molecules-logo

Journal Browser

Journal Browser

Plant In Vitro Systems as an Effective Tool for In Vivo Biocatalysis of Bioactive Natural Products

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Green Chemistry".

Deadline for manuscript submissions: closed (20 December 2021) | Viewed by 35799

Special Issue Editors


E-Mail Website
Guest Editor
Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
Interests: plant in vitro technology; plant cell culture, elicitation of secondary metabolites; light; nutraceuticals; cosmeceuticals; phytochemicals; green synthesis; bioassays
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Medicinal plants accumulates a huge diversity of bioactive natural products (NPs) and are exploited since time immemorial owing to health benefits they offer. Plant cells are smart small factories able to synthesize an exceptional variety of commercially important NPs used as flavors, dyes, pharmaceuticals, nutraceuticals, cosmeceuticals, etc. However, total synthesis of all these bioactive NPs is not always scientifically and/or commercially feasible due to complex and/or specific stereochemical structures. Lack of cultivation practices and over-harvesting from wild is also challenging and provoke scientists to establish alternate platforms for the reliable and consistent production of some bioactive NPs to avoid shortage issues. Nowadays, the use of plant in vitro culture systems provides us a promising platform for the production of bioactive NPs. The emergence of omics technologies have revolutionized the field of NPs (bio)synthesis, and metabolic engineering and synthetic biology strategies are now expanding horizons offer for the production of bioactive NPs through in vivo biocatalysis using plant cells. Indeed, in plant cells, robust and efficient in vivo (bio)catalytic reactions involving multi‐step enzymatic cascades can operate simultaneously in an (enantio)selective, sustainable and eco-friendly way, thus allowing the production of both natural and new-to-nature complex chemicals that cannot be obtained by current chemical processes. 

Here, we encourage investigators to consider submitting reviews, regular research papers and short communications focusing on the different aspects of this emerging field of Plant in vitro systems as an effective tool for in vivo biocatalysis of bioactive natural products to this Special Issue of Molecules with the aim to highlight the most novel and promising developments.

Dr. Christophe Hano
Dr. Bilal Haider Abbasi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Plant
  • in vitro culture
  • green biotechnology
  • metabolic engineering
  • synthetic biology
  • (bio)catalysis
  • bioactive natural products
  • cosmeceuticals
  • pharmaceuticals
  • nutraceuticals

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 2070 KiB  
Article
Elicitation of Submerged Adventitious Root Cultures of Stevia rebaudiana with Cuscuta reflexa for Production of Biomass and Secondary Metabolites
by Nisar Ahmad, Palwasha Khan, Abdullah Khan, Maliha Usman, Mohammad Ali, Hina Fazal, Durrishahwar, Muhammad Nazir Uddin, Christophe Hano and Bilal Haider Abbasi
Molecules 2022, 27(1), 14; https://doi.org/10.3390/molecules27010014 - 21 Dec 2021
Cited by 4 | Viewed by 2904
Abstract
Stevia rebaudiana is an important medicinal plant that belongs to the Asteraceae family. The leaves of Stevia rebaudiana are a rich source of many health-promoting agents such as polyphenols, flavonoids, and steviol glycoside, which play a key role in controlling obesity and diabetes. [...] Read more.
Stevia rebaudiana is an important medicinal plant that belongs to the Asteraceae family. The leaves of Stevia rebaudiana are a rich source of many health-promoting agents such as polyphenols, flavonoids, and steviol glycoside, which play a key role in controlling obesity and diabetes. New strategies such as the elicitation of culture media are needed to enhance the productivity of active components. Herein, the Cuscuta reflexa extracts were exploited as elicitors to enhance the productivity of active components. Cuscuta reflexa is one of the parasitic plants that has the ability to elongate very fast and cover the host plant. Consequently, it may be possible that the addition of Cuscuta reflexa extracts to adventitious root cultures (ADR) of Stevia rebaudiana may elongate the root more than control cultures to produce higher quantities of the desired secondary metabolites. Therefore, the main objective of the current study was to investigate the effect of Cuscuta reflexa extract as a biotic elicitor on the biomass accumulation and production of antioxidant secondary metabolite in submerged adventitious root cultures of Stevia rebaudiana. Ten different concentrations of Cuscuta reflexa were added to liquid media containing 0.5 mg/L naphthalene acetic acid (NAA). The growth kinetics of adventitious roots was investigated for a period of 49 days with an interval of 7 days. The maximum biomass accumulation (7.83 g/3 flasks) was observed on medium containing 10 mg/L extract of Cuscuta reflexa on day 49. As the concentration of extract increases in the culture media, the biomass gradually decreases after 49 days of inoculation. In this study, the higher total phenolics content (0.31 mg GAE/g-DW), total flavonoids content (0.22 mg QE/g-DW), and antioxidant activity (85.54%) were observed in 100 mg/L treated cultures. The higher concentration (100 mg/L) of Cuscuta reflexa extract considerably increased the total phenolics content (TPC), total phenolics production (TPP), total flavonoids content (TFC), total flavonoids production (TFP), total polyphenolics content (TPPC), and total polyphenolics production (TPPP). It was concluded that the extract of Cuscuta reflexa moderately improved biomass accumulation but enhanced the synthesis of phenolics, flavonoids, and antioxidant activities. Here, biomass’s independent production of secondary metabolites was observed with the addition of extract. The present study will be helpful to scale up adventitious roots culture into a bioreactor for the production of secondary metabolites rather than biomass accumulation in medicinally important Stevia rebaudiana. Full article
Show Figures

Figure 1

19 pages, 6564 KiB  
Article
Chemical Elicitors-Induced Variation in Cellular Biomass, Biosynthesis of Secondary Cell Products, and Antioxidant System in Callus Cultures of Fagonia indica
by Habiba Khan, Tariq Khan, Nisar Ahmad, Gouhar Zaman, Taimoor Khan, Waqar Ahmad, Sannia Batool, Zahid Hussain, Samantha Drouet, Christophe Hano and Bilal Haider Abbasi
Molecules 2021, 26(21), 6340; https://doi.org/10.3390/molecules26216340 - 20 Oct 2021
Cited by 8 | Viewed by 2046
Abstract
Fagonia indica is a rich source of pharmacologically active compounds. The variation in the metabolites of interest is one of the major issues in wild plants due to different environmental factors. The addition of chemical elicitors is one of the effective strategies to [...] Read more.
Fagonia indica is a rich source of pharmacologically active compounds. The variation in the metabolites of interest is one of the major issues in wild plants due to different environmental factors. The addition of chemical elicitors is one of the effective strategies to trigger the biosynthetic pathways for the release of a higher quantity of bioactive compounds. Therefore, this study was designed to investigate the effects of chemical elicitors, aluminum chloride (AlCl3) and cadmium chloride (CdCl2), on the biosynthesis of secondary metabolites, biomass, and the antioxidant system in callus cultures of F. indica. Among various treatments applied, AlCl3 (0.1 mM concentration) improved the highest in biomass accumulation (fresh weight (FW): 404.72 g/L) as compared to the control (FW: 269.85 g/L). The exposure of cultures to AlCl3 (0.01 mM) enhanced the accumulation of secondary metabolites, and the total phenolic contents (TPCs: 7.74 mg/g DW) and total flavonoid contents (TFCs: 1.07 mg/g DW) were higher than those of cultures exposed to CdCl2 (0.01 mM) with content levels (TPC: 5.60 and TFC: 0.97 mg/g) as compared to the control (TPC: 4.16 and TFC: 0.42 mg/g DW). Likewise, AlCl3 and CdCl2 also promoted the free radical scavenging activity (FRSA; 89.4% and 90%, respectively) at a concentration of 0.01 mM, as compared to the control (65.48%). For instance, the quantification of metabolites via high-performance liquid chromatography (HPLC) revealed an optimum production of myricetin (1.20 mg/g), apigenin (0.83 mg/g), isorhamnetin (0.70 mg/g), and kaempferol (0.64 mg/g). Cultures grown in the presence of AlCl3 triggered higher quantities of secondary metabolites than those grown in the presence of CdCl2 (0.79, 0.74, 0.57, and 0.67 mg/g). Moreover, AlCl3 at 0.1 mM enhanced the biosynthesis of superoxide dismutase (SOD: 0.08 nM/min/mg-FW) and peroxidase enzymes (POD: 2.37 nM/min/mg-FW), while CdCl2 resulted in an SOD activity up to 0.06 nM/min/mg-FW and POD: 2.72 nM/min/mg-FW. From these results, it is clear that AlCl3 is a better elicitor in terms of a higher and uniform productivity of biomass, secondary cell products, and antioxidant enzymes compared to CdCl2 and the control. It is possible to scale the current strategy to a bioreactor for a higher productivity of metabolites of interest for various pharmaceutical industries. Full article
Show Figures

Figure 1

15 pages, 1353 KiB  
Article
Scarlet Flax Linum grandiflorum (L.) In Vitro Cultures as a New Source of Antioxidant and Anti-Inflammatory Lignans
by Bushra Asad, Taimoor Khan, Faiza Zareen Gul, Muhammad Asad Ullah, Samantha Drouet, Sara Mikac, Laurine Garros, Manon Ferrier, Shankhamala Bose, Thibaut Munsch, Duangjai Tungmunnithum, Arnaud Lanoue, Nathalie Giglioli-Guivarc’h, Christophe Hano and Bilal Haider Abbasi
Molecules 2021, 26(15), 4511; https://doi.org/10.3390/molecules26154511 - 27 Jul 2021
Cited by 5 | Viewed by 3002
Abstract
In vitro cultures of scarlet flax (Linum grandiflorum L.), an important ornamental flax, have been established as a new possible valuable resource of lignans and neolignans for antioxidant and anti-inflammatory applications. The callogenic potential at different concentrations of α-naphthalene acetic acid (NAA) [...] Read more.
In vitro cultures of scarlet flax (Linum grandiflorum L.), an important ornamental flax, have been established as a new possible valuable resource of lignans and neolignans for antioxidant and anti-inflammatory applications. The callogenic potential at different concentrations of α-naphthalene acetic acid (NAA) and thidiazuron (TDZ), alone or in combinations, was evaluated using both L. grandiflorum hypocotyl and cotyledon explants. A higher callus induction frequency was observed on NAA than TDZ, especially for hypocotyl explants, with a maximum frequency (i.e., 95.2%) on 1.0 mg/L of NAA. The presence of NAA (1.0 mg/L) in conjunction with TDZ tended to increase the frequency of callogenesis relative to TDZ alone, but never reached the values observed with NAA alone, thereby indicating the lack of synergy between these two plant growth regulators (PGRs). Similarly, in terms of biomass, NAA was more effective than TDZ, with a maximum accumulation of biomass registered for medium supplemented with 1.0 mg/L of NAA using hypocotyls as initial explants (DW: 13.1 g). However, for biomass, a synergy between the two PGRs was observed, particularly for cotyledon-derived explants and for the lowest concentrations of TDZ. The influence of these two PGRs on callogenesis and biomass is discussed. The HPLC analysis confirmed the presence of lignans (secoisolariciresinol (SECO) and lariciresinol (LARI) and neolignan (dehydrodiconiferyl alcohol [DCA]) naturally accumulated in their glycoside forms. Furthermore, the antioxidant activities performed for both hypocotyl- and cotyledon-derived cultures were also found maximal (DPPH: 89.5%, FRAP 866: µM TEAC, ABTS: 456 µM TEAC) in hypocotyl-derived callus cultures as compared with callus obtained from cotyledon explants. Moreover, the anti-inflammatory activities revealed high inhibition (COX-1: 47.4% and COX-2: 51.1%) for extract of hypocotyl-derived callus cultures at 2.5 mg/L TDZ. The anti-inflammatory action against COX-1 and COX-2 was supported by the IC50 values. This report provides a viable approach for enhanced biomass accumulation and efficient production of (neo)lignans in L. grandiflorum callus cultures. Full article
Show Figures

Graphical abstract

20 pages, 7284 KiB  
Article
CRISPR/Cas9-Mediated Genome Editing in Comfrey (Symphytum officinale) Hairy Roots Results in the Complete Eradication of Pyrrolizidine Alkaloids
by Mahmoud M. Zakaria, Brigitte Schemmerling and Dietrich Ober
Molecules 2021, 26(6), 1498; https://doi.org/10.3390/molecules26061498 - 10 Mar 2021
Cited by 12 | Viewed by 3739
Abstract
Comfrey (Symphytum officinale) is a medicinal plant with anti-inflammatory, analgesic, and proliferative properties. However, its pharmaceutical application is hampered by the co-occurrence of toxic pyrrolizidine alkaloids (PAs) in its tissues. Using a CRISPR/Cas9-based approach, we introduced detrimental mutations into the hss [...] Read more.
Comfrey (Symphytum officinale) is a medicinal plant with anti-inflammatory, analgesic, and proliferative properties. However, its pharmaceutical application is hampered by the co-occurrence of toxic pyrrolizidine alkaloids (PAs) in its tissues. Using a CRISPR/Cas9-based approach, we introduced detrimental mutations into the hss gene encoding homospermidine synthase (HSS), the first pathway-specific enzyme of PA biosynthesis. The resulting hairy root (HR) lines were analyzed for the type of gene-editing effect that they exhibited and for their homospermidine and PA content. Inactivation of only one of the two hss alleles resulted in HRs with significantly reduced levels of homospermidine and PAs, whereas no alkaloids were detectable in HRs with two inactivated hss alleles. PAs were detectable once again after the HSS-deficient HRs were fed homospermidine confirming that the inability of these roots to produce PAs was only attributable to the inactivated HSS and not to any unidentified off-target effect of the CRISPR/Cas9 approach. Further analyses showed that PA-free HRs possessed, at least in traces, detectable amounts of homospermidine, and that the PA patterns of manipulated HRs were different from those of control lines. These observations are discussed with regard to the potential use of such a CRISPR/Cas9-mediated approach for the economical exploitation of in vitro systems in a medicinal plant and for further studies of PA biosynthesis in non-model plants. Full article
Show Figures

Figure 1

17 pages, 1454 KiB  
Article
Chitosan Elicitation Impacts Flavonolignan Biosynthesis in Silybum marianum (L.) Gaertn Cell Suspension and Enhances Antioxidant and Anti-Inflammatory Activities of Cell Extracts
by Muzamil Shah, Hasnain Jan, Samantha Drouet, Duangjai Tungmunnithum, Jafir Hussain Shirazi, Christophe Hano and Bilal Haider Abbasi
Molecules 2021, 26(4), 791; https://doi.org/10.3390/molecules26040791 - 03 Feb 2021
Cited by 24 | Viewed by 3498
Abstract
Silybum marianum (L.) Gaertn is a rich source of antioxidants and anti-inflammatory flavonolignans with great potential for use in pharmaceutical and cosmetic products. Its biotechnological production using in vitro culture system has been proposed. Chitosan is a well-known elicitor that strongly affects both [...] Read more.
Silybum marianum (L.) Gaertn is a rich source of antioxidants and anti-inflammatory flavonolignans with great potential for use in pharmaceutical and cosmetic products. Its biotechnological production using in vitro culture system has been proposed. Chitosan is a well-known elicitor that strongly affects both secondary metabolites and biomass production by plants. The effect of chitosan on S. marianum cell suspension is not known yet. In the present study, suspension cultures of S. marianum were exploited for their in vitro potential to produce bioactive flavonolignans in the presence of chitosan. Established cell suspension cultures were maintained on the same hormonal media supplemented with 0.5 mg/L BAP (6-benzylaminopurine) and 1.0 mg/L NAA (α-naphthalene acetic acid) under photoperiod 16/8 h (light/dark) and exposed to various treatments of chitosan (ranging from 0.5 to 50.0 mg/L). The highest biomass production was observed for cell suspension treated with 5.0 mg/L chitosan, resulting in 123.3 ± 1.7 g/L fresh weight (FW) and 17.7 ± 0.5 g/L dry weight (DW) productions. All chitosan treatments resulted in an overall increase in the accumulation of total flavonoids (5.0 ± 0.1 mg/g DW for 5.0 mg/L chitosan), total phenolic compounds (11.0 ± 0.2 mg/g DW for 0.5 mg/L chitosan) and silymarin (9.9 ± 0.5 mg/g DW for 0.5 mg/L chitosan). In particular, higher accumulation levels of silybin B (6.3 ± 0.2 mg/g DW), silybin A (1.2 ± 0.1 mg/g DW) and silydianin (1.0 ± 0.0 mg/g DW) were recorded for 0.5 mg/L chitosan. The corresponding extracts displayed enhanced antioxidant and anti-inflammatory capacities: in particular, high ABTS antioxidant activity (741.5 ± 4.4 μM Trolox C equivalent antioxidant capacity) was recorded in extracts obtained in presence of 0.5 mg/L of chitosan, whereas highest inhibitions of cyclooxygenase 2 (COX-2, 30.5 ± 1.3 %), secretory phospholipase A2 (sPLA2, 33.9 ± 1.3 %) and 15-lipoxygenase (15-LOX-2, 31.6 ± 1.2 %) enzymes involved in inflammation process were measured in extracts obtained in the presence of 5.0 mg/L of chitosan. Taken together, these results highlight the high potential of the chitosan elicitation in the S. marianum cell suspension for enhanced production of antioxidant and anti-inflammatory silymarin-rich extracts. Full article
Show Figures

Figure 1

12 pages, 1050 KiB  
Communication
The Callus of Phaseolus coccineus and Glycine max Biotransform Flavanones into the Corresponding Flavones
by Monika Dymarska, Tomasz Janeczko and Edyta Kostrzewa-Susłow
Molecules 2020, 25(23), 5767; https://doi.org/10.3390/molecules25235767 - 07 Dec 2020
Cited by 4 | Viewed by 3774
Abstract
In vitro plant cultures are gaining in industrial importance, especially as biocatalysts and as sources of secondary metabolites used in pharmacy. The idea that guided us in our research was to evaluate the biocatalytic potential of newly obtained callus tissue towards flavonoid compounds. [...] Read more.
In vitro plant cultures are gaining in industrial importance, especially as biocatalysts and as sources of secondary metabolites used in pharmacy. The idea that guided us in our research was to evaluate the biocatalytic potential of newly obtained callus tissue towards flavonoid compounds. In this publication, we describe new ways of using callus cultures in the biotransformations. In the first method, the callus cultures grown on a solid medium are transferred to the water, the reaction medium into which the substrate is introduced. In the second method, biotransformation is carried out on a solid medium by growing callus cultures. In the course of the research, we have shown that the callus obtained from Phaseolus coccineus and Glycine max is capable of converting flavanone, 5-methoxyflavanone and 6-methoxyflavanone into the corresponding flavones. Full article
Show Figures

Figure 1

23 pages, 1062 KiB  
Article
Phytochemical Composition, Antioxidant Capacity, and Enzyme Inhibitory Activity in Callus, Somaclonal Variant, and Normal Green Shoot Tissues of Catharanthus roseus (L) G. Don
by O. New Lee, Gunes Ak, Gokhan Zengin, Zoltán Cziáky, József Jekő, Kannan R.R. Rengasamy, Han Yong Park, Doo Hwan Kim and Iyyakkannu Sivanesan
Molecules 2020, 25(21), 4945; https://doi.org/10.3390/molecules25214945 - 26 Oct 2020
Cited by 8 | Viewed by 2765
Abstract
This study aimed to investigate the impact of plant growth regulators, sucrose concentration, and the number of subcultures on axillary shoot multiplication, in vitro flowering, and somaclonal variation and to assess the phytochemical composition, antioxidant capacity, and enzyme inhibitory potential of in vitro-established [...] Read more.
This study aimed to investigate the impact of plant growth regulators, sucrose concentration, and the number of subcultures on axillary shoot multiplication, in vitro flowering, and somaclonal variation and to assess the phytochemical composition, antioxidant capacity, and enzyme inhibitory potential of in vitro-established callus, somaclonal variant, and normal green shoots of Catharanthus roseus. The highest shoot induction rate (95.8%) and highest number of shoots (23.6), with a mean length of 4.5 cm, were attained when the C. roseus nodal explants (0.6–1 cm in length) were cultivated in Murashige and Skoog (MS) medium with 2 µM thidiazuron, 1 µM 2-(1-naphthyl) acetic acid (NAA), and 4% sucrose. The in vitro flowering of C. roseus was affected by sucrose, and the number of subcultures had a significant effect on shoot multiplication and somaclonal variation. The highest levels of phenolics and flavonoids were found in normal green shoots, followed by those in somaclonal variant shoots and callus. The phytochemicals in C. roseus extracts were qualified using liquid chromatography–tandem mass spectrometry. A total of 39, 55, and 59 compounds were identified in the callus, somaclonal variant shoot, and normal green shoot tissues, respectively. The normal green shoot extracts exhibited the best free radical scavenging ability and reducing power activity. The strongest acetylcholinesterase inhibitory effects were found in the callus, with an IC50 of 0.65 mg/mL. Full article
Show Figures

Figure 1

14 pages, 1872 KiB  
Article
Callus Culture of Thai Basil Is an Effective Biological System for the Production of Antioxidants
by Saher Nazir, Hasnain Jan, Duangjai Tungmunnithum, Samantha Drouet, Muhammad Zia, Christophe Hano and Bilal Haider Abbasi
Molecules 2020, 25(20), 4859; https://doi.org/10.3390/molecules25204859 - 21 Oct 2020
Cited by 28 | Viewed by 4558
Abstract
Thai basil is a renowned medicinal plant and a rich source of bioactive antioxidant compounds with several health benefits, with actions to prevent of cancer, diabetes and cardiovascular disease. Plant cell and tissue culture technologies can be routinely established as an important, sustainable [...] Read more.
Thai basil is a renowned medicinal plant and a rich source of bioactive antioxidant compounds with several health benefits, with actions to prevent of cancer, diabetes and cardiovascular disease. Plant cell and tissue culture technologies can be routinely established as an important, sustainable and low-cost biomass source to produce high-value phytochemicals. The current study aimed at developing an effective protocol to produce Thai basil leaf-derived callus cultures with sustainable and high production of biomass and antioxidants as an alternative of leaves production. MS basal medium with various concentrations of plant growth regulators (PGRs) compatible with nutraceutical applications (i.e., gibberellic acid (GA3) and 6-benzylaminopurine (BAP) either alone or in combination with naphthalene acetic acid (NAA)) were evaluated. Among all tested PGRs, the combination BAP:NAA (5 mg/L:1 mg/L) yields the maximum biomass accumulation (fresh weight (FW): 190 g/L and dry weight (DW): 13.05 g/L) as well as enhanced phenolic (346.08 mg/L) production. HPLC quantification analysis indicated high productions of chicoric acid (35.77 mg/g DW) and rosmarinic acid (7.35 mg/g DW) under optimized callus culture conditions. Antioxidant potential was assessed using both in vitro cell free and in vivo cellular antioxidant assays. Maximum in vitro antioxidant activity DPPH (93.2% of radical scavenging activity) and ABTS (1322 µM Trolox equivalent antioxidant capacity) was also observed for the extracts from callus cultures grown in optimal conditions. In vivo cellular antioxidant activity assay confirmed the effective protection against oxidative stress of the corresponding extract by the maximum inhibition of ROS and RNS production. Compared to commercial leaves, callus extracts showed higher production of chicoric acid and rosmarinic acid associated with higher antioxidant capacity. In addition, this biological system also has a large capacity for continuous biomass production, thus demonstrating its high potential for possible nutraceutical applications. Full article
Show Figures

Graphical abstract

14 pages, 3336 KiB  
Article
Engineered ZnO and CuO Nanoparticles Ameliorate Morphological and Biochemical Response in Tissue Culture Regenerants of Candyleaf (Stevia rebaudiana)
by Muhammad Arslan Ahmad, Rabia Javed, Muhammad Adeel, Muhammad Rizwan, Qiang Ao and Yuesuo Yang
Molecules 2020, 25(6), 1356; https://doi.org/10.3390/molecules25061356 - 17 Mar 2020
Cited by 57 | Viewed by 3893
Abstract
Sustainable production of secondary metabolites in medicinal plants by artificial culturing on the industrial scale has gained worldwide importance. Engineered nanoparticles (ENPs) play a pivotal role in the elicitation of compounds of medicinal value. This investigation explores the influence of ZnO and CuO [...] Read more.
Sustainable production of secondary metabolites in medicinal plants by artificial culturing on the industrial scale has gained worldwide importance. Engineered nanoparticles (ENPs) play a pivotal role in the elicitation of compounds of medicinal value. This investigation explores the influence of ZnO and CuO ENPs on in vitro roots formation, non-enzymatic antioxidant activities, and production of steviol glycosides (SGs) in regenerants of Candyleaf, Stevia rebaudiana. ENPs were applied in 0, 2, 20, 200, and 2000 mg/L of concentration in the MS medium containing plant shoots. The percentage of rooting induced was 91% and 94% by applying ZnO ENPs (2 mg/L) and CuO ENPs (20 mg/L), respectively. Moreover, at 2 mg/L of ZnO and 20 mg/L of CuO ENPs, the high performance liquid chromatography studies determined the significantly greatest content of SGs; rebaudioside A (4.42 and 4.44) and stevioside (1.28 and 1.96). Phytochemical studies including total flavonoid content, total phenolic content, and 2,2-diphenyl-1-picryl hydrazyl-free radical scavenging activity were calculated highest by the regenerants grown in 2 mg/L of ZnO and 20 mg/L of CuO ENPs dosage. Both ZnO and CuO ENPs at 200 mg/L and 2000 mg/L of concentration induced adverse effects on plant biomass, antioxidant activities, and SGs content up to 1.22 and 1.77 for rebaudioside A and 0.21 and 0.25 for stevioside. Hence, the biochemical and morphophysiological responses of Candyleaf were elicited as a defense against ZnO and CuO ENPs applied under threshold limit. This artificial biotechnological technique holds great promise for continued production of natural antioxidants on commercial scale and our study has further strengthened this impact. Full article
Show Figures

Graphical abstract

16 pages, 3161 KiB  
Article
Interactive Effect of Melatonin and UV-C on Phenylpropanoid Metabolite Production and Antioxidant Potential in Callus Cultures of Purple Basil (Ocimum basilicum L. var purpurascens)
by Munazza Nazir, Muhammad Asad Ullah, Sadia Mumtaz, Aisha Siddiquah, Muzamil Shah, Samantha Drouet, Christophe Hano and Bilal Haider Abbasi
Molecules 2020, 25(5), 1072; https://doi.org/10.3390/molecules25051072 - 27 Feb 2020
Cited by 45 | Viewed by 4388
Abstract
The present study evaluated the interactive effect of melatonin and UV-C on phenylpropanoid metabolites profile and antioxidant potential of Ocimum basilicum L. Callus was treated with varying concentrations of melatonin and UV-C radiations for different time durations, either alone and/or in combination. Individual [...] Read more.
The present study evaluated the interactive effect of melatonin and UV-C on phenylpropanoid metabolites profile and antioxidant potential of Ocimum basilicum L. Callus was treated with varying concentrations of melatonin and UV-C radiations for different time durations, either alone and/or in combination. Individual treatments of both UV-C and melatonin proved to be more effective than combine treatments. Results indicated that UV-C (10 min) exposure increased rosmarinic acid (134.5 mg/g dry weight (DW)), which was 2.3-fold greater than control. Chichoric acid (51.52 mg/g DW) and anthocyanin (cyanide 0.50 mg/g DW) were almost 4.1-fold, while peonidin was found 2.7-fold higher in UV-C (50 min) exposure. In the case of melatonin, 1.0 mg/L concentrations showed maximum rosmarinic acid (79.4 mg/g DW) accumulation; i.e., 1.4-fold more, as compared to the control. However, 2 mg/L melatonin accumulate chichoric acid (39.99 mg/g DW) and anthocyanin (cyanide: 0.45 mg/g DW and peonidin: 0.22 mg/g DW); i.e., 3.2, 3.7 and 2.0-fold increase, as compared to the control, respectively. On the other hand, melatonin-combined treatment (melatonin (Mel) (4 mg/L) + UV-C (20 min)) was proved to be effective in caffeic acid elicitation, which was 1.9-fold greater than the control. Furthermore, antioxidant potential was evaluated by both in vitro (DPPH, ABTS and FRAP assays) and in cellulo methods. Maximum in vitro antioxidant activity (DPPH: 90.6% and ABTS: 1909.5 µM) was observed for UV-C (50 min)-treated cultures. The highest in vitro antioxidant activity measured with the ABTS assay as compared to the FRAP assay, suggesting the main contribution of antioxidants from basil callus extracts acting through a hydrogen atom transfer (HAT) over an electron transfer (ET)-based mechanism. Cellular antioxidant assay was evaluated by production of ROS/RNS species using yeast cell cultures and further confirmed the protective action of the corresponding callus extracts against oxidative stress. Overall, both melatonin and UV-C are here proved to be effective elicitors since a positive correlation between the induced production of phenolic compounds, and in cellulo antioxidant action of basil callus extracts were observed. Full article
Show Figures

Figure 1

Back to TopTop