Journal Description
Neuroglia
Neuroglia
is a peer-reviewed, open access journal that investigates a wide range of neuroglia-related topics, published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- Rapid Publication: first decisions in 15 days; acceptance to publication in 3 days (median values for MDPI journals in the second half of 2020).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Latest Articles
Fabp7 Is Required for Normal Sleep Suppression and Anxiety-Associated Phenotype following Single-Prolonged Stress in Mice
Neuroglia 2022, 3(2), 73-83; https://doi.org/10.3390/neuroglia3020005 - 13 May 2022
Abstract
►
Show Figures
Humans with post-traumatic stress disorder (PTSD) exhibit sleep disturbances that include insomnia, nightmares, and enhanced daytime sleepiness. Sleep disturbances are considered a hallmark feature of PTSD; however, little is known about the cellular and molecular mechanisms regulating trauma-induced sleep disorders. Using a rodent
[...] Read more.
Humans with post-traumatic stress disorder (PTSD) exhibit sleep disturbances that include insomnia, nightmares, and enhanced daytime sleepiness. Sleep disturbances are considered a hallmark feature of PTSD; however, little is known about the cellular and molecular mechanisms regulating trauma-induced sleep disorders. Using a rodent model of PTSD called “Single Prolonged Stress” (SPS) we examined the requirement of the brain-type fatty acid binding protein Fabp7, an astrocyte expressed lipid-signaling molecule, in mediating trauma-induced sleep disturbances. We measured baseline sleep/wake parameters and then exposed Fabp7 knock-out (KO) and wild-type (WT) C57BL/6N genetic background control animals to SPS. Sleep and wake measurements were obtained immediately following the initial trauma exposure of SPS, and again 7 days later. We found that active-phase (dark period) wakefulness was similar in KO and WT at baseline and immediately following SPS; however, it was significantly increased after 7 days. These effects were opposite in the inactive-phase (light period), where KOs exhibited increased wake in baseline and following SPS, but returned to WT levels after 7 days. To examine the effects of Fabp7 on unconditioned anxiety following trauma, we exposed KO and WT mice to the light–dark box test before and after SPS. Prior to SPS, KO and WT mice spent similar amounts of time in the lit compartment. Following SPS, KO mice spent significantly more time in the lit compartment compared to WT mice. These results demonstrate that mutations in an astrocyte-expressed gene (Fabp7) influence changes in stress-dependent sleep disturbances and associated anxiety behavior.
Full article
Open AccessArticle
Establishment of a Simple and Versatile Evaporation Compensation Model for In Vitro Chronic Ethanol Treatment: Impact on Neuronal Viability
Neuroglia 2022, 3(2), 61-72; https://doi.org/10.3390/neuroglia3020004 - 06 Apr 2022
Abstract
►▼
Show Figures
Alcohol overconsumption is a major cause of preventable mental disorders and death in the United States and around the world. The pathogenesis of alcohol dependence, abuse, and toxicity to the central nervous system remains incompletely understood. Cell culture-based models have been highly valuable
[...] Read more.
Alcohol overconsumption is a major cause of preventable mental disorders and death in the United States and around the world. The pathogenesis of alcohol dependence, abuse, and toxicity to the central nervous system remains incompletely understood. Cell culture-based models have been highly valuable in studying the molecular and cellular mechanisms underlying the contribution of individual CNS cell types to ethanol’s effects on the brain. However, conventional cell culture model systems carry the inherent disadvantage of rapid loss of ethanol due to evaporation following a bolus addition of ethanol at the start of the treatment. In this study, we have established a multi-well cell culture plate-based ethanol evaporation compensation model that utilizes the inter-well space as a reservoir to compensate for the evaporative loss of ethanol in the cell treatment wells. Following a single bolus addition at the start, ethanol concentration in the treatment wells rapidly decreased over time. Through compensation using the multi-well plate platform, maintenance of ethanol concentrations ranging from 10–100 mM was achieved for up to 72 h in a cell-free system. Furthermore, greater effects on ethanol-induced decrease in the viability of human dopaminergic neuronal cells were observed with than without evaporation compensation. Our method effectively compensates for the evaporative loss of ethanol typically observed in the traditional treatment method and provides a simple and economic in vitro model system for ethanol treatment over an extended timeframe where maintenance of a relatively constant concentration of ethanol is desired.
Full article

Graphical abstract
Open AccessArticle
Unique Astrocyte Cytoskeletal and Nuclear Morphology in a Three-Dimensional Tissue-Engineered Rostral Migratory Stream
Neuroglia 2022, 3(1), 41-60; https://doi.org/10.3390/neuroglia3010003 - 06 Mar 2022
Abstract
►▼
Show Figures
Neural precursor cells (NPCs) are generated in the subventricular zone (SVZ) and travel through the rostral migratory stream (RMS) to replace olfactory bulb interneurons in the brains of most adult mammals. Following brain injury, SVZ-derived NPCs can divert from the RMS and migrate
[...] Read more.
Neural precursor cells (NPCs) are generated in the subventricular zone (SVZ) and travel through the rostral migratory stream (RMS) to replace olfactory bulb interneurons in the brains of most adult mammals. Following brain injury, SVZ-derived NPCs can divert from the RMS and migrate toward injured brain regions but arrive in numbers too low to promote functional recovery without experimental intervention. Our lab has biofabricated a “living scaffold” that replicates the structural and functional features of the endogenous RMS. This tissue-engineered rostral migratory stream (TE-RMS) is a new regenerative medicine strategy designed to facilitate stable and sustained NPC delivery into neuron-deficient brain regions following brain injury or neurodegenerative disease and an in vitro tool to investigate the mechanisms of neuronal migration and cell–cell communication. We have previously shown that the TE-RMS replicates the basic structure and protein expression of the endogenous RMS and can direct immature neuronal migration in vitro and in vivo. Here, we further describe profound morphological changes that occur following precise physical manipulation and subsequent self-assembly of astrocytes into the TE-RMS, including significant cytoskeletal rearrangement and nuclear elongation. The unique cytoskeletal and nuclear architecture of TE-RMS astrocytes mimics astrocytes in the endogenous rat RMS. Advanced imaging techniques reveal the unique morphology of TE-RMS cells that has yet to be described of astrocytes in vitro. The TE-RMS offers a novel platform to elucidate astrocyte cytoskeletal and nuclear dynamics and their relationship to cell behavior and function.
Full article

Figure 1
Open AccessArticle
Glia Excitation in the CNS Modulates Intact Behaviors and Sensory-CNS-Motor Circuitry
Neuroglia 2022, 3(1), 23-40; https://doi.org/10.3390/neuroglia3010002 - 28 Feb 2022
Abstract
►▼
Show Figures
Glial cells play a role in many important processes, though the mechanisms through which they affect neighboring cells are not fully known. Insights may be gained by selectively activating glial cell populations in intact organisms utilizing the activatable channel proteins channel rhodopsin (ChR2XXL)
[...] Read more.
Glial cells play a role in many important processes, though the mechanisms through which they affect neighboring cells are not fully known. Insights may be gained by selectively activating glial cell populations in intact organisms utilizing the activatable channel proteins channel rhodopsin (ChR2XXL) and TRPA1. Here, the impacts of the glial-specific expression of these channels were examined in both larval and adult Drosophila. The Glia > ChR2XXL adults and larvae became immobile when exposed to blue light and TRPA1-expressed Drosophila upon heat exposure. The chloride pump expression in glia > eNpHR animals showed no observable differences in adults or larvae. In the in situ neural circuit activity of larvae in the Glia > ChR2XXL, the evoked activity first became more intense with concurrent light exposure, and then the activity was silenced and slowly picked back up after light was turned off. This decrease in motor nerve activity was also noted in the intact behaviors for Glia > ChR2XXL and Glia > TRPA1 larvae. As a proof of concept, this study demonstrated that activation of the glia can produce excessive neural activity and it appears with increased excitation of the glia and depressed motor neuron activity.
Full article

Graphical abstract
Open AccessReview
Transplantation of Olfactory Ensheathing Cells: Properties and Therapeutic Effects after Transplantation into the Lesioned Nervous System
by
and
Neuroglia 2022, 3(1), 1-22; https://doi.org/10.3390/neuroglia3010001 - 28 Jan 2022
Abstract
The primary olfactory system (POS) is in permanent renewal, especially the primary olfactory neurons (PON) are renewed with a turnover of around four weeks, even in adulthood. The re-growth of these axons is helped by a specific population of glial cells: the olfactory
[...] Read more.
The primary olfactory system (POS) is in permanent renewal, especially the primary olfactory neurons (PON) are renewed with a turnover of around four weeks, even in adulthood. The re-growth of these axons is helped by a specific population of glial cells: the olfactory ensheathing cells (OECs). In the POS, OECs constitute an “open-channel” in which the axons of PON cause regrowth from peripheral nervous system (PNS) to central nervous system (CNS). The remarkable role played by OECs into the POS has led scientists to investigate their properties and potential beneficial effects after transplantation in different lesion models of the CNS and PNS. In this review, we will resume and discuss more than thirty years of research regarding OEC studies. Indeed, after discussing the embryonic origins of OECs, we will describe the in vitro and in vivo properties exert at physiological state by these cells. Thereafter, we will present and talk over the effects of the transplantation of OECs after spinal cord injury, peripheral injury and other CNS injury models such as demyelinating diseases or traumatic brain injury. Finally, the mechanisms exerted by OECs in these different CNS and PNS lesion paradigms will be stated and we will conclude by presenting the innovations and future directions which can be considered to improve OECs properties and allow us to envisage their use in the near future in clinical applications.
Full article
(This article belongs to the Special Issue Transplantation of Glial Cells to Repair Injuries and Diseases of the Nervous System)
►▼
Show Figures

Figure 1
Open AccessArticle
Neuroprotective and Anti-Microglial Activation Effects of Tocotrienols in Brains of Lipopolysaccharide-Induced Inflammatory Model Mice
by
, , , , , , , , , , and
Neuroglia 2021, 2(1), 89-97; https://doi.org/10.3390/neuroglia2010009 - 16 Dec 2021
Abstract
►▼
Show Figures
Inflammation is the cause and/or result of many diseases in peripheral tissues and the central nervous system. Recent findings suggested that inflammation in peripheral tissue induces an inflammatory response in the brain that activates glial cells, which, in turn, induce neuronal cell dysfunction.
[...] Read more.
Inflammation is the cause and/or result of many diseases in peripheral tissues and the central nervous system. Recent findings suggested that inflammation in peripheral tissue induces an inflammatory response in the brain that activates glial cells, which, in turn, induce neuronal cell dysfunction. Therefore, anti-inflammatory compounds are important for the suppression of chronic inflammation and prevention of disease. The present study revealed microglial activation in the hippocampus of the brain two days after the peripheral administration of lipopolysaccharide (LPS). Furthermore, the expression of the synaptic vesicle membrane protein, synaptophysin, in the CA3 stratum lucidum of the hippocampus was down-regulated 7 days after the LPS injection. The administration of tocotrienols, a type of vitamin E, significantly attenuated these changes in the hippocampus. Collectively, the present results demonstrated the spread of peripheral inflammatory responses to the brain, in which glial activation and neuronal dysfunction were induced, while tocotrienols exerted anti-inflammatory effects and protected neurons from damage.
Full article

Figure 1
Open AccessArticle
Molecular and Functional Characterization of Caveolae in Mixed Cultures of Human NT-2 Neurons and Astrocytes
Neuroglia 2021, 2(1), 68-88; https://doi.org/10.3390/neuroglia2010008 - 08 Dec 2021
Abstract
►▼
Show Figures
Caveolae are plasma membrane invaginations that are enriched in cholesterol-binding proteins called caveolins. The presence of caveolae and caveolins in mixed cultures of human neurons and glia has not been investigated. Here, we sought to determine the presence of caveolae and caveolins in
[...] Read more.
Caveolae are plasma membrane invaginations that are enriched in cholesterol-binding proteins called caveolins. The presence of caveolae and caveolins in mixed cultures of human neurons and glia has not been investigated. Here, we sought to determine the presence of caveolae and caveolins in human NTera-2 (NT2/D1) cells, differentiated with retinoic acid into neuron-like (NT2/N) and astrocyte-like (NT2/A) cells. We found that while caveolin-3 mRNA levels remained relatively constant, caveolin-1 and -2 levels were upregulated in NT2/A and downregulated in NT2/N. No caveolin-1 immunoreactivity was detected in NT2/N. Electron microscopy revealed numerous flask-shaped invaginations (~86–102 nm in diameter) in the plasma membrane of NT2/A and NT2/N cells, while only few were detected in NT2/D1 cells. Immunoelectron microscopy localized caveolin-1 gold particles in the flask-shaped structures on plasmalemma and cytoplasmic vesicles of NT2/A cells. Furthermore, NT2/A endocytosed Alexa 488 conjugated-cholera toxin B subunit (CTX-B) through a caveolae- and clathrin-dependent pathway, whereas NT2/N endocytosed CTX-B through a caveolae-independent pathway. We have established that while NT2/A expressed functional caveolae, the molecular identity of the plasma membrane invaginations in NT2/N is unknown. The expression of caveolin proteins was differentially regulated in these cells. Taken together, our findings support the usefulness of the human NT2 model system to study the role of caveolins in neuron–glia communication, and their involvement in brain health and disease.
Full article

Figure 1
Open AccessArticle
The Effect of Optogenetically Activating Glia on Neuronal Function
Neuroglia 2021, 2(1), 57-67; https://doi.org/10.3390/neuroglia2010007 - 22 Oct 2021
Cited by 1
Abstract
►▼
Show Figures
Glia, or glial cells, are considered a vital component of the nervous system, serving as an electrical insulator and a protective barrier from the interstitial (extracellular) media. Certain glial cells (i.e., astrocytes, microglia, and oligodendrocytes) within the CNS have been shown to directly
[...] Read more.
Glia, or glial cells, are considered a vital component of the nervous system, serving as an electrical insulator and a protective barrier from the interstitial (extracellular) media. Certain glial cells (i.e., astrocytes, microglia, and oligodendrocytes) within the CNS have been shown to directly affect neural functions, but these properties are challenging to study due to the difficulty involved with selectively-activating specific glia. To overcome this hurdle, we selectively expressed light-sensitive ion channels (i.e., channel rhodopsin, ChR2-XXL) in glia of larvae and adult Drosophila melanogaster. Upon activation of ChR2, both adults and larvae showed a rapid contracture of body wall muscles with the animal remaining in contracture even after the light was turned off. During ChR2-XXL activation, electrophysiological recordings of evoked excitatory junction potentials within body wall muscles of the larvae confirmed a train of motor nerve activity. Additionally, when segmental nerves were transected from the CNS and exposed to light, there were no noted differences in quantal or evoked responses. This suggests that there is not enough expression of ChR2-XXL to influence the segmental axons to detect in our paradigm. Activation of the glia within the CNS is sufficient to excite the motor neurons.
Full article

Figure 1
Open AccessArticle
Direct Deviations in Astrocyte Free Ca2+ Concentration Control Multiple Arteriole Tone States
by
and
Neuroglia 2021, 2(1), 48-56; https://doi.org/10.3390/neuroglia2010006 - 14 Oct 2021
Abstract
Astrocytes elicit bidirectional control of microvascular diameter in acutely isolated brain slices through vasoconstriction and vasodilation pathways that can be differentially recruited via the free Ca2+ concentration in endfeet and/or the metabolic status of the tissue. However, the Ca2+-level hypothesis
[...] Read more.
Astrocytes elicit bidirectional control of microvascular diameter in acutely isolated brain slices through vasoconstriction and vasodilation pathways that can be differentially recruited via the free Ca2+ concentration in endfeet and/or the metabolic status of the tissue. However, the Ca2+-level hypothesis has not been tested using direct manipulation. To overcome this, we used Ca2+-clamp whole-cell patching of peri-arteriole astrocytes to change astrocyte-free Ca2+ to different concentrations and examined the vascular response. We discovered that clamping Ca2+ at the approximate resting value (100 nM) had no impact on arteriole diameter in a pre-constricted arteriole. However, a moderate elevation to 250 nM elicited sustained vasodilation that was blocked by the COX-1 antagonist SC-560 (500 nM). The vasodilation to 250 nM Ca2+ was sensitive to the metabolic state, as it converted to vasoconstriction when oxygen tension was dramatically elevated. In normal oxygen, clamping astrocyte Ca2+ well above the resting level (750 nM) produced sustained vasoconstriction, which converted to vasodilation in the 20-HETE blocker HET0016 (1 μM). This response was fully blocked by the addition of SC-560 (500 nM), showing that 20-HETE-induced vasoconstriction dominated the dilatory action of COX-1. These data demonstrate that direct changes in astrocyte free Ca2+ can control multiple arteriole tone states through different mediators.
Full article
(This article belongs to the Special Issue Dynamic Vascular-Glial-Neuronal Interactions in Health and Disease)
►▼
Show Figures

Figure 1
Open AccessReview
Neurovascular Coupling in Seizures
by
and
Neuroglia 2021, 2(1), 36-47; https://doi.org/10.3390/neuroglia2010005 - 11 Oct 2021
Abstract
Neurovascular coupling is a key control mechanism in cerebral blood flow (CBF) regulation. Importantly, this process was demonstrated to be affected in several neurological disorders, including epilepsy. Neurovascular coupling (NVC) is the basis for functional brain imaging, such as PET, SPECT, fMRI, and
[...] Read more.
Neurovascular coupling is a key control mechanism in cerebral blood flow (CBF) regulation. Importantly, this process was demonstrated to be affected in several neurological disorders, including epilepsy. Neurovascular coupling (NVC) is the basis for functional brain imaging, such as PET, SPECT, fMRI, and fNIRS, to assess and map neuronal activity, thus understanding NVC is critical to properly interpret functional imaging signals. However, hemodynamics, as assessed by these functional imaging techniques, continue to be used as a surrogate to map seizure activity; studies of NVC and cerebral blood flow control during and following seizures are rare. Recent studies have provided conflicting results, with some studies showing focal increases in CBF at the onset of a seizure while others show decreases. In this brief review article, we provide an overview of the current knowledge state of neurovascular coupling and discuss seizure-related alterations in neurovascular coupling and CBF control.
Full article
(This article belongs to the Special Issue Dynamic Vascular-Glial-Neuronal Interactions in Health and Disease)
►▼
Show Figures

Figure 1
Open AccessReview
Hypothesis: Neuroglia Activation Due to Increased Peripheral and CNS Proinflammatory Cytokines/Chemokines with Neuroinflammation May Result in Long COVID
Neuroglia 2021, 2(1), 7-35; https://doi.org/10.3390/neuroglia2010004 - 30 Aug 2021
Cited by 2
Abstract
►▼
Show Figures
The COVID-19 pandemic has paralleled the great Spanish flu pandemic of 1918–1919 in the United States. Previous historical accounts have strongly suggested a post-viral syndrome and, currently, a post-COVID-19 viral syndrome is unquestionable, which shares many of the characteristics of myalgic encephalomyelitis/chronic fatigue
[...] Read more.
The COVID-19 pandemic has paralleled the great Spanish flu pandemic of 1918–1919 in the United States. Previous historical accounts have strongly suggested a post-viral syndrome and, currently, a post-COVID-19 viral syndrome is unquestionable, which shares many of the characteristics of myalgic encephalomyelitis/chronic fatigue syndrome that is present globally. The original term for this post-acute sequela of SARS-CoV-2 (PASC) was termed long haulers by those who were affected with this syndrome and it is now termed long COVID (LC) or PASC. International researchers and clinicians are desperately trying to better understand the pathobiological mechanisms possibly involved in this syndrome. This review aims to summarize many of the cumulated findings associated with LC/PASC and provides supportive and representative illustrations and transmission electron micrographic remodeling changes within brain tissues associated with a stress type of injury as occurs in the classic db/db and novel BTBR ob/ob obesity and diabetes mellitus mice models. These models are utilized to merely provide a response to metabolic stress injury wound healing mechanisms that are also present in humans. This review posits that neuroglial activation and chronic neuroinflammation may be a common denominator for the development of the complex LC/PASC syndrome following acute COVID-19 due to SARS-CoV-2.
Full article

Graphical abstract
Open AccessEditorial
Neuroglia—An Open Access Journal: Editor-in-Chief Biography
Neuroglia 2021, 2(1), 4-6; https://doi.org/10.3390/neuroglia2010003 - 11 Jun 2021
Abstract
James St John grew up in Melbourne, Australia and started his scientific career in agricultural science [...]
Full article
Open AccessEditorial
Neuroglia—An Open Access Journal
Neuroglia 2021, 2(1), 2-3; https://doi.org/10.3390/neuroglia2010002 - 04 Jun 2021
Abstract
Welcome to Neuroglia, a new Open Access MDPI journal which will report original research articles and reviews on studies of neuroglia [...]
Full article
Open AccessEditorial
Publisher’s Note: Resumed Publication of Neuroglia by MDPI
Neuroglia 2021, 2(1), 1; https://doi.org/10.3390/neuroglia2010001 - 27 Apr 2021
Abstract
Since the launch of the first journal Molecules [...]
Full article
Open AccessArticle
Role for Astroglia-Derived BDNF and MSK1 in Homeostatic Synaptic Plasticity
Neuroglia 2018, 1(2), 381-394; https://doi.org/10.3390/neuroglia1020026 - 22 Nov 2018
Cited by 3
Abstract
►▼
Show Figures
Homeostatic scaling of synaptic strength in response to environmental stimuli may underlie the beneficial effects of an active lifestyle on brain function. Our previous results highlighted a key role for brain-derived neurotrophic factor (BDNF) and mitogen- and stress-activated protein kinase 1 (MSK1) in
[...] Read more.
Homeostatic scaling of synaptic strength in response to environmental stimuli may underlie the beneficial effects of an active lifestyle on brain function. Our previous results highlighted a key role for brain-derived neurotrophic factor (BDNF) and mitogen- and stress-activated protein kinase 1 (MSK1) in experience-related homeostatic synaptic plasticity. Astroglia have recently been shown to serve as an important source of BDNF. To elucidate a role for astroglia-derived BDNF, we explored homeostatic synaptic plasticity in transgenic mice with an impairment in the BDNF/MSK1 pathway (MSK1 kinase dead knock-in (KD) mice) and impairment of glial exocytosis (dnSNARE mice). We observed that prolonged tonic activation of astrocytes caused BDNF-dependent upregulation of excitatory synaptic currents accompanied by enlargement of synaptic boutons. We found that exposure to environmental enrichment (EE) and caloric restriction (CR) strongly upregulated excitatory but downregulated inhibitory synaptic currents in old wild-type mice, thus counterbalancing the impact of ageing on synaptic transmission. In parallel, EE and CR enhanced astrocytic Ca2+-signalling. Importantly, we observed a significant deficit in the effects of EE and CR on synaptic transmission in the MSK1 KD and dnSNARE mice. Combined, our results strongly support the importance of astrocytic exocytosis of BDNF for the beneficial effects of EE and CR on synaptic transmission and plasticity in the ageing brain.
Full article

Figure 1
Open AccessArticle
Putative Receptors Underpinning l-Lactate Signalling in Locus Coeruleus
by
, , , , , , and
Neuroglia 2018, 1(2), 365-380; https://doi.org/10.3390/neuroglia1020025 - 16 Nov 2018
Cited by 11
Abstract
►▼
Show Figures
The importance of astrocytic l-lactate (LL) for normal functioning of neural circuits such as those regulating learning/memory, sleep/wake state, autonomic homeostasis, or emotional behaviour is being increasingly recognised. l-Lactate can act on neurones as a metabolic or redox substrate, but transmembrane
[...] Read more.
The importance of astrocytic l-lactate (LL) for normal functioning of neural circuits such as those regulating learning/memory, sleep/wake state, autonomic homeostasis, or emotional behaviour is being increasingly recognised. l-Lactate can act on neurones as a metabolic or redox substrate, but transmembrane receptor targets are also emerging. A comparative review of the hydroxy-carboxylic acid receptor (HCA1, formerly known as GPR81), Olfactory Receptor Family 51 Subfamily E Member 2 (OR51E2), and orphan receptor GPR4 highlights differences in their LL sensitivity, pharmacology, intracellular coupling, and localisation in the brain. In addition, a putative Gs-coupled receptor on noradrenergic neurones, LLRx, which we previously postulated, remains to be identified. Next-generation sequencing revealed several orphan receptors expressed in locus coeruleus neurones. Screening of a selection of these suggests additional LL-sensitive receptors: GPR180 which inhibits and GPR137 which activates intracellular cyclic AMP signalling in response to LL in a heterologous expression system. To further characterise binding of LL at LLRx, we carried out a structure–activity relationship study which demonstrates that carboxyl and 2-hydroxyl moieties of LL are essential for triggering d-lactate-sensitive noradrenaline release in locus coeruleus, and that the size of the LL binding pocket is limited towards the methyl group position. The evidence accumulating to date suggests that LL acts via multiple receptor targets to modulate distinct brain functions.
Full article

Figure 1
Open AccessArticle
Ultrastructural Remodeling of the Neurovascular Unit in the Female Diabetic db/db Model—Part III: Oligodendrocyte and Myelin
Neuroglia 2018, 1(2), 351-364; https://doi.org/10.3390/neuroglia1020024 - 08 Nov 2018
Cited by 6
Abstract
►▼
Show Figures
Obesity, insulin resistance, and type 2 diabetes mellitus are associated with diabetic cognopathy. In this study, we tested the hypothesis that neurovascular unit(s) (NVU), oligodendrocytes, and myelin within cerebral cortical grey matter and deeper transitional zone regions between the cortical grey matter and
[...] Read more.
Obesity, insulin resistance, and type 2 diabetes mellitus are associated with diabetic cognopathy. In this study, we tested the hypothesis that neurovascular unit(s) (NVU), oligodendrocytes, and myelin within cerebral cortical grey matter and deeper transitional zone regions between the cortical grey matter and white matter may be abnormal. The monogenic (Leprdb) female diabetic db/db [BKS.CgDock7m +/+ Leprdb/J] (DBC) mouse model was utilized for this ultrastructural study. Upon sacrifice (20 weeks of age), left-brain hemispheres of the DBC and age-matched non-diabetic wild type control C57BL/KsJ (CKC) mice were immediately immersion-fixed. We found prominent remodeling of oligodendrocytes with increased nuclear chromatin condensation and volume and increased numbers of active myelination sites of the cytoplasm in transition zones. Marked dysmyelination with outer myelin lamellae sheath splitting, separation, and ballooning with aberrant mitochondria in grey matter and similar myelin remodeling changes with marked disarray with additional axonal collapse in transitional zones in DBC as compared to CKC models.
Full article

Figure 1
Open AccessReview
Understanding the Relevance of Aging-Related Tau Astrogliopathy (ARTAG)
Neuroglia 2018, 1(2), 339-350; https://doi.org/10.3390/neuroglia1020023 - 29 Oct 2018
Cited by 6
Abstract
►▼
Show Figures
Aging-related tau astrogliopathy (ARTAG) is an umbrella term that encompasses a spectrum of morphological abnormalities seen in astrocytes of the aging brain using immunostaining for pathological forms of the microtubule-associated protein tau. Morphologies of ARTAG include thorn-shaped astrocytes (TSA), and additionally granular/fuzzy astrocytes
[...] Read more.
Aging-related tau astrogliopathy (ARTAG) is an umbrella term that encompasses a spectrum of morphological abnormalities seen in astrocytes of the aging brain using immunostaining for pathological forms of the microtubule-associated protein tau. Morphologies of ARTAG include thorn-shaped astrocytes (TSA), and additionally granular/fuzzy astrocytes (GFA) characterized by fine granular tau immunoreactivity extending into the astrocytic processes. Thorn-shaped astrocytes can be present in the same brain in subpial, subependymal, perivascular, and white and gray matter locations together with GFAs, which are seen in the gray matter. Primary tauopathies show ARTAG-related morphologies as well, moreover, GFA has been proposed to present a conceptual link between brain ageing and primary tauopathies. Sequential distribution patterns have been recognized for subpial, white and gray matter ARTAG. This either suggests the involvement of astrocytes in the propagation of tau pathology or reflects the consequence of a long-term pathogenic process such as barrier dysfunction, local mechanical impact, or early response to neuronal degeneration. The concept of ARTAG facilitated communication among neuropathologists and researchers, informed biomarker researchers with focus on tau-related indicators and motivated further exploration of the significance of astrocytic lesions in various neurodegenerative conditions.
Full article

Figure 1
Open AccessArticle
Effects of Chemically-Functionalized Single-Walled Carbon Nanotubes on the Morphology and Vitality of D54MG Human Glioblastoma Cells
by
, , , , and
Neuroglia 2018, 1(2), 327-338; https://doi.org/10.3390/neuroglia1020022 - 16 Oct 2018
Cited by 1
Abstract
►▼
Show Figures
The unique properties of single-walled carbon nanotubes (SWCNTs) have made them interesting candidates for applications in biomedicine. There are diverse chemical groups that can be attached to SWCNTs in order for these tiny tubes to gain various functionalities, for example, water solubility. Due
[...] Read more.
The unique properties of single-walled carbon nanotubes (SWCNTs) have made them interesting candidates for applications in biomedicine. There are diverse chemical groups that can be attached to SWCNTs in order for these tiny tubes to gain various functionalities, for example, water solubility. Due to the availability of these “functionalization” approaches, SWCNTs are seen as agents for a potential anti-cancer therapy. In this context, we tested different chemically-functionalized forms of SWCNTs to determine which modifications make them better combatants against glioblastoma (astrocytoma grade IV), the deadliest brain cancer. We investigated the effects that two types of water soluble SWCNTs, functionalized with polyethylene glycol (SWCNT-PEG) or tetrahydrofurfuryl-terminated polyethylene glycol (SWCNT-PEG-THFF), have on the morphology and vitality, that is, cell adhesion, proliferation and death rate, of the D54MG human glioblastoma cells in culture. We found that SWCNT-PEG-THFF solute, when added to culture media, makes D54MG cells less round (measured as a significant decrease, by ~23%, in the form factor). This morphological change was induced by the PEG-THFF functional group, but not the SWCNT backbone itself. We also found that SWCNT-PEG-THFF solute reduces the proliferation rate of D54MG cells while increasing the rate of cell death. The functional groups PEG and PEG-THFF, on the other hand, reduce the cell death rate of D54MG human glioma cells. These data indicate that the process of functionalization of SWCNTs for potential use as glioma therapeutics may affect their biological effects.
Full article

Figure 1
Open AccessArticle
Ultrastructural Remodeling of the Neurovascular Unit in the Female Diabetic db/db Model–Part II: Microglia and Mitochondria
Neuroglia 2018, 1(2), 311-326; https://doi.org/10.3390/neuroglia1020021 - 07 Oct 2018
Cited by 11
Abstract
►▼
Show Figures
Obesity, insulin resistance, and type 2 diabetes mellitus are associated with diabetic cognopathy. This study tested the hypothesis that neurovascular unit(s) (NVU) within cerebral cortical gray matter regions may depict abnormal cellular remodeling. The monogenic (Leprdb) female diabetic db/db [BKS.Cg
[...] Read more.
Obesity, insulin resistance, and type 2 diabetes mellitus are associated with diabetic cognopathy. This study tested the hypothesis that neurovascular unit(s) (NVU) within cerebral cortical gray matter regions may depict abnormal cellular remodeling. The monogenic (Leprdb) female diabetic db/db [BKS.CgDock7m +/+Leprdb/J] (DBC) mouse model was utilized for this ultrastructural study. Upon sacrifice (20 weeks), left-brain hemispheres of the DBC and age-matched nondiabetic control C57BL/KsJ (CKC) mice were immediately immersion-fixed. We observed an attenuation/loss of endothelial blood–brain barrier tight/adherens junctions and pericytes, thickened basement membranes, adherent red and white blood cells, neurovascular unit microbleeds and pathologic remodeling of protoplasmic astrocytes. In this second of a three-part series, we focus on the observational ultrastructural remodeling of microglia and mitochondria in relation to the NVU in leptin receptor deficient DBC models. This study identified novel ultrastructural core signature remodeling changes, which consisted of invasive activated microglia, microglial aberrant mitochondria with nuclear chromatin condensation and adhesion of white blood cells to an activated endothelium of the NVU. In conclusion, the results implicate activated microglia in NVU uncoupling and the resulting ischemic neuronal and synaptic damage, which may be related to impaired cognition and diabetic cognopathy.
Full article

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Behavioral Sciences, Brain Sciences, Children, Education Sciences, Neuroglia
Personality and Individual Differences in Creative Potential and Production across the Life Span
Topic Editors: Simonetta D’Amico, Massimiliano Palmiero, Laura Piccardi, Marco GiancolaDeadline: 15 November 2022

Conferences
Special Issues
Special Issue in
Neuroglia
New Insights into the Anti-inflammatory Role of Microglia
Guest Editor: Antonia CianciulliDeadline: 1 March 2023