of research and development of new drugs. It has been widely recognized that zebrafish can be powerful tools in the drug discovery field, given advantages such as high fecundity, ease of drug administration, similarity to mammals in terms of structures and functions of various tissues, and suitability for the 3Rs (replacement, reduction, and refinement). The process of drug development consists of multiple steps, including the initial discovery of drugs that can be used as therapeutics, preclinical, and clinical validation of their efficacy and toxicity, and the review, approval, and post-marketing surveillance of drugs by regulatory authorities. Using genome-editing technologies, genetic abnormalities observed in human diseases can be mimicked in zebrafish to make a disease model. The phenotypes of the disease model zebrafish can be used to identify novel compounds and/or new indications for old drugs (i.e., drug repositioning) that ameliorate the abnormal phenotypes of the zebrafish disease models. The toxicity of compounds can also be assessed using zebrafish. The International Council for Harmonization has considered including developmental toxicity testing using zebrafish in their guidelines. Zebrafish can also be integrated to validate the efficacy and toxicities of compounds that are identified as novel therapeutics by other approaches, such as computational drug discovery using big data. In this Special Issue, we invite authors to contribute articles focusing on zebrafish as powerful tools for drug discovery. This research topic will maximize the knowledge of the usefulness of zebrafish in drug development, with hopes of increasing the efficiency of the process and identifying drugs that can be used to prevent and/or treat diseases for which effective medications are currently lacking.

Prof. Yuhei Nishimura
Dr. Martin Distel
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • zebrafish
  • disease model
  • phenotype
  • drug repositioning
  • computational biology
  • toxicology

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Rapid In Vivo Validation of HDAC Inhibitor-Based Treatments in Neuroblastoma Zebrafish Xenografts
Pharmaceuticals 2020, 13(11), 345; https://doi.org/10.3390/ph13110345 - 27 Oct 2020
Abstract
The survival rate among children with relapsed neuroblastomas continues to be poor, and thus new therapeutic approaches identified by reliable preclinical drug testing models are urgently needed. Zebrafish are a powerful vertebrate model in preclinical cancer research. Here, we describe a zebrafish neuroblastoma [...] Read more.
The survival rate among children with relapsed neuroblastomas continues to be poor, and thus new therapeutic approaches identified by reliable preclinical drug testing models are urgently needed. Zebrafish are a powerful vertebrate model in preclinical cancer research. Here, we describe a zebrafish neuroblastoma yolk sac model to evaluate efficacy and toxicity of histone deacetylase (HDAC) inhibitor treatments. Larvae were engrafted with fluorescently labeled, genetically diverse, established cell lines and short-term cultures of patient-derived primary cells. Engrafted tumors progressed locally and disseminated remotely in an intact environment. Combination treatments involving the standard chemotherapy doxorubicin and HDAC inhibitors substantially reduced tumor volume, induced tumor cell death, and inhibited tumor cell dissemination to the tail region. Hence, this model allows for fast, cost-efficient, and reliable in vivo evaluation of toxicity and response of the primary and metastatic tumor sites to drug combinations. Full article
(This article belongs to the Special Issue Zebrafish as a Powerful Tool for Drug Discovery 2021)
Show Figures

Figure 1

Back to TopTop