Evaluation of Cold Rolling and Annealing Behavior of Extra-Low-Carbon Steel by Magnetic NDE Parameters
Abstract
:1. Introduction
2. Aims and Objectives
3. Materials and Methods
4. Results and Discussion
4.1. Microstructural Evolution
4.2. Mechanical Behavior
4.3. Magnetic Properties
4.4. Correlation Between Microstructure, Mechanical and Magnetic Properties
5. Conclusions and Future Research
- The cold-deformed steel microstructure consists of elongated ferrite grains with high dislocation density, resulting in higher coercivity (Hc), hardness, and KAM value and lower MBE voltage (Vr.m.s.).
- Low-temperature (<500 °C) annealing shows a more prominent change in coercivity (Hc) and Vr.m.s. than in hardness and microstructural variations due to rearrangement and annihilation of dislocations at the recovery regime.
- At higher temperatures (T > 500 °C), more strain-free grains affect the decrease in hardness, Hc, and Vr.m.s. with a lower KAM value.
- Stored energy is relieved during recovery and recrystallization, indicated by the advancement of softening fractions with increasing KAM fractions.
- The end of recrystallization at 660 °C causes a decrease in Hc, Vr.m.s., and KAM values and an increase in HAB fraction to 89%. Above 660 °C, the saturation of Hc and Vr.m.s. occurs due to grain growth.
- Upon annealing treatment, the cold-rolled extra-low-C steel shows a linear relation between the changes in electromagnetic NDE parameters and that in mechanical properties and microstructural parameters (KAM). This finding is compiled according to the main objectives of the present research.
- The outcomes of this research may be implied in monitoring the microstructural and mechanical behaviors of low-C structural steel upon cold rolling and following annealing treatment during industrial processing. More elaborate investigations in this area represent the research scope for the future.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ray, R.K.; Jonas, J.J.; Hook, R.E. Cold Rolling and Annealing Textures in Low Carbon and Extra Low Carbon Steels. Int. Mat. Rev. 1994, 39, 129–172. [Google Scholar] [CrossRef]
- Haldar, A.; Suwas, S.; Bhattacharjee, D. Microstructure and Texture in Steels; Springer: Dordrecht, The Netherlands; Berlin/Heidelberg, Germany; London, UK; New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Humphreys, F.J.; Hatherly, M. Recrystallization and Related Annealing Phenomena, 2nd ed.; Elsevier Science Ltd.: Oxford, UK, 2004; Volume 127. [Google Scholar]
- Mukunthan, K.; Hawbolt, E.B. Modeling recovery and recrystallization kinetics in cold-rolled Ti-Nb stabilized interstitial-free steel. Metall. Mater. Trans. A 1996, 27, 3410–3423. [Google Scholar] [CrossRef]
- Unnikrishnan, R.; Kumar, A.; Khatirkar, R.K.; Shekhawat, S.K.; Sapate, S.G. Structural developments in un-stabilized ultra low carbon steel during warm deformation and annealing. Mater. Chem. Phys. 2016, 183, 339–348. [Google Scholar] [CrossRef]
- Zaid, M.; Bhattacharjee, P.P. Electron backscatter diffraction study of deformation and recrystallization textures of individual phases in a cross-rolled duplex steel. Mater. Charact. 2014, 96, 263–272. [Google Scholar] [CrossRef]
- Zhu, K.Y.; Chaubet, D.; Bacroix, B.; Brisset, F. A study of recovery and primary recrystallization mechanisms in a Zr–2Hf alloy. Acta Mater. 2005, 53, 5131–5140. [Google Scholar] [CrossRef]
- Davis, C.L.; Strangwood, M.; Peyton, A.J. Overview of non-destructive evaluation of steel microstructures using multifrequency electromagnetic sensors. Iron Mak. Steel Mak. 2011, 38, 510–517. [Google Scholar] [CrossRef]
- Ranjan, R.; Jiles, D.C.; Rastogi, P.K. Magnetoacoustic emission, magnetization, and Barkhausen effect in decarburized steel. IEEE Trans. Magn. 1987, 22, 511–513. [Google Scholar] [CrossRef]
- Das, S.K.; Tarafder, S.; Panda, A.K.; Chatterjee, S. Magnetic and mechanical properties of Cu-strengthened aged HSLA-100 steel. Phys. Mag. 2007, 87, 5065–5078. [Google Scholar] [CrossRef]
- Roy, R.K.; Panda, A.K.; Mitra, A. Electromagnetic characterization of steels through magnetic NDE device. In Proceedings of the 2015 International Conference on Signal Processing and Communication Engineering Systems, Guntur, India, 2–3 January 2015; pp. 511–514. [Google Scholar] [CrossRef]
- Gao, L.; Zhou, Y.M.; Liu, J.L.; Shen, X.D.; Ren, Z.M. Effect of water quenching process on the microstructure and magnetic property of cold rolled dual phase steel. J. Mag. Mag. Mater. 2010, 322, 929–933. [Google Scholar] [CrossRef]
- Moorthy, V.; Vaidyanathan, S.; Raj, B.; Jayakumar, T.; Kashyap, B.P. Insight into the Microstructural Characterization of Ferritic Steels Using Micromagnetic Parameters. Mater. Trans. A 2000, 31A, 1053–1065. [Google Scholar] [CrossRef]
- Kaplan, M.; Gur, C.H.; Erdogan, M. Characterization of Dual-Phase Steels Using Magnetic Barkhausen Noise Technique. J. Nondestruct. Eval. 2007, 26, 79–87. [Google Scholar] [CrossRef]
- Liu, J.; Hao, X.J.; Zhou, L.; Strangwood, M.; Davisa, C.L.; Peyton, A.J. Measurement of microstructure changes in 9Cr–1Mo and 2.25Cr–1Mo steels using an electromagnetic sensor. Scripta Mater. 2012, 66, 367–370. [Google Scholar] [CrossRef]
- Okazaki, T.; Ueno, T.; Furuya, Y.; Spearing, M.; Hagood, N.W. Detectability of stress-induced martensite phase in ferromagnetic shape memory alloy Fe–30.2at.%Pd by Barkhausen noise method. Acta Mater. 2004, 52, 5169–5175. [Google Scholar] [CrossRef]
- Trauble, H. The influence of crystal defects on magnetization processes in ferromagnetic single crystals. In Magnetism and Metallurgy; Berkowitz, A.E., Kneller, E., Eds.; Academic Press: New York, NY, USA, 1969; Volume 2, p. 621. [Google Scholar]
- Ranjan, R.; Jiles, D.C.; Rastogi, P.K. Magnetic properties of decarburized steels: An investigation of the effects of grain size and carbon content. IEEE Trans. Magn. 1987, 23, 1869–1876. [Google Scholar] [CrossRef]
- Swartzendruber, L.J.; Hicho, G.E.; Chopra, H.D.; Leigh, S.D. Effect of plastic strain on magnetic and mechanical properties of ultralow carbon sheet steel. J. Appl. Phys. 1997, 81, 4263–4265. [Google Scholar] [CrossRef]
- Iordache, V.E.; Hug, E.; Buiron, N. Magnetic behaviour versus tensile deformation mechanisms in a non-oriented Fe–(3wt.%)Si steel. Mater. Sci. Eng. A 2003, 359, 62–74. [Google Scholar] [CrossRef]
- Fagan, P.; Ducharne, B.; Daniel, L.; Skarlatos, A.; Domenjoud, M.; Reboud, C. Effect of stress on the magnetic Barkhausen noise energy cycles: A route for stress evaluation in ferromagnetic materials. Mater. Sc. Eng. B 2022, 278, 115650. [Google Scholar] [CrossRef]
- Gurruchaga, K.; Martinez-de-Guerenu, A.; Soto, M.; Arizti, F. Magnetic Barkhausen Noise for Characterization of Recovery and Recrystallization. IEEE Trans. Magn. 2010, 46, 513–516. [Google Scholar] [CrossRef]
- Xu, B.; Zuo, Y.; Li, Y.; Li, X.; Tang, C.; Shang, C. The influence of recrystallization on magnetic Barkhausen noise in low carbon automotive sheet steels. Mater. Tod. Comm. 2025, 44, 112125. [Google Scholar] [CrossRef]
- Ghanei, S.; Alam, A.S.; Kashefi, M.; Mazinani, M. Nondestructive characterization of microstructure and mechanical properties of intercritically annealed dual-phase steel by magnetic Bakhausen noise technique. Mater. Sci. Eng. A 2014, 607, 253–260. [Google Scholar] [CrossRef]
- Sidor, J.J.; Verbeken, K.; Gomes, E.; Schneider, J.; Calvillo, P.R.; Lai, K. Through process texture evolution and magnetic properties of high Si non-oriented electrical steels. Mater. Charact. 2012, 57, 49–57. [Google Scholar] [CrossRef]
- Martinez-de-Guerenu, A.; Jorge-Badiola, D.; Gutierrez, I. Assessing the recovery and recrystallization kinetics of cold rolled microalloyed steel through coercive field measurements. Mater. Sci. Eng. A. 2017, 691, 42–50. [Google Scholar] [CrossRef]
- Oyarzabal, M.; Gurruchaga, K.; Martinez-De-Guerenu, A.; Gutierrez, I. Sensitivity of Conventional and Non-destructive Characterization Techniques to Recovery and Recrystallization. ISIJ Int. 2007, 47, 1458–1464. [Google Scholar] [CrossRef]
- Blaow, M.; Shaw, A. Evaluation of Annealing Stages in Low Carbon Steel Using Magnetic Barkhausen Noise. ISIJ Int. 2014, 1, 1. [Google Scholar]
- Dutta, S.; Rajinikanth, V.; Panda, A.K.; Mitra, A.; Chatterjee, S.; Roy, R.K. Effect of Annealing Treatment on Mechanical and Magnetic Softening Behaviors of Cold Rolled Interstitial-Free Steel. J. Mater. Eng. Perform. 2019, 28, 2228–2236. [Google Scholar] [CrossRef]
- Gandarilla, F.C.; Bolmaro, R.E.; Leon, H.F.M.; Garrido, A.M.S.; Moreno, J.G.C. Study of recovery and first recrystallisation kinetics in CGO Fe3%Si steels using misorientation-derived parameters (EBSD). J. Microsc. 2019, 275, 133–148. [Google Scholar] [CrossRef]
- Ayad, A.; Ramoul, M.; Rollett, A.D.; Wagner, F. Quantifying primary recrystallization from EBSD maps of partially recrystallized states of an IF steel. Mater. Charact. 2021, 171, 110773. [Google Scholar] [CrossRef]
- Zhao, J.; Shen, J.; Xiao, S.; Liu, X.; Chen, Y.; Meng, Z.; Zhou, L. Study on microstructure characterization of steel using on multi-frequency electromagnetic detection and FE simulation calculation. J. Mag. Magn. Mater. 2024, 608, 172434. [Google Scholar] [CrossRef]
- Shen, J.; Xiao, S.; Dong, C.; Zhang, C.; Liu, G.; Zhou, L. Characterization on multiphase microstructures of carbon steels using multi-frequency electromagnetic measurements. Measurement 2024, 226, 114140. [Google Scholar] [CrossRef]
- Zhang, C.; Liang, D.; Shen, J.; Meng, Z.; Dong, Z. Real-time on-line characterization of steel microstructure and mechanical properties using multi-frequency electromagnetic method. Nondest. Test. Eval. 2025, 40, 1–23. [Google Scholar] [CrossRef]
- Roy, R.K.; Panda, A.K.; Mitra, A. Utilization of Electromagnetic Sensor for Structural Characterization of Steels During Processing and in-Service Components. Springer Lect. Notes Netw. Syst. 2017, 11, 247–254. [Google Scholar] [CrossRef]
- Zaefferer, S.; Kuo, J.C.; Zhao, Z.; Winning, M.; Raabe, D. On the influence of the grain boundary misorientation on the plastic deformation of aluminum bicrystals. Acta Mater. 2003, 51, 4719–4735. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Sarkar, A.; Suwas, S. Investigation of stress-strain response, microstructure and texture of hot deformed pure molybdenum. Int. J. Refract. Met. Hard. Mater. 2018, 7, 168–182. [Google Scholar] [CrossRef]
- Chandrasekaran, D.; Nygards, M. A study of the surface deformation behaviour at grain boundaries in an ultra-low-carbon steel. Acta Mater. 2003, 51, 5375–5384. [Google Scholar] [CrossRef]
- Zhong, Y.; Yin, F.; Sakaguchi, T.; Nagai, K.; Yang, K. Dislocation structure evolution and characterization in the compression deformed Mn–Cu alloy. Acta Mater. 2007, 55, 2747–2756. [Google Scholar] [CrossRef]
- Torganchuk, V.; Morozova, A.; Tikhonova, M.; Kaibyshev, R.; Belyakov, A. Grain sizes and dislocation densities in fcc-metallic materials processed by warm to hot working. J. Phys. Conf. Ser. 2019, 1270, 012039. [Google Scholar] [CrossRef]
- Saeidi, N.; Ashrafizadeh, F.; Niroumand, B.; Barlat, F. EBSD Study of Damage Mechanisms in a High Strength Ferrite–Martensite Dual –Phase Steel. J. Mater. Eng. Perform. 2014, 24, 53–58. [Google Scholar] [CrossRef]
- Bollinger, C.; Billy, C.; Mussi, A.; Bouquerel, J.; Dmitri, A. Microstructural Evidence for Grain Boundary Migration and Dynamic Recrystallization in Experimentally Deformed Forsterite Aggregates. Minerals 2018, 9, 17. [Google Scholar] [CrossRef]
- Roumina, R.; Sinclair, C.W. The work hardening rate of an aged and recovered Al-Mg-Sc alloy. Metall. Trans. A 2011, 42A, 473–487. [Google Scholar] [CrossRef]
- Fang, C.; Garcia, C.I.; Choi, S.H.; Deardo, A.J. A Study of the Batch Annealing of Cold-Rolled HSLA Steels Containing Niobium or Titanium. Metall. Mater. Trans. A 2015, 46 Pt A, 3635–3645. [Google Scholar] [CrossRef]
- Dziaszyk, S.; Payton, E.J.; Friedel, F.; Marx, V.; Eggeler, G. On the characterization of recrystallized fraction using electron backscattered diffraction: A direct comparision to local hardness in an IF steel using nanoindentation. Mater. Sci. Eng. A 2010, 527, 7854–7864. [Google Scholar] [CrossRef]
- Gazder, A.A.; Cao, W.; Davies, C.H.J.; Pereloma, E.V. An EBSD investigation of interstitial –free steel subjected to equal channel angular extrusion. Mater. Sci. Eng. A 2008, 497, 341–352. [Google Scholar] [CrossRef]
- Purcek, G.; Saray, O.; Karaman, I.; Maier, H.J. High strength and high ductility of ultra fine -grained interstitial free steel produced by ECAE and annealing. Metall. Mater. Trans. A 2012, 43, 1884–1894. [Google Scholar] [CrossRef]
- Martinez-de-Guerenu, A.; Arizti, F.; Dıaz-Fuentes, M.; Gutierrez, I. Recovery during annealing in a cold rolled low carbon steel. Part I: Kinetics and microstructural characterization. Acta Mater. 2004, 52, 3657–3664. [Google Scholar] [CrossRef]
Annealing Temperatures (°C) | LAB fraction (%) (2–15°) | HAB Fraction (%) (15–65°) | KAM Value (°) |
---|---|---|---|
450 | 77 | 23 | 0.81 |
580 | 65 | 35 | 0.62 |
660 | 11 | 89 | 0.58 |
690 | 6 | 94 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dutta, S.; Panda, A.K.; Roy, R.K. Evaluation of Cold Rolling and Annealing Behavior of Extra-Low-Carbon Steel by Magnetic NDE Parameters. NDT 2025, 3, 14. https://doi.org/10.3390/ndt3020014
Dutta S, Panda AK, Roy RK. Evaluation of Cold Rolling and Annealing Behavior of Extra-Low-Carbon Steel by Magnetic NDE Parameters. NDT. 2025; 3(2):14. https://doi.org/10.3390/ndt3020014
Chicago/Turabian StyleDutta, Siuli, Ashis K. Panda, and Rajat K. Roy. 2025. "Evaluation of Cold Rolling and Annealing Behavior of Extra-Low-Carbon Steel by Magnetic NDE Parameters" NDT 3, no. 2: 14. https://doi.org/10.3390/ndt3020014
APA StyleDutta, S., Panda, A. K., & Roy, R. K. (2025). Evaluation of Cold Rolling and Annealing Behavior of Extra-Low-Carbon Steel by Magnetic NDE Parameters. NDT, 3(2), 14. https://doi.org/10.3390/ndt3020014