Special Issue "Photodynamic Therapy 2021"

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Pharmaceutical Technology".

Deadline for manuscript submissions: 31 March 2021.

Special Issue Editor

Prof. Dr. Serge Mordon
Website1 Website2
Guest Editor
Laser Assisted Therapies and Immunotherapies for Oncology
Interests: photodynamic therapy; cancer; clinical evaluation; photosensitizer; dosimetry; Fluorescencer; Dosimetry; Fluorescence
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

Photodynamic therapy (PDT) is a light-based photochemistry process. The illumination of a photoactivatable molecule (also called photosensitizer) with visible or near infrared light produces reactive oxygen toxic species to destroy tumor cells. This treatment modality leads to highly targeted actions, because reactive oxygen species are produced only where light is applied. Light is not harmful, nor is the photoactivable molecule. Only the combination of three elements (photosensitizer, oxygen, and light) is required to induce photo-oxidation reactions. PDT has proven to be a promising modality in many medical applications including cutaneous condition, infectious diseases, and various cancers at different stages.

Pharmaceuticals is an online open access journal covering drug-related sciences. It is indexed by PubMed and SCIE. It has *Impact Factor* of 4.286, entering the ranking in the category ‘Pharmacology & Pharmacy’placed 49 out of 270 (Q1). The journal Pharmaceuticals invites both reviews and original articles shedding light on the challenges and opportunities of the development of innovative solutions for photodynamic therapy. Topics include selective photoactivatable molecules targeting receptors overexpressed into tumor membranes and/or on neovessels; molecules exhibiting red shifted absorption for better penetration of light into tissues; photobactericidal agents; theranostics; and photodiagnosis. Reviews and original articles dealing with PDT-associated immunotherapy, new radiation systems such as X-rays, or new devices allowing for better illumination and/or dosimetry are also welcome.

Prof. Dr. Serge Mordon
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • photodynamic therapy
  • photosensitizers
  • photodiagnosis
  • cells
  • receptors
  • antimicrobial
  • photodynamic therapy
  • fluorescence
  • X-rays
  • immunomodulation
  • light
  • dosimetry

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Antimicrobial Capacity and Surface Alterations Using Photodynamic Therapy and Light Activated Disinfection on Polymer-Infiltrated Ceramic Material Contaminated with Periodontal Bacteria
Pharmaceuticals 2020, 13(11), 350; https://doi.org/10.3390/ph13110350 - 29 Oct 2020
Abstract
This study determined the antimicrobial efficiency of light-activated disinfection (LAD) and photodynamic therapy (PDT) on polymer-infiltrated ceramic network (PICN) material contaminated with three periodontal bacteria and explored if PDT and LAD cause PICN surface alterations. Sixty PICN discs were contaminated with Tannerella forsythia [...] Read more.
This study determined the antimicrobial efficiency of light-activated disinfection (LAD) and photodynamic therapy (PDT) on polymer-infiltrated ceramic network (PICN) material contaminated with three periodontal bacteria and explored if PDT and LAD cause PICN surface alterations. Sixty PICN discs were contaminated with Tannerella forsythia, Porphyromonas gingivalis, and Treponema denticola and randomly divided into five groups (n = 12 samples/each) according to the treatment groups: Group PDT—PDT (630 ± 10 nm diode laser) with methylene blue; Group DL—808 nm diode laser in contact mode without photosensitizer; Group MB–methylene blue without light application; Group CHX—0.12% chlorhexidine digluconate solution and; Group NT—no treatment. Each disc was then placed in tubes containing phosphate buffered saline (PBS) and vortexed for 30 s to remove the remaining bacteria from the discs. A total of 10× serial dilutions were performed followed by plating of 30 μL of suspension on Brucella agar plates. The colony forming units (CFU) were calculated after 72 h. PICN discs with the attached biofilms were used for confocal microscopy investigation for live/dead bacterial viability. A random single sample from each group was selected to study the bacterial adherence and topographical alterations on PICN discs under scanning electron microscope (SEM). The PDT group showed higher reduction for each bacterial species and total counts of bacteria assessed followed by the DL group (p < 0.05). When compared with MB group, the two laser groups were significantly superior (p < 0.05). The MB group did not show significant differences for any bacteria when compared to NT. The bacteria with the CHX group and DL groups appeared dead with few areas of surviving green stained bacteria. The PDT group showed the highest dead cell count (p < 0.05). PDT and DL groups indicate no significant changes on the surface compared to the sterile PICN discs on visual assessment. Photodynamic therapy produced superior periodontal bacteria reduction over the surface of PICN surface. PDT group showed higher reduction for each bacterial species and total counts of bacteria assessed followed by the DL group. Both PDT and DL treatment strategies are effective without producing surface alterations on PICN. Full article
(This article belongs to the Special Issue Photodynamic Therapy 2021)
Show Figures

Graphical abstract

Open AccessArticle
Novel Photosensitizer β-Mannose-Conjugated Chlorin e6 as a Potent Anticancer Agent for Human Glioblastoma U251 Cells
Pharmaceuticals 2020, 13(10), 316; https://doi.org/10.3390/ph13100316 - 16 Oct 2020
Abstract
A photosensitizer is a molecular drug for photodynamic diagnosis and photodynamic therapy (PDT) against cancer. Many studies have developed photosensitizers, but improvements in their cost, efficacy, and side effects are needed for better PDT of patients. In the present study, we developed a [...] Read more.
A photosensitizer is a molecular drug for photodynamic diagnosis and photodynamic therapy (PDT) against cancer. Many studies have developed photosensitizers, but improvements in their cost, efficacy, and side effects are needed for better PDT of patients. In the present study, we developed a novel photosensitizer β-mannose-conjugated chlorin e6 (β-M-Ce6) and investigated its PDT effects in human glioblastoma U251 cells. U251 cells were incubated with β-M-Ce6, followed by laser irradiation. Cell viability was determined using the Cell Counting Kit-8 assay. The PDT effects of β-M-Ce6 were compared with those of talaporfin sodium (TS) and our previously reported photosensitizer β-glucose-conjugated chlorin e6 (β-G-Ce6). Cellular uptake of each photosensitizer and subcellular distribution were analyzed by fluorescence microscopy. β-M-Ce6 showed 1000× more potent PDT effects than those of TS, and these were similar to those of β-G-Ce6. β-M-Ce6 accumulation in U251 cells was much faster than TS accumulation and distributed to several organelles such as the Golgi apparatus, mitochondria, and lysosomes. This rapid cellular uptake was inhibited by low temperature, which suggested that β-M-Ce6 uptake uses biological machinery. β-M-Ce6 showed potent PDT anti-cancer effects compared with clinically approved TS, which is a possible candidate as a next generation photosensitizer in cancer therapy. Full article
(This article belongs to the Special Issue Photodynamic Therapy 2021)
Show Figures

Figure 1

Back to TopTop