molecules-logo

Journal Browser

Journal Browser

Special Issue "ECSOC-24"

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Organic Chemistry".

Deadline for manuscript submissions: closed (15 July 2021) | Viewed by 6260

Special Issue Editor

Dr. Julio A. Seijas Vázquez
E-Mail Website
Guest Editor
Departamento de Química Orgánica, Universidad de Santiago de Compostela, Facultad de Ciencias-Campus de Lugo, Alfonso X el Sabio, 27002 Lugo, Spain
Interests: synthesis of compounds with biologic activity; synthesis of compounds with interest for agro-food field; solation, structural determination and synthesis of natural products; microwave organic reactions enhancement
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Electronic conferences on synthetic organic chemistry (ECSOC) are a series of conferences maintained through the internet since 1997, an original initiative by MDPI, and later consolidated with the contribution of the University of Santiago de Compostela (Spain). Nowadays it constitutes the first and oldest electronic conference in the world. It maintains its character of free participation, with contributions considered as preliminary reports on edge achievements, and registration as a distinctive standard of the world wide web open access character.

It covers different sections of organic synthesis:

  1. General Organic Synthesis
  2. Bioorganic, Medicinal and Natural Products Chemistry
  3. Microwave Assisted Synthesis
  4. Polymer and Supramolecular Chemistry
  5. Computational Chemistry
  6. Ionic Liquids

For more information on The 24th International Electronic Conference on Synthetic Organic Chemistry (ECSOC-24), please go to: https://ecsoc-24.sciforum.net/

Dr. Julio A. Seijas Vázquez
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2300 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Fluorescent Bis-Calix[4]arene-Carbazole Conjugates: Synthesis and Inclusion Complexation Studies with Fullerenes C60 and C70
Molecules 2021, 26(16), 5000; https://doi.org/10.3390/molecules26165000 - 18 Aug 2021
Viewed by 992
Abstract
Supramolecular chemistry has become a central theme in chemical and biological sciences over the last decades. Supramolecular structures are being increasingly used in biomedical applications, particularly in devices requiring specific stimuli-responsiveness. Fullerenes, and supramolecular assemblies thereof, have gained great visibility in biomedical sciences [...] Read more.
Supramolecular chemistry has become a central theme in chemical and biological sciences over the last decades. Supramolecular structures are being increasingly used in biomedical applications, particularly in devices requiring specific stimuli-responsiveness. Fullerenes, and supramolecular assemblies thereof, have gained great visibility in biomedical sciences and engineering. Sensitive and selective methods are required for the study of their inclusion in complexes in various application fields. With this in mind, two new fluorescent bis-calix[4]arene-carbazole conjugates (4 and 5) have been designed. Herein, their synthesis and ability to behave as specific hosts for fullerenes C60 and C70 is described. The optical properties of the novel compounds and their complexes with C60 and C70 were thoroughly studied by UV-Vis and steady-state and time-resolved fluorescence spectroscopies. The association constants (Ka) for the complexation of C60 and C70 by 4 and 5 were determined by fluorescence techniques. A higher stability was found for the C70@4 supramolecule (Ka = 5.6 × 104 M−1; ΔG = −6.48 kcal/mol). Evidence for the formation of true inclusion complexes between the host 4 and C60/C70 was obtained from NMR spectroscopy performed at low temperatures. The experimental findings were fully corroborated by density functional theory (DFT) models performed on the host–guest assemblies (C60@4 and C70@4). Full article
(This article belongs to the Special Issue ECSOC-24)
Show Figures

Graphical abstract

Article
Photosynthesis-Inhibiting Activity of N-(Disubstituted-phenyl)-3-hydroxynaphthalene-2-carboxamides
Molecules 2021, 26(14), 4336; https://doi.org/10.3390/molecules26144336 - 17 Jul 2021
Cited by 2 | Viewed by 1010
Abstract
A set of twenty-four 3-hydroxynaphthalene-2-carboxanilides, disubstituted on the anilide ring by combinations of methoxy/methyl/fluoro/chloro/bromo and ditrifluoromethyl groups at different positions, was prepared. The compounds were tested for their ability to inhibit photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. N [...] Read more.
A set of twenty-four 3-hydroxynaphthalene-2-carboxanilides, disubstituted on the anilide ring by combinations of methoxy/methyl/fluoro/chloro/bromo and ditrifluoromethyl groups at different positions, was prepared. The compounds were tested for their ability to inhibit photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. N-(3,5-Difluorophenyl)-, N-(3,5-dimethylphenyl)-, N-(2,5-difluorophenyl)- and N-(2,5-dimethylphenyl)-3-hydroxynaphthalene-2-carboxamides showed the highest PET-inhibiting activity (IC50 ~ 10 µM) within the series. These compounds were able to inhibit PET in photosystem II. It has been found that PET-inhibiting activity strongly depends on the position of the individual substituents on the anilide ring and on the lipophilicity of the compounds. The electron-withdrawing properties of the substituents contribute towards the PET activity of these compounds. Full article
(This article belongs to the Special Issue ECSOC-24)
Show Figures

Figure 1

Article
Human Serum Albumin Labelling with a New BODIPY Dye Having a Large Stokes Shift
Molecules 2021, 26(9), 2679; https://doi.org/10.3390/molecules26092679 - 03 May 2021
Cited by 4 | Viewed by 1109
Abstract
BODIPY dyes are photostable neutral derivatives of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene. These are widely used as chemosensors, laser materials, and molecular probes. At the same time, BODIPY dyes have small or moderate Stokes shifts like most other fluorophores. Large Stokes shifts are preferred for [...] Read more.
BODIPY dyes are photostable neutral derivatives of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene. These are widely used as chemosensors, laser materials, and molecular probes. At the same time, BODIPY dyes have small or moderate Stokes shifts like most other fluorophores. Large Stokes shifts are preferred for fluorophores because of higher sensitivity of such probes and sensors. The new boron containing BODIPY dye was designed and synthesized. We succeeded to perform an annulation of pyrrole ring with coumarin heterocyclic system and achieved a remarkable difference in absorption and emission maximum of obtained fluorophore up to 100 nm. This BODIPY dye was equipped with linker arm and was functionalized with a maleimide residue specifically reactive towards thiol groups of proteins. BODIPY residue equipped with a suitable targeting protein core can be used as a suitable imaging probe and agent for Boron Neutron Capture Therapy (BNCT). As the most abundant protein with a variety of physiological functions, human serum albumin (HSA) has been used extensively for the delivery and improvement of therapeutic molecules. Thiolactone chemistry provides a powerful tool to prepare albumin-based multimodal constructions. The released sulfhydryl groups of the homocysteine functional handle in thiolactone modified HSA were labeled with BODIPY dye to prepare a labeled albumin-BODIPY dye conjugate confirmed by MALDI-TOF-MS, UV-vis, and fluorescent emission spectra. Cytotoxicity of the resulting conjugate was investigated. This study is the basis for a novel BODIPY dye-albumin theranostic for BNCT. The results provide further impetus to develop derivatives of HSA for delivery of boron to cancer cells. Full article
(This article belongs to the Special Issue ECSOC-24)
Show Figures

Graphical abstract

Article
Chemical and Pharmacological Potential of Coccoloba cowellii, an Endemic Endangered Plant from Cuba
Molecules 2021, 26(4), 935; https://doi.org/10.3390/molecules26040935 - 10 Feb 2021
Cited by 3 | Viewed by 1114
Abstract
Coccoloba cowellii Britton (Polygonaceae) is an endemic and critically endangered plant that only grows in Camagüey, a province of Cuba. In this study, a total of 13 compounds were identified in a methanolic leaf extract, employing a dereplication of the UHPLC-HRMS data by [...] Read more.
Coccoloba cowellii Britton (Polygonaceae) is an endemic and critically endangered plant that only grows in Camagüey, a province of Cuba. In this study, a total of 13 compounds were identified in a methanolic leaf extract, employing a dereplication of the UHPLC-HRMS data by means of feature-based molecular networking (FBMN) analysis in the Global Natural Products Social Molecular Network (GNPS), together with the interpretation of the MS/MS data and comparison with the literature. The major constituents were glucuronides and glycosides of myricetin and quercetin, as well as epichatechin-3-O-gallate, catechin, epicatechin and gallic acid, all of them being reported for the first time in C. cowellii leaves. The leaf extract was also tested against various microorganisms, and it showed a strong antifungal effect against Candida albicans ATCC B59630 (azole-resistant) (IC50 2.1 µg/mL) and Cryptococcus neoformans ATCC B66663 (IC50 4.1 µg/mL) with no cytotoxicity (CC50 > 64.0 µg/mL) on MRC-5 SV2 cells, determined by the resazurin assay. Additionally, the extract strongly inhibited COX-1 and COX-2 enzyme activity using a cell-free experiment in a dose-dependent manner, being significantly more active on COX-1 (IC50 4.9 µg/mL) than on COX-2 (IC50 10.4 µg/mL). The constituents identified as well as the pharmacological activities measured highlight the potential of C. cowellii leaves, increasing the interest in the implementation of conservation strategies for this species. Full article
(This article belongs to the Special Issue ECSOC-24)
Show Figures

Figure 1

Review

Jump to: Research

Review
s-Triazine: A Privileged Structure for Drug Discovery and Bioconjugation
Molecules 2021, 26(4), 864; https://doi.org/10.3390/molecules26040864 - 06 Feb 2021
Cited by 11 | Viewed by 1396
Abstract
This review provides an overview of the broad applicability of s-triazine. Our many years working with this intriguing moiety allow us to discuss its wide activity spectrum (inhibition against MAO-A and -B, anticancer/antiproliferative and antimicrobial activity, antibacterial activity against MDR clinical isolates, antileishmanial [...] Read more.
This review provides an overview of the broad applicability of s-triazine. Our many years working with this intriguing moiety allow us to discuss its wide activity spectrum (inhibition against MAO-A and -B, anticancer/antiproliferative and antimicrobial activity, antibacterial activity against MDR clinical isolates, antileishmanial agent, and use as drug nano delivery system). Most of the compounds addressed in our studies and those performed by other groups contain only N-substitution. Exploiting the concept of orthogonal chemoselectivity, first described by our group, we have successfully incorporated different nucleophiles in different orders into s-triazine core for application in peptides/proteins at a temperature compatible with biological systems. Full article
(This article belongs to the Special Issue ECSOC-24)
Show Figures

Figure 1

Back to TopTop