Special Issue "Appetite and Satiety Control-Gut Mechanisms"

A special issue of Nutrients (ISSN 2072-6643). This special issue belongs to the section "Nutrition and Metabolism".

Deadline for manuscript submissions: 15 January 2021.

Special Issue Editors

Prof. Dr. Christine Feinle-Bisset
Website
Guest Editor
Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
Interests: appetite regulation in humans; gastrointestinal function; gut hormones; gastric emptying; GI motility; dietary nutrients; obesity
Prof. Michael Horowitz
Website
Guest Editor
Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, and Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
Interests: appetite regulation in humans; gastrointestinal function and glycaemic control in diabetes; gastric emptying; dietary nutrients; obesity

Special Issue Information

Dear Colleagues,

With the continued rise in the prevalence of obesity and its comorbidities, type 2 diabetes, and cardiovascular and hepatic disease, and the recognition that therapeutic options for both prevention and management are suboptimal, an improved understanding of the mechanisms that regulate appetite and energy intake is of pivotal importance.

Appetite and energy intake are modulated by a diverse range of factors. These include physiological mechanisms, such as acute changes in the release of gut hormones, slowing of gastric emptying, and elevations in circulating levels of metabolites, the physicochemical properties of food, and environmental influences.

This Special Issue will collate recent high-quality research in the field of appetite regulation, focussing on the investigation of gut-related mechanisms, including nutrient sensing, gut hormones, gastrointestinal motility, gut–brain communication, and roles of the vagus, diet, and the microbiome. Both original research articles and reviews spanning clinical and preclinical work are welcome.


Prof. Dr. Christine Feinle-Bisset
Prof. Michael Horowitz
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nutrients is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • eating behaviour
  • appetite
  • food intake
  • energy intake
  • satiation/satiety
  • gut mechanisms
  • appetite-regulatory hormones
  • gut hormones
  • gut functions
  • gastric emptying
  • intestinal nutrient sensing
  • dietary changes
  • gut–brain communication
  • gut microbiome
  • human
  • animal/preclinical
  • obesity
  • type 2 diabetes.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Appetite Control across the Lifecourse: The Acute Impact of Breakfast Drink Quantity and Protein Content. The Full4Health Project
Nutrients 2020, 12(12), 3710; https://doi.org/10.3390/nu12123710 - 30 Nov 2020
Abstract
Understanding the mechanisms of hunger, satiety and how nutrients affect appetite control is important for successful weight management across the lifecourse. The primary aim of this study was to describe acute appetite control across the lifecourse, comparing age groups (children, adolescents, adults, elderly), [...] Read more.
Understanding the mechanisms of hunger, satiety and how nutrients affect appetite control is important for successful weight management across the lifecourse. The primary aim of this study was to describe acute appetite control across the lifecourse, comparing age groups (children, adolescents, adults, elderly), weight categories, genders and European sites (Scotland and Greece). Participants (n = 391) consumed four test drinks, varying in composition (15% (normal protein, NP) and 30% (high protein, HP) of energy from protein) and quantity (based on 100% basal metabolic rate (BMR) and 140% BMR), on four separate days in a double-blind randomized controlled study. Ad libitum energy intake (EI), subjective appetite and biomarkers of appetite and metabolism (adults and elderly only) were measured. The adults’ appetite was significantly greater than that of the elderly across all drink types (p < 0.004) and in response to drink quantities (p < 0.001). There were no significant differences in EI between age groups, weight categories, genders or sites. Concentrations of glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) were significantly greater in the elderly than the adults (p < 0.001). Ghrelin and fasting leptin concentrations differed significantly between weight categories, genders and sites (p < 0.05), while GLP-1 and PYY concentrations differed significantly between genders only (p < 0.05). Compared to NP drinks, HP drinks significantly increased postprandial GLP-1 and PYY (p < 0.001). Advanced age was concomitant with reduced appetite and elevated anorectic hormone release, which may contribute to the development of malnutrition. In addition, appetite hormone concentrations differed between weight categories, genders and geographical locations. Full article
(This article belongs to the Special Issue Appetite and Satiety Control-Gut Mechanisms)
Open AccessArticle
Whey Protein Drink Ingestion before Breakfast Suppressed Energy Intake at Breakfast and Lunch, but Not during Dinner, and Was Less Suppressed in Healthy Older than Younger Men
Nutrients 2020, 12(11), 3318; https://doi.org/10.3390/nu12113318 - 29 Oct 2020
Abstract
Ageing is associated with changes in feeding behavior. We have reported that there is suppression of energy intake three hours after whey protein drink ingestion in young, but not older, men. This study aimed to determine these effects over a time period of [...] Read more.
Ageing is associated with changes in feeding behavior. We have reported that there is suppression of energy intake three hours after whey protein drink ingestion in young, but not older, men. This study aimed to determine these effects over a time period of 9 h. Fifteen younger (27 ± 1 years, 25.8 ± 0.7 kg/m2) and 15 older (75 ± 2 years, 26.6 ± 0.8 kg/m2) healthy men were studied on three occasions on which they received, in a randomized order, a 30 g/120 kcal, 70 g/280 kcal whey-protein, or control (~2 kcal) drink. Ad-libitum energy intake (sum of breakfast, lunch, and dinner) was suppressed in a protein load responsive fashion (P = 0.001). Suppression was minimal at breakfast, substantial at lunch (~−16%, P = 0.001), no longer present by dinner, and was less in older than younger men (−3 ± 4% vs. −8 ± 4%, P = 0.027). Cumulative protein intake was increased in the younger and older men (+20% and +42%, P < 0.001). Visual analogue scale ratings of fullness were higher and desire to eat and prospective food consumption were lower after protein vs. control, and these effects were smaller in older vs. younger men (interaction effect P < 0.05). These findings support the use of whey-protein drink supplements in older people who aim to increase their protein intake without decreasing their overall energy intake. Full article
(This article belongs to the Special Issue Appetite and Satiety Control-Gut Mechanisms)
Show Figures

Figure 1

Open AccessArticle
Cannabinoid CB1 Receptors in the Intestinal Epithelium Are Required for Acute Western-Diet Preferences in Mice
Nutrients 2020, 12(9), 2874; https://doi.org/10.3390/nu12092874 - 20 Sep 2020
Abstract
The endocannabinoid system plays an important role in the intake of palatable food. For example, endocannabinoid signaling in the upper small-intestinal epithelium is increased (i) in rats after tasting dietary fats, which promotes intake of fats, and (ii) in a mouse model of [...] Read more.
The endocannabinoid system plays an important role in the intake of palatable food. For example, endocannabinoid signaling in the upper small-intestinal epithelium is increased (i) in rats after tasting dietary fats, which promotes intake of fats, and (ii) in a mouse model of diet-induced obesity, which promotes overeating via impaired nutrient-induced gut–brain satiation signaling. We now utilized a combination of genetic, pharmacological, and behavioral approaches to identify roles for cannabinoid CB1Rs in upper small-intestinal epithelium in preferences for a western-style diet (WD, high-fat/sucrose) versus a standard rodent diet (SD, low-fat/no sucrose). Mice were maintained on SD in automated feeding chambers. During testing, mice were given simultaneous access to SD and WD, and intakes were recorded. Mice displayed large preferences for the WD, which were inhibited by systemic pretreatment with the cannabinoid CB1R antagonist/inverse agonist, AM251, for up to 3 h. We next used our novel intestinal epithelium-specific conditional cannabinoid CB1R-deficient mice (IntCB1−/−) to investigate if intestinal CB1Rs are necessary for WD preferences. Similar to AM251 treatment, preferences for WD were largely absent in IntCB1−/− mice when compared to control mice for up to 6 h. Together, these data suggest that CB1Rs in the murine intestinal epithelium are required for acute WD preferences. Full article
(This article belongs to the Special Issue Appetite and Satiety Control-Gut Mechanisms)
Show Figures

Figure 1

Open AccessArticle
The Effect of Isoleucine Supplementation on Body Weight Gain and Blood Glucose Response in Lean and Obese Mice
Nutrients 2020, 12(8), 2446; https://doi.org/10.3390/nu12082446 - 14 Aug 2020
Abstract
Chronic isoleucine supplementation prevents diet-induced weight gain in rodents. Acute-isoleucine administration improves glucose tolerance in rodents and reduces postprandial glucose levels in humans. However, the effect of chronic-isoleucine supplementation on body weight and glucose tolerance in obesity is unknown. This study aimed to [...] Read more.
Chronic isoleucine supplementation prevents diet-induced weight gain in rodents. Acute-isoleucine administration improves glucose tolerance in rodents and reduces postprandial glucose levels in humans. However, the effect of chronic-isoleucine supplementation on body weight and glucose tolerance in obesity is unknown. This study aimed to investigate the impact of chronic isoleucine on body weight gain and glucose tolerance in lean and high-fat-diet (HFD) induced-obese mice. Male C57BL/6-mice, fed a standard-laboratory-diet (SLD) or HFD for 12 weeks, were randomly allocated to: (1) Control: Drinking water; (2) Acute: Drinking water with a gavage of isoleucine (300 mg/kg) prior to the oral-glucose-tolerance-test (OGTT) or gastric-emptying-breath-test (GEBT); (3) Chronic: Drinking water with 1.5% isoleucine, for a further six weeks. At 16 weeks, an OGTT and GEBT was performed and at 17 weeks metabolic monitoring. In SLD- and HFD-mice, there was no difference in body weight, fat mass, and plasma lipid profiles between isoleucine treatment groups. Acute-isoleucine did not improve glucose tolerance in SLD- or HFD-mice. Chronic-isoleucine impaired glucose tolerance in SLD-mice. There was no difference in gastric emptying between any groups. Chronic-isoleucine did not alter energy intake, energy expenditure, or respiratory quotient in SLD- or HFD-mice. In conclusion, chronic isoleucine supplementation may not be an effective treatment for obesity or glucose intolerance. Full article
(This article belongs to the Special Issue Appetite and Satiety Control-Gut Mechanisms)
Show Figures

Figure 1

Open AccessArticle
Acute Effects of Lixisenatide on Energy Intake in Healthy Subjects and Patients with Type 2 Diabetes: Relationship to Gastric Emptying and Intragastric Distribution
Nutrients 2020, 12(7), 1962; https://doi.org/10.3390/nu12071962 - 01 Jul 2020
Cited by 1
Abstract
Glucagon-like peptide-1 receptor agonists induce weight loss, which has been suggested to relate to the slowing of gastric emptying (GE). In health, energy intake (EI) is more strongly related to the content of the distal, than the total, stomach. We evaluated the effects [...] Read more.
Glucagon-like peptide-1 receptor agonists induce weight loss, which has been suggested to relate to the slowing of gastric emptying (GE). In health, energy intake (EI) is more strongly related to the content of the distal, than the total, stomach. We evaluated the effects of lixisenatide on GE, intragastric distribution, and subsequent EI in 15 healthy participants and 15 patients with type 2 diabetes (T2D). Participants ingested a 75-g glucose drink on two separate occasions, 30 min after lixisenatide (10 mcg) or placebo subcutaneously, in a randomised, double-blind, crossover design. GE and intragastric distribution were measured for 180 min followed by a buffet-style meal, where EI was quantified. Relationships of EI with total, proximal, and distal stomach content were assessed. In both groups, lixisenatide slowed GE markedly, with increased retention in both the proximal (p < 0.001) and distal (p < 0.001) stomach and decreased EI (p < 0.001). EI was not related to the content of the total or proximal stomach but inversely related to the distal stomach at 180 min in health on placebo (r = −0.58, p = 0.03) but not in T2D nor after lixisenatide in either group. In healthy and T2D participants, the reduction in EI by lixisenatide is unrelated to changes in GE/intragastric distribution, consistent with a centrally mediated effect. Full article
(This article belongs to the Special Issue Appetite and Satiety Control-Gut Mechanisms)
Show Figures

Figure 1

Back to TopTop