Therapeutic Potential of Silver Nanoparticles (AgNPs), 2nd Edition

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Medicinal Chemistry".

Deadline for manuscript submissions: 31 July 2025 | Viewed by 1723

Special Issue Editor


E-Mail Website
Guest Editor
Chemistry Department and CESAM, University of Aveiro, 3800-724 Aveiro, Portugal
Interests: nanomaterials; biomedical applications; environmental applications
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Silver nanoparticles (AgNPs) have gained significant attention in the field of biomedicine, primarily for their antimicrobial properties. However, these versatile nanoparticles are now emerging as multifaceted therapeutic agents capable of being used to address a wide range of diseases. AgNPs exhibit size- and shape-dependent properties, allowing them to be tailored for specific applications. Their high surface-area-to-volume ratio and active surface enable precise control over surface charge and functionalization, further expanding their utility. Additionally, AgNPs possess localized surface plasmonic resonance, which holds promise for photo-assisted therapies.

AgNPs can be synthesized through various methods, with chemical reduction synthesis being the most commonly used. However, the utilization of biological methods and the adoption of green chemistry approaches are on the rise, aligning with sustainability objectives.      

This Special Issue aims to showcase the latest advancements in the utilization of AgNPs for therapeutic purposes, ranging from traditional antibacterial applications to innovative uses. Thus, we invite authors to submit research articles, reviews, and short communications that explore the preparation and application of AgNPs for therapeutic purposes.

Dr. Goreti Pereira
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • metallic nanostructures
  • plasmonic nanomaterials
  • photothermal therapy
  • photodynamic therapy
  • antimicrobial
  • antioxidant
  • anticancer

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 8943 KiB  
Article
Nanotoxicological Assessment of Green-Synthesized Silver Nanoparticles from Brazilian Cerrado Plant in a Murine Model
by Cínthia Caetano Bonatto, Ivy Garcez Reis, Dalila Juliana Silva Ribeiro, Raquel das Neves Almeida, Rafael Corrêa, Livia Pimentel Sant’Ana Dourado, Gabriel Pasquarelli-do-Nascimento, Kelly Grace Magalhães and Luciano Paulino Silva
Pharmaceuticals 2025, 18(7), 993; https://doi.org/10.3390/ph18070993 - 2 Jul 2025
Viewed by 340
Abstract
Background/Objectives: In recent years, silver nanoparticles (AgNPs) have garnered significant attention due to their potent antimicrobial properties, which hold promise for various applications. However, concerns about their potential toxicity have also emerged, particularly regarding their impact on human and animal health. This study [...] Read more.
Background/Objectives: In recent years, silver nanoparticles (AgNPs) have garnered significant attention due to their potent antimicrobial properties, which hold promise for various applications. However, concerns about their potential toxicity have also emerged, particularly regarding their impact on human and animal health. This study investigates the acute toxicological effects of AgNPs synthesized using a green route with an aqueous extract of a native Cerrado plant (AgNPs-Cb) in mice. Methods: The AgNPs-Cb were intravenously administered at a concentration of 64 µM, and the mice were euthanized after 24 h for the collection of blood and organ samples (liver, spleen, kidneys, and lungs) for hematological, biochemical, and histological analyses. Results: Hematological analysis, including complete blood count (CBC) and differential leukocyte count, showed no statistically significant alterations in the groups treated with AgNPs-Cb, Cb extract, and Ag+, compared with the control group (p < 0.05). Notably, only the Ag+ group exhibited a significant increase in red blood cell count and hematocrit levels, suggesting that the nanoformulation of silver might mitigate the hematological impact seen with free silver ions. Biochemical analyses of liver and kidney function markers also revealed no significant differences across the treatment groups. Conclusions: These findings indicate that AgNPs-Cb may offer a safer alternative for antimicrobial applications, reducing the risk of acute toxicity in mammals while maintaining efficacy against pathogens. Further studies are needed to explore the underlying mechanisms and long-term effects of AgNPs-Cb exposure. Full article
(This article belongs to the Special Issue Therapeutic Potential of Silver Nanoparticles (AgNPs), 2nd Edition)
Show Figures

Figure 1

18 pages, 3949 KiB  
Article
Biotechnological Utilization of Amazonian Fruit: Development of Active Nanocomposites from Bacterial Cellulose and Silver Nanoparticles Based on Astrocaryum aculeatum (Tucumã) Extract
by Sidney S. dos Santos, Miguel Ângelo Cerqueira, Ana Gabriela Azevedo, Lorenzo M. Pastrana, Fauze Ahmad Aouada, Fabrício C. Tanaka, Gustavo Frigi Perotti and Marcia Regina de Moura
Pharmaceuticals 2025, 18(6), 799; https://doi.org/10.3390/ph18060799 - 26 May 2025
Viewed by 513
Abstract
Background/Objectives: The rise of bacterial resistance and the search for alternative, biocompatible antimicrobial materials have driven interest in natural-based nanocomposites. In this context, silver nanoparticles (AgNPs) have shown broad-spectrum antibacterial activity, and bacterial cellulose (BC) is widely recognized for its high purity, hydrophilicity, [...] Read more.
Background/Objectives: The rise of bacterial resistance and the search for alternative, biocompatible antimicrobial materials have driven interest in natural-based nanocomposites. In this context, silver nanoparticles (AgNPs) have shown broad-spectrum antibacterial activity, and bacterial cellulose (BC) is widely recognized for its high purity, hydrophilicity, and biocompatibility. This study aimed to develop a bio-based BC–AgNP nanocomposite via green synthesis using Astrocaryum aculeatum (tucumã) extract and assess its antimicrobial performance for wound dressing applications. Methods: BC was biosynthesized via green tea fermentation (20 g/L tea and 100 g/L sugar) and purified prior to use. AgNPs were obtained by reacting aqueous tucumã extract with silver nitrate (0.1 mmol/L) at pH (9) and temperature (40 °C). BC membranes were immersed in the AgNPs dispersion for 7 days to form the nanocomposite. Characterization was performed using UV–Vis, DLS, TEM, SEM–EDS, FTIR, XRD, ICP–OES, and swelling analysis. Antibacterial activity was evaluated using the disk diffusion method against Staphylococcus aureus and Escherichia coli (ATCC 6538 and 4388). Results: The UV–Vis spectra revealed a gradual decrease in the surface plasmon resonance (SPR) band over 7 days of incubation with BC, indicating progressive incorporation of AgNPs into the membrane. ICP analysis confirmed silver incorporation in the BC membrane at 0.00215 mg/mL, corresponding to 15.5% of the initial silver content. Antimicrobial assays showed inhibition zones of 6.5 ± 0.5 mm for S. aureus and 4.3 ± 0.3 mm for E. coli. Conclusions: These findings validate the successful formation and antimicrobial performance of the BC–AgNP nanocomposite, supporting its potential use in wound care applications. Full article
(This article belongs to the Special Issue Therapeutic Potential of Silver Nanoparticles (AgNPs), 2nd Edition)
Show Figures

Graphical abstract

Review

Jump to: Research

36 pages, 6027 KiB  
Review
Recent Advances in the Application of Silver Nanoparticles for Enhancing Phototherapy Outcomes
by Rebeca M. Melo, Gabriela M. Albuquerque, Joalen P. Monte, Giovannia A. L. Pereira and Goreti Pereira
Pharmaceuticals 2025, 18(7), 970; https://doi.org/10.3390/ph18070970 - 27 Jun 2025
Viewed by 486
Abstract
The therapeutic use of silver nanoparticles (AgNPs) has been increasing, especially in phototherapy strategies. The plasmonic properties of AgNPs have contributed to their excellent results as phototherapeutic agents, namely for photodynamic therapy (PDT), photothermal therapy (PTT), and photodynamic inactivation of microorganisms. Moreover, the [...] Read more.
The therapeutic use of silver nanoparticles (AgNPs) has been increasing, especially in phototherapy strategies. The plasmonic properties of AgNPs have contributed to their excellent results as phototherapeutic agents, namely for photodynamic therapy (PDT), photothermal therapy (PTT), and photodynamic inactivation of microorganisms. Moreover, the capacity of these nanostructures to release silver ions (Ag+) and enhance the production of reactive oxygen species (ROS) has been explored in combination with light to treat several diseases. Moreover, synthesis, functionalization, and conjugation strategies with targeting agents have been widely studied to optimize selectivity and maximize the therapeutic efficacy of these nanoplatforms. In this work, we reviewed the recent advancements (2019–2024) in the use of AgNPs for phototherapy applications, with an emphasis on evaluating therapeutic efficacy and specific targeting. According to the literature, in oncology, AgNPs have been predominately employed in PTT-based strategies, demonstrating significant tumor cell death and preservation of healthy tissues, in both in vitro and in vivo studies. Concurrently, AgNP-mediated PDT has emerged as a promising approach for the eradication of bacteria and fungi, particularly those commonly associated with antibiotic resistance. The compiled data indicate that AgNPs represent an innovative and effective therapeutic alternative, with a strong potential for clinical translation, in both cancer treatment and the management of hard-to-treat infections. Full article
(This article belongs to the Special Issue Therapeutic Potential of Silver Nanoparticles (AgNPs), 2nd Edition)
Show Figures

Figure 1

Back to TopTop