Beyond the Neuron: The Integrated Role of Glia in Psychiatric Disorders
Abstract
:1. Introduction
2. Methods
3. Basic Concepts and Physiology of Neuroglia
3.1. Astrocytes
3.2. Microglia
3.3. Oligodendrocytes
3.4. Other Glial Interactions
4. Neuroglia and Psychiatric Disorders
4.1. Major Depression Disorder
4.2. Bipolar Disorder
4.3. Anxiety Disorders
4.4. ADHD
4.5. Schizophrenia
5. Future Directions: Possibilities, Challenges, and Dangers
5.1. Possibilities
5.2. Challenges
- Breadth of Glial Functions
- 2.
- Difficulty Accessing Brain Tissue
- 3.
- Interindividual Variability
- 4.
- Systemic Nature of Inflammation
- 5.
- Scarcity of Specific Biomarkers
5.3. Dangers
6. Final Considerations
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Araque, A.; Navarrete, M. Glial Cells in Neuronal Network Function. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2375–2381. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Shimizu, E.; Iyo, M. Dysfunction of Glia-Neuron Communication in Pathophysiology of Schizophrenia. Curr. Psychiatry Rev. 2005, 1, 151–163. [Google Scholar] [CrossRef]
- Mayegowda, S.B.; Thomas, C. Glial Pathology in Neuropsychiatric Disorders: A Brief Review. J. Basic Clin. Physiol. Pharmacol. 2019, 30, 20180120. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Choi, J.; Yoon, B.-E. Neuron-Glia Interactions in Neurodevelopmental Disorders. Cells 2020, 9, 2176. [Google Scholar] [CrossRef]
- Koizumi, S. Glial Purinergic Signals and Psychiatric Disorders. Front. Cell. Neurosci. 2022, 15, 822614. [Google Scholar] [CrossRef]
- Božić, I.; Savić, D.; Lavrnja, I. Astrocyte Phenotypes: Emphasis on Potential Markers in Neuroinflammation. Histol. Histopathol. 2021, 36, 267–290. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Yang, Y.; Ju, W.-N.; Wang, X.; Zhang, H.-L. Emerging Roles of Astrocytes in Neuro-Vascular Unit and the Tripartite Synapse With Emphasis on Reactive Gliosis in the Context of Alzheimer’s Disease. Front. Cell. Neurosci. 2018, 12, 193. [Google Scholar] [CrossRef]
- Jurga, A.M.; Paleczna, M.; Kadluczka, J.; Kuter, K.Z. Beyond the GFAP-Astrocyte Protein Markers in the Brain. Biomolecules 2021, 11, 1361. [Google Scholar] [CrossRef]
- Santello, M.; Calì, C.; Bezzi, P. Gliotransmission and the Tripartite Synapse. In Synaptic Plasticity: Dynamics, Development and Disease; Kreutz, M.R., Sala, C., Eds.; Springer: Vienna, Austria, 2012; pp. 307–331. ISBN 978-3-7091-0932-8. [Google Scholar]
- Stanca, S.; Rossetti, M.; Bongioanni, P. Astrocytes as Neuroimmunocytes in Alzheimer’s Disease: A Biochemical Tool in the Neuron–Glia Crosstalk along the Pathogenetic Pathways. Int. J. Mol. Sci. 2023, 24, 13880. [Google Scholar] [CrossRef]
- Laricchiuta, D.; Papi, M.; Decandia, D.; Panuccio, A.; Cutuli, D.; Peciccia, M.; Mazzeschi, C.; Petrosini, L. The Role of Glial Cells in Mental Illness: A Systematic Review on Astroglia and Microglia as Potential Players in Schizophrenia and Its Cognitive and Emotional Aspects. Front. Cell. Neurosci. 2024, 18, 1358450. [Google Scholar] [CrossRef]
- Najjar, S.; Pearlman, D.M. Neuroinflammation and White Matter Pathology in Schizophrenia: Systematic Review. Schizophr. Res. 2015, 161, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Monji, A.; Kato, T.A.; Mizoguchi, Y.; Horikawa, H.; Seki, Y.; Kasai, M.; Yamauchi, Y.; Yamada, S.; Kanba, S. Neuroinflammation in Schizophrenia Especially Focused on the Role of Microglia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2013, 42, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Uranova, N.A.; Vikhreva, O.V.; Rakhmanova, V.I.; Orlovskaya, D.D. Dystrophy of Oligodendrocytes and Adjacent Microglia in Prefrontal Gray Matter in Schizophrenia. Front. Psychiatry 2020, 11, 204. [Google Scholar] [CrossRef] [PubMed]
- Haroutunian, V.; Katsel, P.; Roussos, P.; Davis, K.L.; Altshuler, L.L.; Bartzokis, G. Myelination, Oligodendrocytes, and Serious Mental Illness. Glia 2014, 62, 1856–1877. [Google Scholar] [CrossRef]
- Raabe, F.J.; Slapakova, L.; Rossner, M.J.; Cantuti-Castelvetri, L.; Simons, M.; Falkai, P.G.; Schmitt, A. Oligodendrocytes as A New Therapeutic Target in Schizophrenia: From Histopathological Findings to Neuron-Oligodendrocyte Interaction. Cells 2019, 8, 1496. [Google Scholar] [CrossRef]
- Chew, L.-J.; Fusar-Poli, P.; Schmitz, T. Oligodendroglial Alterations and the Role of Microglia in White Matter Injury: Relevance to Schizophrenia. Dev. Neurosci. 2013, 35, 102–129. [Google Scholar] [CrossRef]
- Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyte–Endothelial Interactions at the Blood–Brain Barrier. Nat. Rev. Neurosci. 2006, 7, 41–53. [Google Scholar] [CrossRef]
- Lenz, M.; Eichler, A.; Vlachos, A. Monitoring and Modulating Inflammation-Associated Alterations in Synaptic Plasticity: Role of Brain Stimulation and the Blood–Brain Interface. Biomolecules 2021, 11, 359. [Google Scholar] [CrossRef]
- Matejuk, A.; Ransohoff, R.M. Crosstalk Between Astrocytes and Microglia: An Overview. Front. Immunol. 2020, 11, 1416. [Google Scholar] [CrossRef]
- Galea, I. The Blood–Brain Barrier in Systemic Infection and Inflammation. Cell. Mol. Immunol. 2021, 18, 2489–2501. [Google Scholar] [CrossRef]
- Andoh, M.; Koyama, R. Microglia Regulate Synaptic Development and Plasticity. Dev. Neurobiol. 2021, 81, 568–590. [Google Scholar] [CrossRef] [PubMed]
- Ota, Y.; Zanetti, A.T.; Hallock, R.M. The Role of Astrocytes in the Regulation of Synaptic Plasticity and Memory Formation. Neural Plast. 2013, 2013, 185463. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Teschemacher, A.G.; Kasparov, S. Astroglia as a Cellular Target for Neuroprotection and Treatment of Neuro-Psychiatric Disorders. Glia 2017, 65, 1205–1226. [Google Scholar] [CrossRef] [PubMed]
- Mondelli, V.; Vernon, A.C.; Turkheimer, F.; Dazzan, P.; Pariante, C.M. Brain Microglia in Psychiatric Disorders. Lancet Psychiatry 2017, 4, 563–572. [Google Scholar] [CrossRef]
- Réus, G.Z.; Fries, G.R.; Stertz, L.; Badawy, M.; Passos, I.C.; Barichello, T.; Kapczinski, F.; Quevedo, J. The Role of Inflammation and Microglial Activation in the Pathophysiology of Psychiatric Disorders. Neuroscience 2015, 300, 141–154. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Chiba, K. Diversity and Plasticity of Microglial Cells in Psychiatric and Neurological Disorders. Pharmacol. Ther. 2015, 154, 21–35. [Google Scholar] [CrossRef]
- Verkhratsky, A.; Parpura, V. Astrogliopathology in Neurological, Neurodevelopmental and Psychiatric Disorders. Neurobiol. Dis. 2016, 85, 254–261. [Google Scholar] [CrossRef]
- Najjar, S.; Pearlman, D.M.; Alper, K.; Najjar, A.; Devinsky, O. Neuroinflammation and Psychiatric Illness. J. Neuroinflamm. 2013, 10, 816. [Google Scholar] [CrossRef]
- Wohleb, E.S. Neuron–Microglia Interactions in Mental Health Disorders: “For Better, and For Worse”. Front. Immunol. 2016, 7, 544. [Google Scholar] [CrossRef]
- Cotter, D.R.; Pariante, C.M.; Everall, I.P. Glial Cell Abnormalities in Major Psychiatric Disorders: The Evidence and Implications. Brain Res. Bull. 2001, 55, 585–595. [Google Scholar] [CrossRef]
- Scuderi, C.; Noda, M.; Verkhratsky, A. Editorial: Neuroglia Molecular Mechanisms in Psychiatric Disorders. Front. Mol. Neurosci. 2018, 11, 564. [Google Scholar] [CrossRef]
- Pittenger, C.; Duman, R.S. Stress, Depression, and Neuroplasticity: A Convergence of Mechanisms. Neuropsychopharmacology 2008, 33, 88–109. [Google Scholar] [CrossRef]
- Lee, J.G.; Seo, M.K.; Park, S.W.; Kim, Y.H. Neuroglia and Mood Disorder. Korean J. Biol. Psychiatry 2016, 22, 34–39. [Google Scholar]
- Cotter, D.; Mackay, D.; Chana, G.; Beasley, C.; Landau, S.; Everall, I.P. Reduced Neuronal Size and Glial Cell Density in Area 9 of the Dorsolateral Prefrontal Cortex in Subjects with Major Depressive Disorder. Cereb. Cortex 2002, 12, 386–394. [Google Scholar] [CrossRef]
- Rajkowska, G.; Miguel-Hidalgo, J.J. Gliogenesis and Glial Pathology in Depression. CNS Neurol. Disord.-Drug Targets 2007, 6, 219–233. [Google Scholar] [CrossRef]
- Sanacora, G.; Treccani, G.; Popoli, M. Towards a Glutamate Hypothesis of Depression: An Emerging Frontier of Neuropsychopharmacology for Mood Disorders. Neuropharmacology 2012, 62, 63–77. [Google Scholar] [CrossRef]
- Lu, C.-L.; Ren, J.; Cao, X. An Astroglial Basis of Major Depressive Disorder: Molecular, Cellular, and Circuit Features. Biol. Psychiatry 2025, 97, 217–226. [Google Scholar] [CrossRef]
- Liu, Q.; Li, R.; Yang, W.; Cui, R.; Li, B. Role of Neuroglia in Neuropathic Pain and Depression. Pharmacol. Res. 2021, 174, 105957. [Google Scholar] [CrossRef]
- Eldomiaty, M.A.; Makarenko, O.; Hassan, Z.A.; Almasry, S.M.; Petrov, P.; Elnaggar, A.M. Contribution of Glia Cells Specifically Astrocytes in the Pathology of Depression: Immunohistochemical Study in Different Brain Areas. Folia Morphol. 2020, 79, 419–428. [Google Scholar] [CrossRef]
- Scuderi, C.; Verkhratsky, A.; Parpura, V.; Li, B. Neuroglia in Psychiatric Disorders. In Astrocytes in Psychiatric Disorders; Li, B., Parpura, V., Verkhratsky, A., Scuderi, C., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 3–19. ISBN 978-3-030-77375-5. [Google Scholar]
- Leonard, B.E. Inflammation and Depression: A Causal or Coincidental Link to the Pathophysiology? Acta Neuropsychiatr. 2018, 30, 1–16. [Google Scholar] [CrossRef]
- Barley, K.; Dracheva, S.; Byne, W. Subcortical Oligodendrocyte- and Astrocyte-Associated Gene Expression in Subjects with Schizophrenia, Major Depression and Bipolar Disorder. Schizophr. Res. 2009, 112, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Muneer, A. Bipolar Disorder: Role of Inflammation and the Development of Disease Biomarkers. Psychiatry Investig. 2016, 13, 18–33. [Google Scholar] [CrossRef] [PubMed]
- Gigase, F.A.J.; Snijders, G.J.L.J.; Boks, M.P.; de Witte, L.D. Neurons and Glial Cells in Bipolar Disorder: A Systematic Review of Postmortem Brain Studies of Cell Number and Size. Neurosci. Biobehav. Rev. 2019, 103, 150–162. [Google Scholar] [CrossRef]
- Illes, P.; Verkhratsky, A.; Tang, Y. Pathological ATPergic Signaling in Major Depression and Bipolar Disorder. Front. Mol. Neurosci. 2020, 12, 331. [Google Scholar] [CrossRef]
- Kotzalidis, G.D.; Ambrosi, E.; Simonetti, A.; Cuomo, I.; Casale, A.D.; Caloro, M.; Savoja, V.; Rapinesi, C. Neuroinflammation in Bipolar Disorders. Neurosciences 2015, 2, 252–262. [Google Scholar] [CrossRef]
- Brites, D.; Fernandes, A. Neuroinflammation and Depression: Microglia Activation, Extracellular Microvesicles and microRNA Dysregulation. Front. Cell. Neurosci. 2015, 9, 476. [Google Scholar] [CrossRef]
- Rawani, N.S.; Chan, A.W.; Todd, K.G.; Baker, G.B.; Dursun, S.M. The Role of Neuroglia in the Development and Progression of Schizophrenia. Biomolecules 2025, 15, 10. [Google Scholar] [CrossRef]
- Steardo, L.; de Filippis, R.; Carbone, E.A.; Segura-Garcia, C.; Verkhratsky, A.; De Fazio, P. Sleep Disturbance in Bipolar Disorder: Neuroglia and Circadian Rhythms. Front. Psychiatry 2019, 10, 501. [Google Scholar] [CrossRef]
- Carta, M.G.; Fanni, D.; Orrù, G.; Faa, G. Commentary: Sleep Disturbance in Bipolar Disorder: Neuroglia and Circadian Rhythms. Front. Psychiatry 2021, 12, 730360. [Google Scholar] [CrossRef]
- Webster, M.J.; Knable, M.B.; Johnston-Wilson, N.; Nagata, K.; Inagaki, M.; Yolken, R.H. Immunohistochemical Localization of Phosphorylated Glial Fibrillary Acidic Protein in the Prefrontal Cortex and Hippocampus from Patients with Schizophrenia, Bipolar Disorder, and Depression. Brain Behav. Immun. 2001, 15, 388–400. [Google Scholar] [CrossRef]
- Wartchow, K.M.; Scaini, G.; Quevedo, J. Glial-Neuronal Interaction in Synapses: A Possible Mechanism of the Pathophysiology of Bipolar Disorder. In Neuroinflammation, Gut-Brain Axis and Immunity in Neuropsychiatric Disorders; Kim, Y.-K., Ed.; Springer Nature: Singapore, 2023; pp. 191–208. ISBN 978-981-19-7376-5. [Google Scholar]
- Reyes, A.A.A.; Chandler, D.J. Convergence of Pro-Stress and Pro-Inflammatory Signaling in the Central Noradrenergic System: Implications for Mood and Anxiety Disorders. Neuroglia 2023, 4, 87–101. [Google Scholar] [CrossRef]
- Łoś, K.; Waszkiewicz, N. Biological Markers in Anxiety Disorders. J. Clin. Med. 2021, 10, 1744. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, J.; Wang, D.; Hu, G.; Liu, Z.; Yan, D.; Serikuly, N.; Alpyshov, E.T.; Demin, K.A.; Strekalova, T.; et al. Delayed Behavioral and Genomic Responses to Acute Combined Stress in Zebrafish, Potentially Relevant to PTSD and Other Stress-Related Disorders: Focus on Neuroglia, Neuroinflammation, Apoptosis and Epigenetic Modulation. Behav. Brain Res. 2020, 389, 112644. [Google Scholar] [CrossRef] [PubMed]
- Bennett, G.A.; Palliser, H.K.; Shaw, J.C.; Walker, D.; Hirst, J.J. Prenatal Stress Alters Hippocampal Neuroglia and Increases Anxiety in Childhood. Dev. Neurosci. 2015, 37, 533–545. [Google Scholar] [CrossRef]
- Pagerols, M.; Richarte, V.; Sánchez-Mora, C.; Rovira, P.; Artigas, M.S.; Garcia-Martínez, I.; Santos da Silva, B.; Mota, N.R.; Rohde, L.A.; Grevet, E.H.; et al. M86-integrative genomic analysis of methylphenidate response in attention-deficit/hyperactivity disorder. Eur. Neuropsychopharmacol. 2019, 29, S1002. [Google Scholar] [CrossRef]
- Furlan, V.A.; MacAuslan, D.; Ha, K.; Patel, N.; Adam, S.; Zanagar, B.; Venugopal, S. Microglial Dyshomeostasis: A Common Substrate in Neurodevelopmental and Neurodegenerative Diseases. Neuroglia 2024, 5, 119–128. [Google Scholar] [CrossRef]
- Sandau, U.S.; Alderman, Z.; Corfas, G.; Ojeda, S.R.; Raber, J. Astrocyte-Specific Disruption of SynCAM1 Signaling Results in ADHD-Like Behavioral Manifestations. PLoS ONE 2012, 7, e36424. [Google Scholar] [CrossRef]
- Ferencova, N.; Visnovcova, Z.; Ondrejka, I.; Hrtanek, I.; Bujnakova, I.; Kovacova, V.; Macejova, A.; Tonhajzerova, I. Peripheral Inflammatory Markers in Autism Spectrum Disorder and Attention Deficit/Hyperactivity Disorder at Adolescent Age. Int. J. Mol. Sci. 2023, 24, 11710. [Google Scholar] [CrossRef]
- Bradstreet, J.J.; Smith, S.; Baral, M.; Rossignol, D.A. Biomarker-Guided Interventions of Clinically Relevant Conditions Associated with Autism Spectrum Disorders and Attention Deficit Hyperactivity Disorder. Altern. Med. Rev. 2010, 15, 15–32. [Google Scholar]
- Asadi, S.; Jamali, M.; Gholizadeh, Z. Assessment of Genetic Mutations in Genes DSM-IV, DRD4, SERT, HTR1B, SNAP25, GRIN2A, ADRA2A, TPH2 and BDNF Induced Attention Deficit Disorder and Hyperactivity in Children. J. Neurol. Disord. 2016, 4, 2. [Google Scholar] [CrossRef]
- Camberos-Barraza, J.; Guadrón-Llanos, A.M.; De la Herrán-Arita, A.K. The Gut Microbiome-Neuroglia Axis: Implications for Brain Health, Inflammation, and Disease. Neuroglia 2024, 5, 254–273. [Google Scholar] [CrossRef]
- Cavaliere, C.; Cirillo, G.; Bianco, M.R.; Adriani, W.; De Simone, A.; Leo, D.; Perrone-Capano, C.; Papa, M. Methylphenidate Administration Determines Enduring Changes in Neuroglial Network in Rats. Eur. Neuropsychopharmacol. 2012, 22, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Aleksic, B.; Ozaki, N. Glia-Related Genes and Their Contribution to Schizophrenia. Psychiatry Clin. Neurosci. 2015, 69, 448–461. [Google Scholar] [CrossRef]
- Garey, L. When Cortical Development Goes Wrong: Schizophrenia as a Neurodevelopmental Disease of Microcircuits. J. Anat. 2010, 217, 324–333. [Google Scholar] [CrossRef]
- Beeraka, N.M.; Avila-Rodriguez, M.F.; Aliev, G. Recent Reports on Redox Stress-Induced Mitochondrial DNA Variations, Neuroglial Interactions, and NMDA Receptor System in Pathophysiology of Schizophrenia. Mol. Neurobiol. 2022, 59, 2472–2496. [Google Scholar] [CrossRef]
- Gouvêa-Junqueira, D.; Falvella, A.C.B.; Antunes, A.S.L.M.; Seabra, G.; Brandão-Teles, C.; Martins-de-Souza, D.; Crunfli, F. Novel Treatment Strategies Targeting Myelin and Oligodendrocyte Dysfunction in Schizophrenia. Front. Psychiatry 2020, 11, 379. [Google Scholar] [CrossRef]
- Pantazopoulos, H.; Woo, T.-U.W.; Lim, M.P.; Lange, N.; Berretta, S. Extracellular Matrix-Glial Abnormalities in the Amygdala and Entorhinal Cortex of Subjects Diagnosed With Schizophrenia. Arch. Gen. Psychiatry 2010, 67, 155–166. [Google Scholar] [CrossRef]
- Yamamuro, K.; Kimoto, S.; Rosen, K.M.; Kishimoto, T.; Makinodan, M. Potential Primary Roles of Glial Cells in the Mechanisms of Psychiatric Disorders. Front. Cell. Neurosci. 2015, 9, 154. [Google Scholar] [CrossRef]
- Bernstein, H.-G.; Steiner, J.; Bogerts, B. Glial Cells in Schizophrenia: Pathophysiological Significance and Possible Consequences for Therapy. Expert Rev. Neurother. 2009, 9, 1059–1071. [Google Scholar] [CrossRef]
- Rahman, M.M.; Islam, M.R.; Yamin, M.; Islam, M.M.; Sarker, M.T.; Meem, A.F.K.; Akter, A.; Emran, T.B.; Cavalu, S.; Sharma, R. Emerging Role of Neuron-Glia in Neurological Disorders: At a Glance. Oxid. Med. Cell. Longev. 2022, 2022, 3201644. [Google Scholar] [CrossRef]
- Czéh, B.; Nagy, S.A. Clinical Findings Documenting Cellular and Molecular Abnormalities of Glia in Depressive Disorders. Front. Mol. Neurosci. 2018, 11, 56. [Google Scholar] [CrossRef] [PubMed]
- Öngür, D.; Heckers, S. A Role for Glia in the Action of Electroconvulsive Therapy. Harv. Rev. Psychiatry 2004, 12, 253. [Google Scholar] [CrossRef] [PubMed]
- Tay, T.L.; Béchade, C.; D’Andrea, I.; St-Pierre, M.-K.; Henry, M.S.; Roumier, A.; Tremblay, M.-E. Microglia Gone Rogue: Impacts on Psychiatric Disorders across the Lifespan. Front. Mol. Neurosci. 2018, 10, 421. [Google Scholar] [CrossRef]
- Neuwelt, E.; Abbott, N.J.; Abrey, L.; Banks, W.A.; Blakley, B.; Davis, T.; Engelhardt, B.; Grammas, P.; Nedergaard, M.; Nutt, J.; et al. Strategies to Advance Translational Research into Brain Barriers. Lancet Neurol. 2008, 7, 84–96. [Google Scholar] [CrossRef]
- Brown, A.S.; Meyer, U. Maternal Immune Activation and Neuropsychiatric Illness: A Translational Research Perspective. AJP 2018, 175, 1073–1083. [Google Scholar] [CrossRef]
- Machado-Vieira, R. Tracking the Impact of Translational Research in Psychiatry: State of the Art and Perspectives. J. Transl. Med. 2012, 10, 175. [Google Scholar] [CrossRef]
- Ricci, V.; Berardis, D.D.; Martinotti, G.; Maina, G. Glial Derived Neurotrophic Factor and Schizophrenia Spectrum Disorders: A Scoping Review. Curr. Neuropharmacol. 2024; Advance online publication. [Google Scholar] [CrossRef]
- Liu, C.; Gershon, E.S. Endophenotype 2.0: Updated Definitions and Criteria for Endophenotypes of Psychiatric Disorders, Incorporating New Technologies and Findings. Transl. Psychiatry 2024, 14, 502. [Google Scholar] [CrossRef]
- Miller, A.H.; Raison, C.L. The Role of Inflammation in Depression: From Evolutionary Imperative to Modern Treatment Target. Nat. Rev. Immunol. 2016, 16, 22–34. [Google Scholar] [CrossRef]
- Guo, X.; Feng, Y.; Ji, X.; Jia, N.; Maimaiti, A.; Lai, J.; Wang, Z.; Yang, S.; Hu, S. Shared Genetic Architecture and Bidirectional Clinical Risks within the Psycho-Metabolic Nexus. eBioMedicine 2025, 111, 105530. [Google Scholar] [CrossRef]
- McAnally, H.; Bonnet, U.; Kaye, A.D. Gabapentinoid Benefit and Risk Stratification: Mechanisms Over Myth. Pain Ther. 2020, 9, 441–452. [Google Scholar] [CrossRef]
Feature | Neurons | Glial Cells |
---|---|---|
Primary Function | Neurotransmission via action potentials | Structural, metabolic, and immune support |
Synaptic Regulation | Release and reuptake of neurotransmitters | Modulation of synaptic homeostasis, synaptic pruning |
Inflammatory Response | Limited response to immune signals | Microglia-mediated neuroinflammation, astrocyte reactivity |
Neurotransmitter Role | Direct synthesis and release | Indirect modulation through uptake, metabolism, and signaling |
Involvement in Psychiatric Disorders | Dopaminergic, noradrenergic, serotonergic, and glutamatergic dysfunction | Neuroinflammation, oxidative stress, and demyelination |
Therapeutic Implications | Targeted with psychotropic drugs (SSRIs, antipsychotics, or stimulants) | Potential target for anti-inflammatory, myelin-restorative, and glia-stabilizing therapies |
Methodology | Findings | Potential Implications |
---|---|---|
Neuroimaging (PET, MRS, DTI, fMRI) | PET (TSPO ligands): Some studies report increased tracer binding in individuals with treatment-resistant depression and schizophrenia. MRS: Altered glutamate/glutamine levels observed in mood disorders. DTI: Reduced white matter integrity reported in schizophrenia and bipolar disorder. fMRI: Functional connectivity alterations noted in anxiety and schizophrenia. | PET findings suggest possible neuroimmune activation in specific psychiatric conditions. MRS data indicate potential disruptions to glutamatergic homeostasis. DTI studies raise the possibility of white matter abnormalities, which may be related to changes in myelination. fMRI results suggest altered network connectivity, which could be influenced by neuroglial activity. |
Biomarkers (CSF and blood) | Inflammatory markers: Increased levels of IL-6, TNF-α, and CRP reported in some individuals with depression, schizophrenia, and bipolar disorder. Astrocytic markers: Elevated S100B and GFAP detected in CSF of patients with depression in certain studies. Kynurenine pathway metabolites: Altered levels identified in mood disorders and schizophrenia. | Findings suggest that immune-related processes may contribute to psychiatric conditions, though causality remains unclear. Changes in astrocytic markers may reflect glial reactivity, but further validation is needed. Alterations in the kynurenine pathway could have implications for neurotransmitter balance and neuroimmune interactions. |
Postmortem brain studies | Astrocytes: Lower astrocyte density reported in the prefrontal cortex and hippocampus of individuals with depression and schizophrenia. Microglia: Some studies indicate increased microglial marker expression in schizophrenia. Oligodendrocytes: Altered expression of myelin-related genes (e.g., MBP, CNP) observed in schizophrenia. | Reduced astrocyte density may be associated with changes in synaptic function. Microglial activation patterns suggest a potential role in neuroimmune responses, though variability exists across studies. Oligodendrocyte-related changes could impact white matter integrity and neural communication. |
Animal models | Depression: Increased expression of microglial activation markers observed in stress-induced models. Bipolar disorder: Variability in microglial activity across mood states in some models. Anxiety and PTSD: Associations between microglial activation and stress-related behavioral responses. | Experimental findings suggest that neuroglial alterations may be linked to behavioral changes in preclinical models. Microglial responses appear to be dynamic and may vary depending on disease state. Translational relevance requires further investigation to determine how these mechanisms relate to human pathology. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bacchi, A.D. Beyond the Neuron: The Integrated Role of Glia in Psychiatric Disorders. Neuroglia 2025, 6, 15. https://doi.org/10.3390/neuroglia6020015
Bacchi AD. Beyond the Neuron: The Integrated Role of Glia in Psychiatric Disorders. Neuroglia. 2025; 6(2):15. https://doi.org/10.3390/neuroglia6020015
Chicago/Turabian StyleBacchi, André Demambre. 2025. "Beyond the Neuron: The Integrated Role of Glia in Psychiatric Disorders" Neuroglia 6, no. 2: 15. https://doi.org/10.3390/neuroglia6020015
APA StyleBacchi, A. D. (2025). Beyond the Neuron: The Integrated Role of Glia in Psychiatric Disorders. Neuroglia, 6(2), 15. https://doi.org/10.3390/neuroglia6020015