Advances in Ocular Pharmacology

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Pharmacology".

Deadline for manuscript submissions: closed (28 February 2022) | Viewed by 84917

Special Issue Editors


E-Mail Website
Guest Editor
2nd Department of Ophthalmology, Aristotle University of Thessaloniki, Thessaloniki, Greece
Interests: cataract; epigenetics; nanotechnology

E-Mail Website
Guest Editor
Department of Ophthalmology, General Hospital of Katerini, Katerini, Greece
Interests: medical research; glaucoma; cataract; cornea
Special Issues, Collections and Topics in MDPI journals

E-Mail
Guest Editor
Pediatric Ophthalmology and Strabismus Fellow, King's College Hospital, Great Ormond Street Hospital, London, UK
Interests: pediatric ophthalmology ; strabismus; nanotechnology

Special Issue Information

Dear Colleagues,

Ocular pharmacology is a field that has grown rapidly during the last few years, as we have witnessed several new and promising treatments becoming available for eye disorders that are not amenable to surgery, including age-related macular degeneration (AMD), branch retinal vein occlusion (BRVO), central retinal vein occlusion (CRVO), diabetic macular edema (DME), retinitis pigmentosa (RP), and virus infections.

The eye is an organ protected from environmental stress and obnoxious substances by various barriers, a fact that necessitates innovation in the administration route of pharmaceutical substances. Recently several innovative technologies have been developed to directly reach the vitreous chamber or the retina. Those include intravitreal injections of anti-vascular endothelial growth factor and direct intravitreal implants, using biodegradable or non-biodegradable polymer technology.

This Special Issue will summarize the state-of-the-art, and the latest findings published in the ocular pharmacology field, as well as to provide directions for future research.

Prof. Ioannis Tsinopoulos
Dr. Ioanna Mylona
Dr. Lampros Lamprogiannis
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ocular pharmacology
  • pharmacodynamics
  • ophthalmology
  • drug delivery systems

Related Special Issue

Published Papers (24 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 3922 KiB  
Article
Beneficial Effects of Polydeoxyribonucleotide (PDRN) in an In Vitro Model of Fuchs Endothelial Corneal Dystrophy
by Ida Ceravolo, Federica Mannino, Natasha Irrera, Letteria Minutoli, Vincenzo Arcoraci, Domenica Altavilla, Gian Maria Cavallini, Salvatore Guarini, Francesco Squadrito and Giovanni Pallio
Pharmaceuticals 2022, 15(4), 447; https://doi.org/10.3390/ph15040447 - 03 Apr 2022
Cited by 5 | Viewed by 2514
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a bilateral, hereditary syndrome characterized by progressive irreversible injury in the corneal endothelium; it is the most frequent cause for corneal transplantation worldwide. Oxidative stress induces the apoptosis of corneal endothelial cells (CECs), and has a crucial [...] Read more.
Fuchs endothelial corneal dystrophy (FECD) is a bilateral, hereditary syndrome characterized by progressive irreversible injury in the corneal endothelium; it is the most frequent cause for corneal transplantation worldwide. Oxidative stress induces the apoptosis of corneal endothelial cells (CECs), and has a crucial function in FECD pathogenesis. The stimulation of the adenosine A2A receptor (A2Ar) inhibits oxidative stress, reduces inflammation and modulates apoptosis. Polydeoxyribonucleotide (PDRN) is a registered drug that acts through adenosine A2Ar. Thus, the goal of this study was to assess the effect of PDRN in an in vitro FECD model. Human Corneal Endothelial Cells (IHCE) were challenged with H2O2 (200 μM) alone or in combination with PDRN (100 μg/mL), PDRN plus ZM241385 (1 μM) as an A2Ar antagonist, and CGS21680 (1 μM) as a well-known A2Ar agonist. H2O2 reduced the cells’ viability and increased the expression of the pro-inflammatory markers NF-κB, IL-6, IL-1β, and TNF-α; by contrast, it decreased the expression of the anti-inflammatory IL-10. Moreover, the pro-apoptotic genes Bax, Caspase-3 and Caspase-8 were concurrently upregulated with a decrease of Bcl-2 expression. PDRN and CGS21680 reverted the negative effects of H2O2. Co-incubation with ZM241385 abolished the effects of PDRN, indicating that A2Ar is involved in the mode of action of PDRN. These data suggest that PDRN defends IHCE cells against H2O2-induced damage, potentially as a result of its antioxidant, anti-inflammatory and antiapoptotic properties, suggesting that PDRN could be used as an FECD therapy. Full article
(This article belongs to the Special Issue Advances in Ocular Pharmacology)
Show Figures

Figure 1

13 pages, 1435 KiB  
Article
Topical Ocular Administration of Progesterone Decreases Photoreceptor Cell Death in Retinal Degeneration Slow (rds) Mice
by Adrián M. Alambiaga-Caravaca, Antolín Cantó, Vicent Rodilla, María Miranda and Alicia López-Castellano
Pharmaceuticals 2022, 15(3), 328; https://doi.org/10.3390/ph15030328 - 09 Mar 2022
Cited by 3 | Viewed by 2398
Abstract
Retinitis pigmentosa (RP) is an inherited eye disorder which triggers a cascade of retinal disorders leading to photoreceptor cell death and for which there is currently no effective treatment. The purpose of this research was to study whether ocular administration of a solution [...] Read more.
Retinitis pigmentosa (RP) is an inherited eye disorder which triggers a cascade of retinal disorders leading to photoreceptor cell death and for which there is currently no effective treatment. The purpose of this research was to study whether ocular administration of a solution of progesterone (PG) in β-cyclodextrins (CD) could delay photoreceptor cell death and counteract the gliosis process in an animal model of RP (rds mice). The possible effect of PG reaching the contralateral eye through the circulatory system was also evaluated. Finally, this research discusses and evaluates the diffusion of the drug from possible topical formulations for ocular administration of PG. A group of rds mice received one drop of a solution of PG in CD every 12 h for 10 days to the left eye, while the right eye was left untreated. Another group of rds mice (control) received the drug vehicle (PBS) on the left eye and, again, the right eye was left untreated. Once the treatment was finished on postnatal day 21, the animals were euthanized and histological immunofluorescence studies (TUNEL, GFAP, and DAPI staining) were carried out. Our results showed that the administration of a solution of PG in CD (CD-PG) as drops significantly decreased cell death and inflammation in the retina of the PG-treated eyes of rds mice. No effect was seen in the contralateral eye from PG that may have entered systemic circulation. In conclusion, CD-PG applied topically as drops to the eye decreases photoreceptor cell death in the early stages of RP, delaying vision loss and decreasing gliosis. Full article
(This article belongs to the Special Issue Advances in Ocular Pharmacology)
Show Figures

Figure 1

19 pages, 3637 KiB  
Article
Angiopoietin-1 Mimetic Nanoparticles for Restoring the Function of Endothelial Cells as Potential Therapeutic for Glaucoma
by Raphael Mietzner, Ramona Pawlak, Ernst R. Tamm, Achim Goepferich, Rudolf Fuchshofer and Miriam Breunig
Pharmaceuticals 2022, 15(1), 18; https://doi.org/10.3390/ph15010018 - 24 Dec 2021
Viewed by 3200
Abstract
A root cause for the development and progression of primary open-angle glaucoma might be the loss of the Schlemm’s canal (SC) cell function due to an impaired Angiopoietin-1 (Angpt-1)/Tie2 signaling. Current therapeutic options fail to restore the SC cell function. We propose Angpt-1 [...] Read more.
A root cause for the development and progression of primary open-angle glaucoma might be the loss of the Schlemm’s canal (SC) cell function due to an impaired Angiopoietin-1 (Angpt-1)/Tie2 signaling. Current therapeutic options fail to restore the SC cell function. We propose Angpt-1 mimetic nanoparticles (NPs) that are intended to bind in a multivalent manner to the Tie2 receptor for successful receptor activation. To this end, an Angpt-1 mimetic peptide was coupled to a poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) block co-polymer. The modified polymer allowed for the fabrication of Angpt-1 mimetic NPs with a narrow size distribution (polydispersity index < 0.2) and the size of the NPs ranging from about 120 nm (100% ligand density) to about 100 nm (5% ligand density). NP interaction with endothelial cells (HUVECs, EA.hy926) as surrogate for SC cells and fibroblasts as control was investigated by flow cytometry and confocal microscopy. The NP–cell interaction strongly depended on the ligand density and size of NPs. The cellular response to the NPs was investigated by a Ca2+ mobilization assay as well as by a real-time RT-PCR and Western blot analysis of endothelial nitric oxide synthase (eNOS). NPs with a ligand density of 25% opposed VEGF-induced Ca2+ influx in HUVECs significantly which could possibly increase cell relaxation and thus aqueous humor drainage, whereas the expression and synthesis of eNOS was not significantly altered. Therefore, we suggest Angpt-1 mimetic NPs as a first step towards a causative therapy to recover the loss of SC cell function during glaucoma. Full article
(This article belongs to the Special Issue Advances in Ocular Pharmacology)
Show Figures

Figure 1

16 pages, 2985 KiB  
Article
Ocular Application of Oleuropein in Dry Eye Treatment: Formulation Studies and Biological Evaluation
by Susi Burgalassi, Erica Zucchetti, Elena Birindelli, Silvia Tampucci, Patrizia Chetoni and Daniela Monti
Pharmaceuticals 2021, 14(11), 1151; https://doi.org/10.3390/ph14111151 - 12 Nov 2021
Cited by 2 | Viewed by 2299
Abstract
Background. Oleuropein is already known for its numerous pharmacological properties, but its activity in the ocular field has not yet been investigated. The study aims to verify a possible use of oleuropein (OLE)-based eye drops both in terms of efficacy in dry eye [...] Read more.
Background. Oleuropein is already known for its numerous pharmacological properties, but its activity in the ocular field has not yet been investigated. The study aims to verify a possible use of oleuropein (OLE)-based eye drops both in terms of efficacy in dry eye syndrome and stability in aqueous solution. Methods. OLE was co-precipitated with HP-β-cyclodextrin, and the obtained complex was encapsulated into liposomes prepared by hydration of a lipid film composed of Lipoid S100 and cholesterol with different pH buffer solutions. The hydrated vesicles were shrunk by ultrasonication or extrusion. The preparations were characterized from the physicochemical point of view by subjecting them to differential scanning calorimetry, ATR-FTIR, dynamic light scattering analysis, and microscopy. Subsequently, OLE protective activity against hyperosmotic and oxidative stress on rabbit corneal epithelial cells (RCE) was evaluated. Results. The liposomal vesicles obtained after extrusion showed a tendency towards greater encapsulation efficiency (up to 80.77%) compared to that obtained by sonication, and the liposomes hydrated in pH 5.5 solution tended to incapsulate more than the neutral ones. Ultrasonication produced two-dimensional populations of liposomes, the largest of which reached 2149 nm. On the contrary, the extruded liposomes showed homogeneous diameters of about 250 nm. Complexation with cyclodextrin and subsequent encapsulation in liposomes greatly increased the OLE stability in aqueous solution, especially at 4 °C and for the extruded formulations. OLE aqueous solution (OLE7.4-sol, reference) and neutral extruded liposomes (F7.4-e) were well tolerated on RCE cells. Moreover, OLE was able to control the effects of hyperosmolarity on ocular surface cells and to prevent oxidative stress-induced loss of cell viability. Full article
(This article belongs to the Special Issue Advances in Ocular Pharmacology)
Show Figures

Graphical abstract

10 pages, 1799 KiB  
Article
Ten-Year Outcomes of Intravitreal Bevacizumab for Myopic Choroidal Neovascularization: Analysis of Prognostic Factors
by Fabiana Mallone, Rosalia Giustolisi, Federica Franzone, Marco Marenco, Rocco Plateroti, Marcella Nebbioso, Alessandro Lambiase and Magda Gharbiya
Pharmaceuticals 2021, 14(10), 1042; https://doi.org/10.3390/ph14101042 - 13 Oct 2021
Cited by 5 | Viewed by 2696
Abstract
The current standard treatment of myopic choroidal neovascularisation (mCNV) is intravitreal injection of VEGF antagonists. This study was proposed to assess efficacy and safety of intravitreal bevacizumab (IVB) for the treatment of mCNV across a 10-year follow-up. Thirty eyes of thirty patients with [...] Read more.
The current standard treatment of myopic choroidal neovascularisation (mCNV) is intravitreal injection of VEGF antagonists. This study was proposed to assess efficacy and safety of intravitreal bevacizumab (IVB) for the treatment of mCNV across a 10-year follow-up. Thirty eyes of thirty patients with treatment-naïve mCNV who underwent IVB and were followed up with for a minimum of ten years were recruited for the present retrospective cohort study. All participants were treated with three monthly IVB at baseline and then evaluated and treated under pro re nata (PRN) schedule. Outcome measures were to determine BCVA changes over years and identify the predictive factors of both final visual outcome and need for retreatment. Analysis of the main involved prognostic factors with correlations among variables is reported. Visual acuity remained stable at 10-year follow-up (p = 0.001) with the greatest improvement at 2 years (p < 0.0001) in all CNV locations. Baseline BCVA correlated positively with final BCVA (β = 0.88, p < 0.0001, R2: 0.75). No predictive factors for the need of additional injections were identified. Retinal and choroidal thickness significantly reduced over time but without correlation with the number of injections. CNV max height and area significantly decreased at 10 years (p < 0.0001 and p = 0.003, respectively), with complete regression of mCNV lesion in 40% of subjects. Intravitreal bevacizumab resulted as long-term effective and safe therapy for mCNV with sustained results at 10 years. Full article
(This article belongs to the Special Issue Advances in Ocular Pharmacology)
Show Figures

Figure 1

20 pages, 6294 KiB  
Article
Dose Response of Bumetanide on Aquaporins and Angiogenesis Biomarkers in Human Retinal Endothelial Cells Exposed to Intermittent Hypoxia
by Sibel Guzel, Charles L. Cai, Jacob V. Aranda and Kay D. Beharry
Pharmaceuticals 2021, 14(10), 967; https://doi.org/10.3390/ph14100967 - 24 Sep 2021
Cited by 1 | Viewed by 2121
Abstract
Aquaporins (AQPs) are important for regulating cellular water, solute transport, and balance. Recently, AQPs have also been recognized as playing a key role in cell migration and angiogenesis. In the retina, hypoxia induces vascular endothelial growth factor (VEGF), a potent angiogenic and vascular [...] Read more.
Aquaporins (AQPs) are important for regulating cellular water, solute transport, and balance. Recently, AQPs have also been recognized as playing a key role in cell migration and angiogenesis. In the retina, hypoxia induces vascular endothelial growth factor (VEGF), a potent angiogenic and vascular permeability factor, resulting in retinal edema, which is facilitated by AQPs. Bumetanide is a diuretic agent and AQP 1–4 blocker. We tested the hypothesis that bumetanide suppression of AQPs ameliorates intermittent hypoxia (IH)-induced angiogenesis and oxidative stress in human microvascular retinal endothelial cells (HMRECs). HMRECs were treated with a low-dose (0.05 µg/mL) or high-dose (0.2 µg/mL) of bumetanide and were exposed to normoxia (Nx), hyperoxia (50% O2), or IH (50% O2 with brief hypoxia 5% O2) for 24, 48, and 72 h. Angiogenesis and oxidative stress biomarkers were determined in the culture media, and the cells were assessed for tube formation capacity and AQP-1 and -4 expression. Both doses of bumetanide significantly decreased oxidative stress and angiogenesis biomarkers. This response was reflected by reductions in tube formation capacity and AQP expression. These findings confirm the role of AQPs in retinal angiogenesis. Therapeutic targeting of AQPs with bumetanide may be advantageous for IH-induced aberrant retinal development. Full article
(This article belongs to the Special Issue Advances in Ocular Pharmacology)
Show Figures

Figure 1

10 pages, 7011 KiB  
Article
In Silico Screening and In Vivo Evaluation of Potential CACNA2D1 Antagonists as Intraocular Pressure-Reducing Agents in Glaucoma Therapy
by Hanxuan Li, Mohamed Moustafa Ibrahim, Hao Chen, Wei Li and Monica M. Jablonski
Pharmaceuticals 2021, 14(9), 887; https://doi.org/10.3390/ph14090887 - 31 Aug 2021
Cited by 5 | Viewed by 2167
Abstract
Glaucoma is a leading cause of permanent vision loss and current drugs do not halt disease progression. Thus, new therapies targeting different drug targets with novel mechanisms of action are urgently needed. Previously, we identified CACNA2D1 as a novel modulator of intraocular pressure [...] Read more.
Glaucoma is a leading cause of permanent vision loss and current drugs do not halt disease progression. Thus, new therapies targeting different drug targets with novel mechanisms of action are urgently needed. Previously, we identified CACNA2D1 as a novel modulator of intraocular pressure (IOP) and demonstrated that a topically applied CACNA2D1 antagonist—pregabalin (PRG)—lowered IOP in a dose-dependent manner. To further validate this novel IOP modulator as a drug target for IOP-lowering pharmaceutics, a homology model of CACNA2D1 was built and docked against the NCI library, which is one of the world’s largest and most diverse compound libraries of natural products. Acivicin and zoledronic acid were identified using this method and together with PRG were tested for their plausible IOP-lowering effect on Dutch belted rabbits. Although they have inferior potency to PRG, both of the other compounds lower IOP, which in turn validates CACNA2D1 as a valuable drug target in treating glaucoma. Full article
(This article belongs to the Special Issue Advances in Ocular Pharmacology)
Show Figures

Figure 1

20 pages, 2367 KiB  
Article
Non-Pigmented Ciliary Epithelium-Derived Extracellular Vesicles Loaded with SMAD7 siRNA Attenuate Wnt Signaling in Trabecular Meshwork Cells In Vitro
by Saray Tabak, Valeria Feinshtein, Sofia Schreiber-Avissar and Elie Beit-Yannai
Pharmaceuticals 2021, 14(9), 858; https://doi.org/10.3390/ph14090858 - 27 Aug 2021
Cited by 11 | Viewed by 2397
Abstract
Primary open-angle glaucoma is established by the disruption of trabecular meshwork (TM) function. The disruption leads to increased resistance to the aqueous humor (AH), generated by the non-pigmented ciliary epithelium (NPCE). Extracellular vesicles (EVs) participate in the communication between the NPCE and the [...] Read more.
Primary open-angle glaucoma is established by the disruption of trabecular meshwork (TM) function. The disruption leads to increased resistance to the aqueous humor (AH), generated by the non-pigmented ciliary epithelium (NPCE). Extracellular vesicles (EVs) participate in the communication between the NPCE and the TM tissue in the ocular drainage system. The potential use of NPCE-derived EVs to deliver siRNA to TM cells has scarcely been explored. NPCE-derived EVs were isolated and loaded with anti-fibrotic (SMAD7) siRNA. EV’s structural integrity and siRNA loading efficiency were estimated via electron microscopy and fluorescence. Engineered EVs were added to pre-cultured TM cells and qRT-PCR was used to verify the transfer of selected siRNA to the cells. Western blot analysis was used to evaluate the qualitative effects on Wnt-TGFβ2 proteins’ expression. EVs loaded with exogenous siRNA achieved a 53% mRNA knockdown of SMAD7 in TM cells, resulting in a significant elevation in the levels of β-Catenin, pGSK3β, N-Cadherin, K-Cadherin, and TGFβ2 proteins in TM cells. NPCE-derived EVs can be used for efficient siRNA molecule delivery into TM cells, which may prove to be beneficial as a therapeutic target to lower intraocular pressure (IOP). Full article
(This article belongs to the Special Issue Advances in Ocular Pharmacology)
Show Figures

Figure 1

25 pages, 8189 KiB  
Article
Novel Formulation of Eye Drops Containing Choline Salicylate and Hyaluronic Acid: Stability, Permeability, and Cytotoxicity Studies Using Alternative Ex Vivo and In Vitro Models
by Katarzyna Barbara Wróblewska, Bartłomiej Milanowski, Małgorzata Kucińska, Szymon Plewa, Jolanta Długaszewska and Izabela Muszalska-Kolos
Pharmaceuticals 2021, 14(9), 849; https://doi.org/10.3390/ph14090849 - 26 Aug 2021
Cited by 3 | Viewed by 3975
Abstract
This work investigated the potential of a novel formulation of eye drops containing a non-steroidal anti-inflammatory drug—choline salicylate (CS)—and hyaluronic acid (HA). Thus, these drops may exert both anti-inflammatory and regenerative activity. The experiment was conducted through the careful characterization of physicochemical properties, [...] Read more.
This work investigated the potential of a novel formulation of eye drops containing a non-steroidal anti-inflammatory drug—choline salicylate (CS)—and hyaluronic acid (HA). Thus, these drops may exert both anti-inflammatory and regenerative activity. The experiment was conducted through the careful characterization of physicochemical properties, stability, and quality of eye drops. Moreover, microbiological analysis, as well as penetration and cytotoxic studies, were performed. The UV, HPLC-UV, and HPLC-MS/MS methods were used to determine the purity and stability of CS. The penetration rate of CS was assessed using a hydrophilic membrane and ex vivo porcine cornea model. Additionally, the cytotoxic effects were evaluated using the SIRC cell line. The interaction between HA and CS was tested using size-exclusion chromatography and IR spectrophotometry. As a result, HA increased the viscosity of the drops, which prolonged their contact with the ocular surface, thus ensuring more effective penetration of CS into the corneal structure. After long-term storage, an interaction in the pharmaceutical phase between CS and HA was observed. However, this interaction did not affect the viability of rabbit corneal cells. Our findings showed that eye drops with CS and HA, stored at 2–8 °C in light-protected conditions, met the criteria of stability and safety. Full article
(This article belongs to the Special Issue Advances in Ocular Pharmacology)
Show Figures

Figure 1

16 pages, 1923 KiB  
Article
Kynurenic Acid Accelerates Healing of Corneal Epithelium In Vitro and In Vivo
by Anna Matysik-Woźniak, Waldemar A. Turski, Monika Turska, Roman Paduch, Mirosław Łańcut, Paweł Piwowarczyk, Mirosław Czuczwar and Robert Rejdak
Pharmaceuticals 2021, 14(8), 753; https://doi.org/10.3390/ph14080753 - 30 Jul 2021
Cited by 4 | Viewed by 2166
Abstract
Kynurenic acid (KYNA) is an endogenous compound with a multidirectional effect. It possesses antiapoptotic, anti-inflammatory, and antioxidative properties that may be beneficial in the treatment of corneal injuries. Moreover, KYNA has been used successfully to improve the healing outcome of skin wounds. The [...] Read more.
Kynurenic acid (KYNA) is an endogenous compound with a multidirectional effect. It possesses antiapoptotic, anti-inflammatory, and antioxidative properties that may be beneficial in the treatment of corneal injuries. Moreover, KYNA has been used successfully to improve the healing outcome of skin wounds. The aim of the present study is to evaluate the effects of KYNA on corneal and conjunctival cells in vitro and the re-epithelization of corneal erosion in rabbits in vivo. Normal human corneal epithelial cell (10.014 pRSV-T) and conjunctival epithelial cell (HC0597) lines were used. Cellular metabolism, cell viability, transwell migration, and the secretion of IL-1β, IL-6, and IL-10 were determined. In rabbits, after corneal de-epithelization, eye drops containing 0.002% and 1% KYNA were applied five times a day until full recovery. KYNA decreased metabolism but did not affect the proliferation of the corneal epithelium. It decreased both the metabolism and proliferation of conjunctival epithelium. KYNA enhanced the migration of corneal but not conjunctival epithelial cells. KYNA reduced the secretion of IL-1β and IL-6 from the corneal epithelium, leaving IL-10 secretion unaffected. The release of all studied cytokines from the conjunctival epithelium exposed to KYNA was unchanged. KYNA at higher concentration accelerated the healing of the corneal epithelium. These favorable properties of KYNA suggest that KYNA containing topical pharmaceutical products can be used in the treatment of ocular surface diseases. Full article
(This article belongs to the Special Issue Advances in Ocular Pharmacology)
Show Figures

Figure 1

14 pages, 2943 KiB  
Article
The Effect of Cyanine Dye NK-4 on Photoreceptor Degeneration in a Rat Model of Early-Stage Retinitis Pigmentosa
by Shihui Liu, Toshihiko Matsuo, Mary Miyaji and Osamu Hosoya
Pharmaceuticals 2021, 14(7), 694; https://doi.org/10.3390/ph14070694 - 19 Jul 2021
Cited by 3 | Viewed by 3493
Abstract
The present study aimed to evaluate the effects of NK-4 on the apoptosis of photoreceptors in a rat model of retinitis pigmentosa and explore the mechanism underlying anti-apoptosis activity. The Royal College of Surgeons (RCS) rats received an intravitreous injection of NK-4 solution [...] Read more.
The present study aimed to evaluate the effects of NK-4 on the apoptosis of photoreceptors in a rat model of retinitis pigmentosa and explore the mechanism underlying anti-apoptosis activity. The Royal College of Surgeons (RCS) rats received an intravitreous injection of NK-4 solution in the left eye and vehicle control in the right eye. Apoptosis was detected by TUNEL method in frozen sections of the eyes. The retinal tissues of the rats were dissected for RNA-seq analysis. Functional and pathway enrichment analyses of differentially expressed genes (DEGs) were performed by using Metascape and DAVID software. The expression levels of DEGs were confirmed by real-time quantitative PCR (RT-qPCR). The number of apoptotic cells decreased in the outer nuclear layer (ONL) and the thickness of the ONL was significantly thicker in the retina of NK-4-injected eyes, compared with control eyes. Five DEGs were identified by RNA-seq analysis, and Hmox1, Mt1, Atf5, Slc7a11, and Bdh2 were confirmed to be up-regulated by RT-qPCR. Functional and pathway enrichment analysis of the up-regulated genes showed that anti-apoptosis effects of NK-4 in the retina of RCS rats may be related to the pathways of metal ion homeostasis, negative regulation of neuron death, response to toxic substance, and pigment metabolic process. We found a potential mechanism of NK-4, providing a new viewpoint for the development of more therapeutic uses of NK-4 in the future. Full article
(This article belongs to the Special Issue Advances in Ocular Pharmacology)
Show Figures

Graphical abstract

10 pages, 451 KiB  
Article
Bio-Distribution and Pharmacokinetics of Topically Administered γ-Cyclodextrin Based Eye Drops in Rabbits
by Martin Kallab, Kornelia Schuetzenberger, Nikolaus Hommer, Bhavapriya Jasmin Schäfer, Doreen Schmidl, Helga Bergmeister, Markus Zeitlinger, Aimin Tan, Phatsawee Jansook, Thorsteinn Loftsson, Einar Stefansson and Gerhard Garhöfer
Pharmaceuticals 2021, 14(5), 480; https://doi.org/10.3390/ph14050480 - 18 May 2021
Cited by 8 | Viewed by 3582
Abstract
The purpose of this study was to evaluate the ocular pharmacokinetics, bio-distribution and local tolerability of γ-cyclodextrin (γCD) based irbesartan 1.5% eye drops and candesartan 0.15% eye drops after single and multiple topical administration in rabbit eyes. In this randomized, controlled study, a [...] Read more.
The purpose of this study was to evaluate the ocular pharmacokinetics, bio-distribution and local tolerability of γ-cyclodextrin (γCD) based irbesartan 1.5% eye drops and candesartan 0.15% eye drops after single and multiple topical administration in rabbit eyes. In this randomized, controlled study, a total number of 59 New Zealand White albino rabbits were consecutively assigned to two study groups. Group 1 (n = 31) received irbesartan 1.5% and group 2 (n = 28) candesartan 0.15% eye drops. In both groups, single dose and multiple administration pharmacokinetic studies were performed. Rabbits were euthanized at five predefined time points after single-dose administration, whereas multiple-dose animals were dosed for 5 days twice-daily and then euthanized 1 h after the last dose administration. Drug concentration was measured by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the retinal tissue, vitreous humor, aqueous humor, corneal tissue and in venous blood samples. Pharmacokinetic parameters including maximal drug concentration (Cmax), time of maximal drug concentration (Tmax), half-life and AUC were calculated. To assess local tolerability, six additional rabbits received 1.5% irbesartan eye drops twice daily in one eye for 28 days. Tolerability was assessed using a modified Draize test and corneal sensibility by Cochet Bonnet esthesiometry. Both γCD based eye drops were rapidly absorbed and distributed in the anterior and posterior ocular tissues. Within 0.5 h after single administration, the Cmax of irbesartan and candesartan in retinal tissue was 251 ± 142 ng/g and 63 ± 39 ng/g, respectively. In the vitreous humor, a Cmax of 14 ± 16 ng/g for irbesartan was reached 0.5 h after instillation while Cmax was below 2 ng/g for candesartan. For multiple dosing, the observed Cmean in retinal tissue was 338 ± 124 ng/g for irbesartan and 36 ± 10 ng/g for candesartan, whereas mean vitreous humor concentrations were 13 ± 5 ng/g and <2 ng/g, respectively. The highest plasma concentrations of both irbesartan (Cmax 5.64 ± 4.08 ng/mL) and candesartan (Cmax 4.32 ± 1.04 ng/mL) were reached 0.5 h (Tmax) after single administration. Local tolerability was favorable with no remarkable differences between the treated and the control eyes. These results indicate that irbesartan and candesartan in γCD based nanoparticle eye drops can be delivered to the retinal tissue of the rabbit’s eye in pharmacologically relevant concentrations. Moreover, safety and tolerability profiles appear to be favorable in the rabbit animal model. Full article
(This article belongs to the Special Issue Advances in Ocular Pharmacology)
Show Figures

Graphical abstract

10 pages, 1233 KiB  
Article
Filociclovir Is an Active Antiviral Agent against Ocular Adenovirus Isolates In Vitro and in the Ad5/NZW Rabbit Ocular Model
by Eric G. Romanowski, Islam T. M. Hussein, Steven C. Cardinale, Michelle M. Butler, Lucas R. Morin, Terry L. Bowlin, Kathleen A. Yates, Robert M. Q. Shanks and Regis P. Kowalski
Pharmaceuticals 2021, 14(4), 294; https://doi.org/10.3390/ph14040294 - 26 Mar 2021
Cited by 7 | Viewed by 2133
Abstract
Presently, there is no FDA- or EMA-approved antiviral for the treatment of human adenovirus (HAdV) ocular infections. This study determined the antiviral activity of filociclovir (FCV) against ocular HAdV isolates in vitro and in the Ad5/NZW rabbit ocular model. The 50% effective concentrations [...] Read more.
Presently, there is no FDA- or EMA-approved antiviral for the treatment of human adenovirus (HAdV) ocular infections. This study determined the antiviral activity of filociclovir (FCV) against ocular HAdV isolates in vitro and in the Ad5/NZW rabbit ocular model. The 50% effective concentrations (EC50) of FCV and cidofovir (CDV) were determined for several ocular HAdV types using standard plaque reduction assays. Rabbits were topically inoculated in both eyes with HAdV5. On day 1, the rabbits were divided into four topical treatment groups: (1) 0.5% FCV 4x/day × 10 d; (2) 0.1% FCV 4x/day × 10 d; (3) 0.5% CDV 2x/day × 7 d; (4) vehicle 4x/day × 10 d. Eyes were cultured for virus on days 0, 1, 3, 4, 5, 7, 9, 11, and 14. The resulting viral eye titers were determined using standard plaque assays. The mean in vitro EC50 for FCV against tested HAdV types ranged from 0.50 to 4.68 µM, whereas those treated with CDV ranged from 0.49 to 30.3 µM. In vivo, compared to vehicle, 0.5% FCV, 0.1% FCV, and 0.5% CDV produced lower eye titers, fewer numbers of positive eye cultures, and shorter durations of eye infection. FCV demonstrated anti-adenovirus activity in vitro and in vivo. Full article
(This article belongs to the Special Issue Advances in Ocular Pharmacology)
Show Figures

Figure 1

24 pages, 5491 KiB  
Article
A Safe GDNF and GDNF/BDNF Controlled Delivery System Improves Migration in Human Retinal Pigment Epithelial Cells and Survival in Retinal Ganglion Cells: Potential Usefulness in Degenerative Retinal Pathologies
by Alicia Arranz-Romera, Maria Hernandez, Patricia Checa-Casalengua, Alfredo Garcia-Layana, Irene T. Molina-Martinez, Sergio Recalde, Michael J. Young, Budd A. Tucker, Rocío Herrero-Vanrell, Patricia Fernandez-Robredo and Irene Bravo-Osuna
Pharmaceuticals 2021, 14(1), 50; https://doi.org/10.3390/ph14010050 - 11 Jan 2021
Cited by 13 | Viewed by 3368
Abstract
We assessed the sustained delivery effect of poly (lactic-co-glycolic) acid (PLGA)/vitamin E (VitE) microspheres (MSs) loaded with glial cell-derived neurotrophic factor (GDNF) alone (GDNF-MSs) or combined with brain-derived neurotrophic factor (BDNF; GDNF/BDNF-MSs) on migration of the human adult retinal pigment epithelial cell-line-19 (ARPE-19) [...] Read more.
We assessed the sustained delivery effect of poly (lactic-co-glycolic) acid (PLGA)/vitamin E (VitE) microspheres (MSs) loaded with glial cell-derived neurotrophic factor (GDNF) alone (GDNF-MSs) or combined with brain-derived neurotrophic factor (BDNF; GDNF/BDNF-MSs) on migration of the human adult retinal pigment epithelial cell-line-19 (ARPE-19) cells, primate choroidal endothelial (RF/6A) cells, and the survival of isolated mouse retinal ganglion cells (RGCs). The morphology of the MSs, particle size, and encapsulation efficiencies of the active substances were evaluated. In vitro release, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability, terminal deoxynucleotidyl transferase (TdT) deoxyuridine dUTP nick-end labelling (TUNEL) apoptosis, functional wound healing migration (ARPE-19; migration), and (RF/6A; angiogenesis) assays were conducted. The safety of MS intravitreal injection was assessed using hematoxylin and eosin, neuronal nuclei (NeuN) immunolabeling, and TUNEL assays, and RGC in vitro survival was analyzed. MSs delivered GDNF and co-delivered GDNF/BDNF in a sustained manner over 77 days. The BDNF/GDNF combination increased RPE cell migration, whereas no effect was observed on RF/6A. MSs did not alter cell viability, apoptosis was absent in vitro, and RGCs survived in vitro for seven weeks. In mice, retinal toxicity and apoptosis was absent in histologic sections. This delivery strategy could be useful as a potential co-therapy in retinal degenerations and glaucoma, in line with future personalized long-term intravitreal treatment as different amounts (doses) of microparticles can be administered according to patients’ needs. Full article
(This article belongs to the Special Issue Advances in Ocular Pharmacology)
Show Figures

Figure 1

13 pages, 1469 KiB  
Article
Oral Treatment of Central Serous Chorioretinopathy Patients Using Propranolol Tablets
by Li-Chai Chen, Jui-Wen Ma, Po-Chuen Shieh and Chi-Ting Horng
Pharmaceuticals 2020, 13(11), 336; https://doi.org/10.3390/ph13110336 - 23 Oct 2020
Cited by 6 | Viewed by 3502
Abstract
Purpose: To evaluate the pharmacological effects of propranolol treatment of patients with central serous chorioretinopathy (CSCR) over 4 months. Results: Among the 89 male and 31 female patients, the mean BCVA decreased to 0.42 ± 0.08 logMAR during CSCR attacks. Oral propranolol showed [...] Read more.
Purpose: To evaluate the pharmacological effects of propranolol treatment of patients with central serous chorioretinopathy (CSCR) over 4 months. Results: Among the 89 male and 31 female patients, the mean BCVA decreased to 0.42 ± 0.08 logMAR during CSCR attacks. Oral propranolol showed good effectiveness in reducing CSCR signs after at least 4 months of treatment. The final BCVA of the patients in groups 1 and 2 was 0.09 ± 0.01 and 0.19 ± 0.03 logMAR, respectively (p < 0.05). Moreover, the mean complete remission time in groups 1 and 2 was 1.9 and 3.5 months, respectively (p < 0.05), while the “success” rate in groups 1 and 2 was 95.0% (57/60) and 78.3% (47/60), respectively (p < 0.05). The recurrence rate in groups 1 and 2 was 5.3% (3/57) and 25.5% (12/47) after a further 5 months of follow-up, respectively (p < 0.05). Materials and Methods: One hundred and twenty patients were enrolled and randomly divided into two groups that both underwent a visual acuity test and optical coherence tomography (OCT) scanning, between April and December 2017. The 60 patients in group 1 were requested to take propranolol for 4 months, while the other 60 subjects (group 2) received placebo therapy during the same period. The best-corrected visual acuity (BCVA) of every volunteer and an OCT image of each patient were checked and recorded at the beginning of the study and each week thereafter. If the signs of CSCR disappeared completely from the OCT scans, the case was considered a “success” and treatment stopped at once. However, the “success” subjects were further evaluated in follow-ups throughout the next 5 months to determine the rate of recurrence in groups 1 and 2. The time of total complete remission of CSCR from the OCT scans was also measured in groups 1 and 2. Conclusion: CSCR patients revealed an excellent prognosis and success rate of 95.0% after taking propranolol. The treatment was able to enhance subretinal fluid (SRF) absorption, shorten the time to total complete remission, and significantly decrease CSCR recurrence. As such, we suggest that taking propranolol may be an alternative and viable choice for CSCR patients, given that the new method was shown to be safe, cheap, effective, well tolerated and convenient. Full article
(This article belongs to the Special Issue Advances in Ocular Pharmacology)
Show Figures

Graphical abstract

19 pages, 4600 KiB  
Article
Histological Effects of Intravitreal Injection of Antifungal Agents in New Zealand White Rabbits: An Electron Microscopic and Immunohistochemical Study
by Sofia Karachrysafi, Antonia Sioga, Anastasia Komnenou, Athanasios Karamitsos, Maria Xioteli, Ioanna Dori, Georgios Delis, Evangelia Kofidou, Penelope Anastasiadou, Sotiris Sotiriou, Vasileios Karampatakis and Theodora Papamitsou
Pharmaceuticals 2020, 13(10), 267; https://doi.org/10.3390/ph13100267 - 23 Sep 2020
Cited by 2 | Viewed by 2624
Abstract
Fungal endophthalmitis is a serious and vision-threatening infection which requires an immediate and effective treatment approach. Our research aims to elucidate the histological effects of the intravitreal injection of the maximum safe dosage of voriconazole and micafungin on retina. Six albino New Zealand [...] Read more.
Fungal endophthalmitis is a serious and vision-threatening infection which requires an immediate and effective treatment approach. Our research aims to elucidate the histological effects of the intravitreal injection of the maximum safe dosage of voriconazole and micafungin on retina. Six albino New Zealand White Rabbits were used. In experimental animals, a solution of voriconazole (Group V) or micafungin (Group M) was intravitreally injected in the right eye, while in control animals, balanced salt solution was intravitreally injected in the left eye (Group C). Euthanasia was performed ten days post injection and the retina was removed and prepared for histological examination with a light and electron microscope. Eosin-hematoxylin staining did not reveal any pathological changes in any of the samples examined. The immunohistochemical staining for Tumor Necrosis Factor alpha (TNF-a) marker was detected as negative in all samples, while Interleukin 6 (IL-6) marker was detected as mild only in the group injected with voriconazole. Electron microscopy revealed several ultrastructural alterations in retinal layers in both groups of experimental animals. Histological retinal lesions, revealed with electron microscopy in the present investigation, raises the question of the safe usage of these antifungal agents in the treatment of fungal intraocular infections in the future. Full article
(This article belongs to the Special Issue Advances in Ocular Pharmacology)
Show Figures

Figure 1

28 pages, 3669 KiB  
Article
Proteomics Reveals the Potential Protective Mechanism of Hydrogen Sulfide on Retinal Ganglion Cells in an Ischemia/Reperfusion Injury Animal Model
by Hanhan Liu, Natarajan Perumal, Caroline Manicam, Karl Mercieca and Verena Prokosch
Pharmaceuticals 2020, 13(9), 213; https://doi.org/10.3390/ph13090213 - 27 Aug 2020
Cited by 10 | Viewed by 3260
Abstract
Glaucoma is the leading cause of irreversible blindness and is characterized by progressive retinal ganglion cell (RGC) degeneration. Hydrogen sulfide (H2S) is a potent neurotransmitter and has been proven to protect RGCs against glaucomatous injury in vitro and in vivo. This [...] Read more.
Glaucoma is the leading cause of irreversible blindness and is characterized by progressive retinal ganglion cell (RGC) degeneration. Hydrogen sulfide (H2S) is a potent neurotransmitter and has been proven to protect RGCs against glaucomatous injury in vitro and in vivo. This study is to provide an overall insight of H2S’s role in glaucoma pathophysiology. Ischemia-reperfusion injury (I/R) was induced in Sprague-Dawley rats (n = 12) by elevating intraocular pressure to 55 mmHg for 60 min. Six of the animals received intravitreal injection of H2S precursor prior to the procedure and the retina was harvested 24 h later. Contralateral eyes were assigned as control. RGCs were quantified and compared within the groups. Retinal proteins were analyzed via label-free mass spectrometry based quantitative proteomics approach. The pathways of the differentially expressed proteins were identified by ingenuity pathway analysis (IPA). H2S significantly improved RGC survival against I/R in vivo (p < 0.001). In total 1115 proteins were identified, 18 key proteins were significantly differentially expressed due to I/R and restored by H2S. Another 11 proteins were differentially expressed following H2S. IPA revealed a significant H2S-mediated activation of pathways related to mitochondrial function, iron homeostasis and vasodilation. This study provides first evidence of the complex role that H2S plays in protecting RGC against I/R. Full article
(This article belongs to the Special Issue Advances in Ocular Pharmacology)
Show Figures

Figure 1

13 pages, 2594 KiB  
Article
Ocular Co-Delivery of Timolol and Brimonidine from a Self-Assembling Peptide Hydrogel for the Treatment of Glaucoma: In Vitro and Ex Vivo Evaluation
by Elissavet Taka, Christina Karavasili, Nikolaos Bouropoulos, Thomas Moschakis, Dimitrios D. Andreadis, Constantinos K. Zacharis and Dimitrios G. Fatouros
Pharmaceuticals 2020, 13(6), 126; https://doi.org/10.3390/ph13060126 - 21 Jun 2020
Cited by 19 | Viewed by 3278
Abstract
Effective pharmacotherapy during glaucoma treatment depends on interventions that reduce intraocular pressure (IOP) and retain the IOP lowering effect for sufficient time so as to reduce dosing frequency and enhance patient adherence. Combination anti-glaucoma therapy and dosage forms that increase precorneal residence time [...] Read more.
Effective pharmacotherapy during glaucoma treatment depends on interventions that reduce intraocular pressure (IOP) and retain the IOP lowering effect for sufficient time so as to reduce dosing frequency and enhance patient adherence. Combination anti-glaucoma therapy and dosage forms that increase precorneal residence time could therefore constitute a promising therapeutic intervention. The in-situ gel forming self-assembling peptide ac-(RADA)4-CONH2 was evaluated as carrier for the ocular co-delivery of timolol maleate (TM) and brimonidine tartrate (BR). The hydrogel’s microstructure and mechanical properties were assessed with atomic force microscopy and rheology, respectively. Drug diffusion from the hydrogel was evaluated in vitro in simulated tear fluid and ex vivo across porcine corneas and its effect on the treated corneas was assessed through physicochemical characterization and histological analysis. Results indicated that TM and BR co-delivery affected hydrogel’s microstructure resulting in shorter nanofibers and a less rigid hydrogel matrix. Rapid and complete release of both drugs was achieved within 8 h, while a 2.8-fold and 5.4-fold higher corneal permeability was achieved for TM and BR, respectively. No significant alterations were induced in the structural integrity of the corneas treated with the hydrogel formulation, suggesting that self-assembling peptide hydrogels might serve as promising systems for combination anti-glaucoma therapy. Full article
(This article belongs to the Special Issue Advances in Ocular Pharmacology)
Show Figures

Graphical abstract

11 pages, 1050 KiB  
Article
Oral l-Cysteine Supplementation Enhances the Long Term-Effect of Topical Basic Fibroblast Growth Factor (bFGF) in Reducing the Corneal Haze after Photorefractive Keratectomy in Myopic Patients
by Alessandro Meduri, Loredana Bergandi, Pietro Perroni, Francesca Silvagno and Pasquale Aragona
Pharmaceuticals 2020, 13(4), 67; https://doi.org/10.3390/ph13040067 - 15 Apr 2020
Cited by 7 | Viewed by 2535
Abstract
We aimed at evaluating the long-term effects of l-cysteine oral supplementation to basic fibroblast growth factor (bFGF) eye-drops on corneal re-epithelization and transparency in myopic patients subjected to photorefractive keratectomy (PRK). Forty patients subjected to bilateral PRK for myopia were enrolled and [...] Read more.
We aimed at evaluating the long-term effects of l-cysteine oral supplementation to basic fibroblast growth factor (bFGF) eye-drops on corneal re-epithelization and transparency in myopic patients subjected to photorefractive keratectomy (PRK). Forty patients subjected to bilateral PRK for myopia were enrolled and randomly divided into two groups receiving an additional therapy together with the standard postoperative treatment consisting in local tobramycin 0.3%, dexamethasone 0.1%, diclofenac 0.1%, and 0.2% hyaluronate. Group 1 included 20 patients (11 males and 9 females; 34.09 ± 8 years of age) receiving only bFGF eye-drops (10 μg/10 μL) four times a day for 7 days starting from the day of surgery; Group 2 included 20 patients (12 males and 8 females; 37.35 ± 11.5 years of age) who were postoperatively administered with topical basic fibroblast growth factor (bFGF; 10 μg/10 μL) four times a day for 7 days plus oral l-cysteine supplementation (500 mg/capsule) once a day for 15 days, starting 7 days before PRK. Patients were followed-up for 12 months. Clinical ophthalmologic parameters were recorded for all the 80 examined eyes. The corneal transparency was evaluated in vivo by slit lamp and confocal microscopy. The data showed that: (a) the corneal haze occurred in a smaller percentage of the patients who were postoperatively administered with topical bFGF plus oral l-cysteine supplementation (Group 2) compared to patients who received only bFGF (Group 1); (b) at 6 months of follow-up, the stromal mean image brightness of the patients belonging to Group 2 was significantly lower than that of the Group 1 (p < 0.03), and, interestingly, the difference was even more evident at 12 month from the treatment (p < 0.001). Moreover, the final mean of the spherical equivalent refraction was −0.06 ± 0.2 D in Group 1 and −0.08 ± 0.3 D in Group 2, whereas the final uncorrected distance visual acuity (UDVA) was equal or superior to 20/25 in 100% of eyes in both Group 1 and 2. Post refractive patients can benefit from the administration of l-cysteine before the surgery and in association with bFGF in the early postoperative period, showing a faster corneal re-epithelization able to prevent corneal haze in the long-term recovery. Full article
(This article belongs to the Special Issue Advances in Ocular Pharmacology)
Show Figures

Figure 1

Review

Jump to: Research

26 pages, 836 KiB  
Review
Therapeutic Targets in Allergic Conjunctivitis
by Bisant A. Labib and DeGaulle I. Chigbu
Pharmaceuticals 2022, 15(5), 547; https://doi.org/10.3390/ph15050547 - 28 Apr 2022
Cited by 13 | Viewed by 6875
Abstract
Allergic conjunctivitis (AC) is a common condition resulting from exposure to allergens such as pollen, animal dander, or mold. It is typically mediated by allergen-induced crosslinking of immunoglobulin E attached to receptors on primed conjunctival mast cells, which results in mast cell degranulation [...] Read more.
Allergic conjunctivitis (AC) is a common condition resulting from exposure to allergens such as pollen, animal dander, or mold. It is typically mediated by allergen-induced crosslinking of immunoglobulin E attached to receptors on primed conjunctival mast cells, which results in mast cell degranulation and histamine release, as well as the release of lipid mediators, cytokines, and chemokines. The clinical result is conjunctival hyperemia, tearing, intense itching, and chemosis. Refractory and chronic cases can result in ocular surface complications that may be vision threatening. Patients who experience even mild forms of this disease report an impact on their quality of life. Current treatment options range from non-pharmacologic therapies to ocular and systemic options. However, to adequately control AC, the use of multiple agents is often required. As such, a precise understanding of the immune mechanisms responsible for this ocular surface inflammation is needed to support ongoing research for potential therapeutic targets such as chemokine receptors, cytokine receptors, non-receptor tyrosine kinases, and integrins. This review utilized several published articles regarding the current therapeutic options to treat AC, as well as the pathological and immune mechanisms relevant to AC. This review will also focus on cellular and molecular targets in AC, with particular emphasis on potential therapeutic agents that can attenuate the pathology and immune mechanisms driven by cells, receptors, and molecules that participate in the immunopathogenesis and immunopathology of AC. Full article
(This article belongs to the Special Issue Advances in Ocular Pharmacology)
Show Figures

Figure 1

36 pages, 76196 KiB  
Review
Mechanisms, Pathophysiology and Current Immunomodulatory/Immunosuppressive Therapy of Non-Infectious and/or Immune-Mediated Choroiditis
by Ioannis Papasavvas, Ilknur Tugal-Tutkun and Carl P. Herbort, Jr.
Pharmaceuticals 2022, 15(4), 398; https://doi.org/10.3390/ph15040398 - 24 Mar 2022
Cited by 4 | Viewed by 2650
Abstract
Non-infectious choroiditis comprises immune-mediated diseases resulting from diverse pathophysiological mechanisms. These conditions are sub-divided into two main groups, (1) diseases of the choriocapillaris and (2) diseases of the choroidal stroma. The purpose of this study is to expose the pathophysiology of the most [...] Read more.
Non-infectious choroiditis comprises immune-mediated diseases resulting from diverse pathophysiological mechanisms. These conditions are sub-divided into two main groups, (1) diseases of the choriocapillaris and (2) diseases of the choroidal stroma. The purpose of this study is to expose the pathophysiology of the most common diseases of both these groups and recommend the optimal immunomodulatory/immunosuppressive therapy of each analyzed condition based on literature data and data from our own centers. Material and Methods: Narrative review. In the group of choriocapillaritis entities or primary inflammatory choriocapillaropathies (PICCPs) including multiple evanescent white dot syndrome (MEWDS), acute posterior multifocal placoid pigment epitheliopathy (APMPPE), idiopathic multifocal choroiditis (MFC) and serpiginous choroiditis (SC), as well as secondary choriocapillaritides including acute syphilitic posterior multifocal placoid chorioretinitis (ASPMPC) and tuberculosis-related SC (TB-SC), were analyzed. In the group of stromal choroidites, HLA-A29 birdshot retinochoroiditis (BRC) and Vogt-Koyanagi-Harada (VKH) disease were included. For each entity a literature search, in the PubMed database, on treatment was performed and analyzed and the therapeutic attitudes of our own centers were presented. Management of immune-mediated choroiditis implies vigorous immunosuppressive therapy given in a prompt and prolonged fashion in most of these entities. Full article
(This article belongs to the Special Issue Advances in Ocular Pharmacology)
Show Figures

Figure 1

22 pages, 1427 KiB  
Review
Immunopharmacology in Vernal Keratoconjunctivitis: Current and Future Perspectives
by DeGaulle I. Chigbu and Bisant A. Labib
Pharmaceuticals 2021, 14(7), 658; https://doi.org/10.3390/ph14070658 - 09 Jul 2021
Cited by 15 | Viewed by 9677
Abstract
Vernal keratoconjunctivitis (VKC) is a complex and chronic, multifactorial Th2 cell-mediated chronic ocular surface inflammatory condition that typically affects predominantly male children in hot or warm climates. The primary symptom is intense ocular pruritus, often significant enough to affect activities of daily living. [...] Read more.
Vernal keratoconjunctivitis (VKC) is a complex and chronic, multifactorial Th2 cell-mediated chronic ocular surface inflammatory condition that typically affects predominantly male children in hot or warm climates. The primary symptom is intense ocular pruritus, often significant enough to affect activities of daily living. Clinical features differ from simple forms of allergic conjunctivitis in that they are more-or-less confined to the superior tarsus and limbus. There is also a risk of corneal involvement, which leads to irreversible vision loss in approximately 6% of patients. Right now, there is no standardized treatment protocol, and many of the currently available options are not effective in severe and recurrent cases. As such, it is imperative to understand this complex allergic immune response in order to identify future therapeutic targets. This review will focus on potential drug targets in VKC, with particular emphasis on immunomodulators and immunobiologic agents. Full article
(This article belongs to the Special Issue Advances in Ocular Pharmacology)
Show Figures

Figure 1

25 pages, 974 KiB  
Review
A Critical Appraisal of New Developments in Intraocular Lens Modifications and Drug Delivery Systems for the Prevention of Cataract Surgery Complications
by Ioanna Mylona and Ioannis Tsinopoulos
Pharmaceuticals 2020, 13(12), 448; https://doi.org/10.3390/ph13120448 - 08 Dec 2020
Cited by 12 | Viewed by 3745
Abstract
Cataract surgery is the commonest ophthalmic surgery worldwide. The replacement of the diseased lens with a synthetic one (intraocular lens—IOL) remains the treatment of choice, despite its potential complications that include infection, inflammation and posterior capsule opacification. The potential for drug delivery via [...] Read more.
Cataract surgery is the commonest ophthalmic surgery worldwide. The replacement of the diseased lens with a synthetic one (intraocular lens—IOL) remains the treatment of choice, despite its potential complications that include infection, inflammation and posterior capsule opacification. The potential for drug delivery via the IOL has been researched extensively over a period of twenty-five years, yet there is very limited progress in transferring the findings from research to everyday practice. The objective of this review is to assess the progress made in the field of IOL lens modifications and drug delivery systems over the past five years. Thirty-six studies that were conducted during the past five years were identified and deemed suitable for inclusion. They were grouped in three broad categories, studies that described new methods for loading a drug onto the IOL, assessment of the effects of drugs that were loaded to the IOL and studies that assessed the effects of non-pharmaceutical modifications of IOLs. While considerable progress is continually being made with regard to methods and materials, there is still little capitalization upon these research studies, with no commercially available IOL-based drug delivery system being available. Close cooperation between researchers in basic sciences (chemistry, physics, materials science and pharmacy), clinical researchers, IOL manufacturers and the pharmaceutical industry is an important prerequisite for further development. Full article
(This article belongs to the Special Issue Advances in Ocular Pharmacology)
Show Figures

Figure 1

21 pages, 1609 KiB  
Review
Nanotechnology for the Treatment of Allergic Conjunctival Diseases
by Yu-Chi Liu, Molly Tzu-Yu Lin, Anthony Herr Cheun Ng, Tina T. Wong and Jodhbir S. Mehta
Pharmaceuticals 2020, 13(11), 351; https://doi.org/10.3390/ph13110351 - 29 Oct 2020
Cited by 22 | Viewed by 5106
Abstract
Allergic conjunctivitis is one of the most common external eye diseases and the prevalence has been increasing. The mainstay of treatment is topical eye drops. However, low bioavailability, low ocular drug penetration, transient resident time on the ocular surface due to tear turnover, [...] Read more.
Allergic conjunctivitis is one of the most common external eye diseases and the prevalence has been increasing. The mainstay of treatment is topical eye drops. However, low bioavailability, low ocular drug penetration, transient resident time on the ocular surface due to tear turnover, frequent topical applications and dependence on patient compliance, are the main drawbacks associated with topical administration. Nanotechnology-based medicine has emerged to circumvent these limitations, by encapsulating the drugs and preventing them from degradation and therefore providing sustained and controlled release. Using a nanotechnology-based approach to load the drug is particularly useful for the delivery of hydrophobic drugs such as immunomodulatory agents, which are commonly used in allergic conjunctival diseases. In this review, different nanotechnology-based drug delivery systems, including nanoemulsions, liposomes, nanomicelles, nanosuspension, polymeric and lipid nanoparticles, and their potential ophthalmic applications, as well as advantages and disadvantages, are discussed. We also summarize the results of present studies on the loading of immunomodulators or nonsteroidal anti-inflammatory drugs to nano-scaled drug delivery systems. For future potential clinical use, research should focus on the optimization of drug delivery designs that provide adequate and effective doses with safe and satisfactory pharmacokinetic and pharmaco-toxic profiles. Full article
(This article belongs to the Special Issue Advances in Ocular Pharmacology)
Show Figures

Figure 1

Back to TopTop