molecules-logo

Journal Browser

Journal Browser

Chemical Research on High-Performance Composites

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Materials Chemistry".

Deadline for manuscript submissions: closed (31 December 2024) | Viewed by 1151

Special Issue Editor


E-Mail Website
Guest Editor
College of Safety and Ocean Engineering, China University of Petroleum, Beijing 102249, China
Interests: flame retardants; nanocomposites; safety functional material; flame-retardance mechanism

Special Issue Information

Dear Colleagues,

Polymer/layered inorganic composite is a new type of polymer composite, with polymers as the matrix and layered inorganic compounds dispersed in the matrix at nanometer scale. Due to the nano effect brought by nanoparticles and the strong interfacial interaction between nanoparticles and matrix, polymer/layered inorganic composites have better mechanical and thermal properties than conventional polymer composites with the same composition, which makes it possible to prepare high-performance and multifunctional new-generation composites. At present, the research into polymer/layered inorganic composites has become a hot and frontier topic in material science research, which has great scientific significance and broad application prospects. This Special Issue will collect scientific papers on the latest advances in polymer/layered inorganic composites. Contributions are invited on all topics, including but not limited to the synthesis and preparation of polymer composites, polymers with excellent mechanical, thermal and flame retardant properties, multifunctional composites, reinforcement mechanism studies, and polymer nanocomposites. Full-text, short communications, and opinion articles that showcase and discuss the latest trends in these fields are welcome.

Dr. Shuilai Qiu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymer
  • layered inorganic compound
  • composites
  • high performance
  • enhancement
  • mechanism

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 8070 KiB  
Article
Structure, Optical and Electrical Properties of Nb(Zn) Doped Sol–Gel ITO Films: Effect of Substrates and Dopants
by Mariuca Gartner, Anna Szekeres, Simeon Simeonov, Maria Covei, Mihai Anastasescu, Silviu Preda, Jose Maria Calderon-Moreno, Luminita Predoana, Hermine Stroescu, Daiana Mitrea and Madalina Nicolescu
Molecules 2024, 29(22), 5480; https://doi.org/10.3390/molecules29225480 - 20 Nov 2024
Viewed by 877
Abstract
We present comparative studies of sol–gel ITO multilayered films undoped and doped with Nb or Zn (4 at.%). The films were obtained by successive depositions of five layers using the dip-coating sol–gel method on microscopic glass, SiO2/glass, and Si substrates. The [...] Read more.
We present comparative studies of sol–gel ITO multilayered films undoped and doped with Nb or Zn (4 at.%). The films were obtained by successive depositions of five layers using the dip-coating sol–gel method on microscopic glass, SiO2/glass, and Si substrates. The influence of the type of substrates and dopant atoms on the structure and optical properties of the sol–gel ITO thin films is examined and discussed in detail. XRD patterns of these layers showed a polycrystalline structure with an average crystallite size of <11 nm. Raman spectroscopy confirmed the chemical bonding of dopants with oxygen and showed the absence of crystallized Nb(Zn)-oxide particles, indicated by the XRD pattern. Spectroscopic Ellipsometry and AFM imaging revealed a clear dependence of the optical parameters and surface morphology of the ITO and ITO:Nb(Zn) thin films on the type of substrates and dopants. The analysis of the current-voltage and capacitance-voltage characteristics of the Al/ITO/Si structures revealed the presence of charge carrier traps in the ITO bulk and the ITO-Si interface. The densities of these traps are obtained and the character of the current transport mechanism is established. Full article
(This article belongs to the Special Issue Chemical Research on High-Performance Composites)
Show Figures

Figure 1

Back to TopTop