Special Issue "Self-Healing and Smart Cementitious Construction Materials"

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Smart Materials".

Deadline for manuscript submissions: 30 April 2020.

Special Issue Editors

Prof. Nele De Belie
E-Mail Website1 Website2
Guest Editor
Magnel Laboratory for Concrete Research, Faculty of Engineering and Architecture, Ghent University, Technologiepark Zwijnaarde 60, B-9052 Gent, Belgium
Tel. +32 9 264 55 22
Interests: durability of cementitious materials; biodeterioration; advanced cementitious and mineral building materials (self healing, self cleaning, etc.); effect of supplementary cementitious materials (fly ash, slag, silica fume, etc.) and polymers; sustainabiliity and life cycle assessment
Special Issues and Collections in MDPI journals
Dr. Ir. Maria Adelaide Pereira Gomes de Araújo
E-Mail Website
Co-Guest Editor
Department of Structural Engineering, Ghent University, Technologiepark Zwijnaarde 60, B-9052 Gent, Belgium
Dr. Ir. Didier Snoeck
E-Mail Website
Co-Guest Editor
Faculty of Engineering and Architecture, Department of Structural Engineering, Ghent University, Technologiepark Zwijnaarde 60, B-9052 Gent, Belgium
Prof. Dr. Ing. Kim Van Tittelboom
E-Mail Website
Co-Guest Editor
Faculty of Engineering and Architecture, Department of Structural Engineering, Ghent University, Technologiepark Zwijnaarde 60, B-9052 Gent, Belgium

Special Issue Information

Dear Colleagues,

The continuously growing world population and wide-spread industrialization increase the need for sustainable infrastructure. The construction industry currently is responsible for an important part of the environmental impacts related to the use of natural resources and energy, the production of waste, and greenhouse gas emissions. To minimize these impacts, our civil engineering structures need to become more long-lasting and smart. Since concrete is the most used construction material, increasing the durability of concrete structures is an important goal in this respect. To obtain such enhanced durability and sustainability, in the last decade several smart admixtures have been developed to impart self-responsiveness to this material, including self-sensing, self-curing, and self-healing. Carbon nanofibers and nanotubes have been used to make the concrete self-sensing and report when damage is about to occur or has occurred already. Layered double hydroxides can capture aggressive agents intruding into the concrete and can release corrosion inhibitors to prevent damage. Superabsorbent polymers have been developed to provoke internal curing and hence can mitigate autogenous shrinkage cracks; they can also self-seal cracks from intruding liquids and stimulate self-healing through the deposition of calcium carbonate and binder hydration products. Micro- and macro-capsules containing mineral or polymeric healing agents can provide autonomic self-healing properties. In this Special Issue, the recent advances in the development of these smart admixtures are discussed. The compatibility of the smart admixtures with other concrete components and the effects on fresh and hardened concrete properties are considered. Modelling of the hydration reactions and microstructure formation in the novel durable concrete, of the activation of smart properties, of the service life in specific environments, and of environmental impacts, is of importance as well. Evaluation of the resistance to extreme conditions is also included, with consideration of extreme thermal gradients, ice impact and abrasion, corrosion, freeze–thaw actions, deep-sea conditions, mechanical fatigue, and acid attack.

All these topics are considered in the ‘’Conference on Durable Concrete for Infrastructure under Severe Conditions—Smart Admixtures, Self-Responsiveness and Nano-Additions’’, organized in Ghent, 10–11 September 2019, by the partners of the European H2020 project Lorcenis. This Special Issue collects the most interesting contributions of this conference, together with additional articles from other experts in the field.

Prof. Nele De Belie
Prof. Dr. Ing. Kim Van Tittelboom
Dr. Ir. Didier Snoeck
Dr. Ir. Maria Adelaide Pereira Gomes de Araújo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • concrete
  • smart
  • self-healing
  • self-curing
  • self-sensing
  • nano-additions
  • corrosion
  • durability
  • sustainability
  • extreme conditions

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Development and Application of Novel Sodium Silicate Microcapsule-Based Self-Healing Oil Well Cement
Materials 2020, 13(2), 456; https://doi.org/10.3390/ma13020456 (registering DOI) - 17 Jan 2020
Abstract
A majority of well integrity problems originate from cracks of oil well cement. To address the crack issues, bespoke sodium silicate microcapsules were used in this study for introducing autonomous crack healing ability to oil well cement under high-temperature service conditions at 80 [...] Read more.
A majority of well integrity problems originate from cracks of oil well cement. To address the crack issues, bespoke sodium silicate microcapsules were used in this study for introducing autonomous crack healing ability to oil well cement under high-temperature service conditions at 80 °C. Two types of sodium silicate microcapsule, which differed in their polyurea shell properties, were first evaluated on their suitability for use under the high temperature of 80 °C in the wellbore. Both types of microcapsules showed good thermal stability and survivability during mixing. The microcapsules with a more rigid shell were chosen over microcapsule with a more rubbery shell for further tests on the self-healing efficiency since the former had much less negative effect on the oil well cement strength. It was found that oil well cement itself showed very little healing capability when cured at 80 °C, but the addition of the microcapsules significantly promoted its self-healing performance. After healing for 7 days at 80 °C, the microcapsule-containing cement pastes achieved crack depth reduction up to ~58%, sorptivity coefficient reduction up to ~76%, and flexural strength regain up to ~27%. The microstructure analysis further confirmed the stability of microcapsules and their self-healing reactions upon cracking in the high temperature oil well cement system. These results provide a promising perspective for the development of self-healing microcapsule-based oil well cements. Full article
(This article belongs to the Special Issue Self-Healing and Smart Cementitious Construction Materials)
Open AccessArticle
Evaluation of the Self-Healing Ability of Mortar Mixtures Containing Superabsorbent Polymers and Nanosilica
Materials 2020, 13(2), 380; https://doi.org/10.3390/ma13020380 - 14 Jan 2020
Abstract
Addition of superabsorbent polymers (SAPs) to cementitious mixtures promotes the self-healing ability of the material. When cracking occurs; SAPs present inside the crack will swell upon contact with water and subsequently release this water to stimulate the further hydration of unhydrated cement particles [...] Read more.
Addition of superabsorbent polymers (SAPs) to cementitious mixtures promotes the self-healing ability of the material. When cracking occurs; SAPs present inside the crack will swell upon contact with water and subsequently release this water to stimulate the further hydration of unhydrated cement particles and the calcium carbonate crystallization. However; the inclusion of SAPs affects the mechanical performance of the cementitious material by the creation of macro-pores as water is retracted from the swollen SAP. To counteract the reduction in strength, part of the cement is replaced by nanosilica. In this research, different mixtures containing either SAPs or nanosilica and a combination of both were made. The samples were subjected to wet–dry cycles simulating external conditions, and the self-healing efficiency was evaluated by means of the evolution in crack width, by optical measurements, and a water permeability test. In samples containing SAPs, an immediate sealing effect was observed and visual crack closure was noticed. The smaller influence on the mechanical properties and the good healing characteristics in mixtures containing both nanosilica and SAPs are promising as a future material for use in building applications. Full article
(This article belongs to the Special Issue Self-Healing and Smart Cementitious Construction Materials)
Open AccessArticle
Chloride Resistance of Portland Cement-Based Mortar Incorporating High Aluminate Cement and Calcium Carbonate
Materials 2020, 13(2), 359; https://doi.org/10.3390/ma13020359 - 12 Jan 2020
Abstract
Whether chloride resistance is highly influenced by chloride binding capacity remains unknown. In this study, the chloride resistance of Portland cement-based mortar incorporating aluminate cement and calcium carbonate was investigated considering the chloride binding capacity, pore structures and chloride diffusion coefficient from non-steady [...] Read more.
Whether chloride resistance is highly influenced by chloride binding capacity remains unknown. In this study, the chloride resistance of Portland cement-based mortar incorporating aluminate cement and calcium carbonate was investigated considering the chloride binding capacity, pore structures and chloride diffusion coefficient from non-steady state chloride migration and natural chloride diffusion. The cement hydrates were investigated using X-ray diffraction and thermogravimetric analysis. The chloride binding capacity was evaluated based on the chloride adsorption from the solutions using the adsorption isotherm. The aluminate cement, as an available alumina source, can stimulate the formulation of layered double hydroxides, which in turn can increase the chloride binding capacity. The results of mercury intrusion porosimetry show that non-substituted (control) and substituted (only aluminate cement) specimens have capillary pore volume 8.9 vol % and 8.2 vol %, respectively. However, the specimen substituted with aluminate cement and calcium carbonate shows a higher capillary volume (12.9 vol %), which correlates with the chloride diffusion coefficient. Although the specimen substituted with calcium carbonate has a higher chloride binding capacity than the control, it does not necessarily affect the decrease in the chloride diffusion coefficient. The capillary pore volume can affect not only the chloride diffusion but also the chloride adsorption. Full article
(This article belongs to the Special Issue Self-Healing and Smart Cementitious Construction Materials)
Show Figures

Figure 1

Open AccessArticle
The Self-Sealing Capacity of Environmentally Friendly, Highly Damped, Fibre-Reinforced Concrete
Materials 2020, 13(2), 298; https://doi.org/10.3390/ma13020298 - 09 Jan 2020
Abstract
Cracks could attenuate the service life of concrete structures because of the intrusion of hazardous substances such as water. In this study, different proportions of Duras S500 fibre were employed to investigate the self-sealing capacity of environmentally friendly, highly damped, fibre-reinforced concrete (EFHDFRC) [...] Read more.
Cracks could attenuate the service life of concrete structures because of the intrusion of hazardous substances such as water. In this study, different proportions of Duras S500 fibre were employed to investigate the self-sealing capacity of environmentally friendly, highly damped, fibre-reinforced concrete (EFHDFRC) containing 5% crumb rubber. The workability of EFHDFRC with different proportions of the fibre was investigated by mechanical properties test. The self-sealing capacity was first measured by introducing the ultrasonic pulse velocity (UPV) test combined with the damage degree in a time-dependent manner. In addition, the regained compressive strength test and visual inspection were applied as additional measures of the self-sealing capacity. The experimental results show that EFHDFRC with different proportions of fibre showed the maximum sealing degree between the 42nd and 51st days after casting the concrete. EFHDFRC with 0.1% fibre had the best performance and the maximum self-sealing degree (2.82%). In summary, it has been proven that 0.1% fibre could stimulate the self-sealing capacity of EFHDFRC by bridging cracked concrete. Moreover, it is noted that sufficient space in cracks is essential for precipitation formation, which could seal the cracks. The new insights of this innovative self-healing, high-damping material are essential for industrial applications exposed to dynamic load conditions such as railway turnout bearers and sleepers, highspeed rail track slabs, blast-resistant walls and columns, and so on. Full article
(This article belongs to the Special Issue Self-Healing and Smart Cementitious Construction Materials)
Show Figures

Figure 1

Open AccessArticle
Corrosion Features of the Reinforcing Bar in Concrete with Intelligent OH Regulation of Microcapsules
Materials 2019, 12(23), 3966; https://doi.org/10.3390/ma12233966 - 29 Nov 2019
Abstract
Corrosion is a challenging problem for marine concrete infrastructure projects. In this study, an intelligent OH-regulated microcapsule is designed to prevent reinforcement corrosion, taking ethylcellulose (EC) as shell material and calcium oxide (CaO) as core material. X-ray computed tomography (XCT) is [...] Read more.
Corrosion is a challenging problem for marine concrete infrastructure projects. In this study, an intelligent OH-regulated microcapsule is designed to prevent reinforcement corrosion, taking ethylcellulose (EC) as shell material and calcium oxide (CaO) as core material. X-ray computed tomography (XCT) is used to trace and contrast the corrosion profiles of the concrete reinforcement bar with and without the microcapsule. The results show that the OH-regulated microcapsule exhibits effective corrosion protection by delaying corrosion initiation and cracking. An SEM study revealed that the microcapsule could be broken as Cl invades the concrete. However, intelligent OH regulation was realized by releasing CaO. Full article
(This article belongs to the Special Issue Self-Healing and Smart Cementitious Construction Materials)
Show Figures

Figure 1

Open AccessArticle
Sensing of Damage and Repair of Cement Mortar Using Electromechanical Impedance
Materials 2019, 12(23), 3925; https://doi.org/10.3390/ma12233925 - 27 Nov 2019
Abstract
Lead zirconium titanate (PZT) has recently emerged as a low-cost material for non-destructive monitoring for civil structures. Despite the numerous studies employing PZT transducers for structural health monitoring, no studies have assessed the effects of both damage and repair on the electromechanical impedance [...] Read more.
Lead zirconium titanate (PZT) has recently emerged as a low-cost material for non-destructive monitoring for civil structures. Despite the numerous studies employing PZT transducers for structural health monitoring, no studies have assessed the effects of both damage and repair on the electromechanical impedance response in cementitious materials. To this end, this study was conducted to assess the effects of the damage and repair of mortar samples on the electromechanical response of a surface-mounted PZT transducer. When damage was introduced to the specimen in stages, the resonance frequencies of the admittance signature were shifted to lower frequencies as the damage increased, and an increase in the peak amplitude was detected, indicating an increase in the damping and a reduction in the material stiffness properties. Also, increasing the damage in the material has been shown to decrease the sensitivity of the PZT to further damage. During the repair process, a noticeable difference between the after-damage and the after-repair admittance signatures was noted. The root-mean-square deviation (RMSD) showed a decreasing trend during the repair process, when compared to the before repair RMSD response which indicated a partial recovery for the material properties by decreasing the damping property in the material. Full article
(This article belongs to the Special Issue Self-Healing and Smart Cementitious Construction Materials)
Show Figures

Figure 1

Open AccessArticle
Influence of Effective Water-to-Cement Ratios on Internal Damage and Salt Scaling of Concrete with Superabsorbent Polymer
Materials 2019, 12(23), 3863; https://doi.org/10.3390/ma12233863 - 22 Nov 2019
Abstract
Superabsorbent polymer (SAP) is attracting attention as a water-entraining admixture that reduces shrinkage or heals cracks in concrete. Cross-linked sodium polyacrylate SAPs, which are the most widely produced SAPs in the global market, are applicable as concrete admixtures. However, there have been contradictory [...] Read more.
Superabsorbent polymer (SAP) is attracting attention as a water-entraining admixture that reduces shrinkage or heals cracks in concrete. Cross-linked sodium polyacrylate SAPs, which are the most widely produced SAPs in the global market, are applicable as concrete admixtures. However, there have been contradictory results on the freeze–thaw resistance of concrete with SAPs. This study aims to clarify these results considering the water absorption behavior of SAPs in hardened concrete when effective water-to-cement ratios are different. Firstly, the absorbencies of one kind of cross-linked sodium polyacrylate SAP (SAP_SP) in pore solution and fresh mortar were measured by a tea bag test and flow test, respectively. Pore size distribution, capillary water absorption, and deformation during freeze–thaw cycles were analyzed for mortar samples with varying SAP_SP dosages. In the main tests, concrete samples with three different SAP_SPs/cement ratios (0.1%, 0.2%, and 0.3%) and a reference sample were prepared, and internal damage and salt scaling were measured under freeze–thaw cycles. Because SAP_SP absorbs water in fresh mixtures, additional water was added to the mixture considering the water absorbency of the SAP_SP. It was found that the used SAP_SPs prematurely release their stored water so the effective water-to-cement ratio was increased when a larger amount of SAP_SP was used. The higher effective water-to-cement ratio caused more internal damage and salt scaling due to the weaker cementitious matrix. In addition, mortar samples with a high SAP_SP content show a larger absorption of capillary water than the reference sample. The result can be interpreted by an observation that SAP_SP in air voids absorbs water and expands to relatively large capillary pores or neighbor air voids during the capillary water absorption process. Full article
(This article belongs to the Special Issue Self-Healing and Smart Cementitious Construction Materials)
Show Figures

Figure 1

Open AccessArticle
Discussing Different Approaches for the Time-Zero as Start for Autogenous Shrinkage in Cement Pastes Containing Superabsorbent Polymers
Materials 2019, 12(18), 2962; https://doi.org/10.3390/ma12182962 - 12 Sep 2019
Cited by 1
Abstract
Many studies have already been published concerning autogenous shrinkage in cementitious materials. Still, no consensus can be found in the literature regarding the determination of the time-zero to initiate the recording of autogenous shrinkage. With internal curing agents, a correct evaluation of their [...] Read more.
Many studies have already been published concerning autogenous shrinkage in cementitious materials. Still, no consensus can be found in the literature regarding the determination of the time-zero to initiate the recording of autogenous shrinkage. With internal curing agents, a correct evaluation of their efficiency depends on an appropriate choice of the time-zero. This study investigates different approaches to estimate the time-zero for cement paste mixtures with and without superabsorbent polymers as internal curing agents. The initial and final setting times were determined by an electronic Vicat and ultrasonic pulse velocity measurements (UPV); the transition point between the fluid and solid state was determined from the autogenous strain curve; the development of the capillary pressure was also studied. The choice of time-zero before the transition point led to higher values of shrinkage strain that should not be taken into account for autogenous shrinkage. A negligible difference was found between the strains when the final setting time and the transition point were taken as time-zero. Considering the artefacts and practical issues involving the different methods, the use of the transition point from the autogenous strain curve is the most suitable technique for determining the time-zero. Full article
(This article belongs to the Special Issue Self-Healing and Smart Cementitious Construction Materials)
Show Figures

Figure 1

Open AccessArticle
Effect of Addition of Ca2+ and CO32− Ions with Temperature Control on Self-Healing of Hardened Cement Paste
Materials 2019, 12(15), 2456; https://doi.org/10.3390/ma12152456 - 01 Aug 2019
Abstract
Concrete has a remarkably low ratio of tensile strength to compressive strength, and is widely used in construction. However, the occurrence of cracks in a concrete structure is inevitable. Nevertheless, in the presence of adequate moisture, small cracks in the concrete structure exhibit [...] Read more.
Concrete has a remarkably low ratio of tensile strength to compressive strength, and is widely used in construction. However, the occurrence of cracks in a concrete structure is inevitable. Nevertheless, in the presence of adequate moisture, small cracks in the concrete structure exhibit a propensity to self-heal by getting filled due to the rehydration of cement particles and the subsequent precipitation of calcium carbonate (CaCO3). According to previous studies, the self-healing performance can be maximized by optimizing the temperature and pH to control the crystal formation of CaCO3. This study focused on the crystal form of CaCO3 generated in the self-healing of a cement-based composite material. To evaluate the self-healing performance depending on the type of aqueous solution and the temperature, the weight change, the weight change rate, and the porosity reduction in each case were evaluated. Moreover, to increase the generation of CaCO3 (which is a self-healing precipitate), nanosized ultrafine CO2 bubbles using CO2 gas were used, along with an adequate supply of Ca2+ by adjusting the aqueous solution (Ca(OH)2, CaO + ethanol). For greater pore-filling effects by controlling the CaCO3 crystal forms in the cement matrix, the change in the crystal form of the precipitated CaCO3 in the hardened cement paste with changing temperature was analyzed by scanning electron microscopy and X-ray diffraction. As a result, the possibility of the effective generation and control of vaterite with a dense pore structure together with calcite was confirmed by adjusting the temperature to approximately 40 °C at a pH of 12. Full article
(This article belongs to the Special Issue Self-Healing and Smart Cementitious Construction Materials)
Show Figures

Figure 1

Open AccessArticle
Using the Steady-State Chloride Migration Test to Evaluate the Self-Healing Capacity of Cracked Mortars Containing Crystalline, Expansive, and Swelling Admixtures
Materials 2019, 12(11), 1865; https://doi.org/10.3390/ma12111865 - 09 Jun 2019
Cited by 3
Abstract
Interest in self-healing-crack technologies for cement-based materials has been growing, but research into such materials remains in the early stage of development and standardized methods for evaluating healing capacity have not yet been established. Therefore, this study proposes a test method to evaluate [...] Read more.
Interest in self-healing-crack technologies for cement-based materials has been growing, but research into such materials remains in the early stage of development and standardized methods for evaluating healing capacity have not yet been established. Therefore, this study proposes a test method to evaluate the self-healing capacity of cement-based materials in terms of their resistance to chloride penetration. For this purpose, the steady-state chloride migration test has been used to measure the diffusion coefficients of cracked mortar specimens containing crystalline, expansive, and swelling admixtures. The results of the present study show that the time to reach a quasi-steady-state decreased and the diffusion coefficients increased as the potential increased because of the potential drop inside the migration cell and self-healing that occurred during the test. Therefore, use of a high potential is recommended to minimize the test duration, as long as the temperature does not rise too much during the test. Using this test method, the self-healing capacity of the new self-healing technologies can be evaluated, and an index of self-healing capacity is proposed based on the rate of charged chloride ions passing through a crack. Full article
(This article belongs to the Special Issue Self-Healing and Smart Cementitious Construction Materials)
Show Figures

Figure 1

Open AccessArticle
Parameter Study of Superabsorbent Polymers (SAPs) for Use in Durable Concrete Structures
Materials 2019, 12(9), 1541; https://doi.org/10.3390/ma12091541 - 10 May 2019
Cited by 2
Abstract
Superabsorbent polymers (SAPs) can be added to a concrete mixture to provide internal curing and reduce the risk for early-age shrinkage cracking. Hence, they can help to increase the overall durability of concrete structures. The type, swelling characteristics, kinetics of water release, amount [...] Read more.
Superabsorbent polymers (SAPs) can be added to a concrete mixture to provide internal curing and reduce the risk for early-age shrinkage cracking. Hence, they can help to increase the overall durability of concrete structures. The type, swelling characteristics, kinetics of water release, amount and particle size of the SAPs will dictate their effectiveness for this purpose. In this paper, SAPs with different cross-linking degrees, particle sizes and amount of solubles are investigated. By varying these parameters, insight can be gained on the influence of each of these parameters on SAP properties such as the swelling capacity. In a next step, the SAPs can be implemented in mortar to assess their influence on mortar properties like workability, compressive strength or hydration kinetics. Based on these results, the ‘ideal’ SAP with tunable properties for a specific concrete application can be selected. For this purpose, an anionic SAP was synthesized with varying amounts of cross-linker and ground to particle sizes with d50 varying between 10 and 100 µm. The swelling capacity in demineralised water of 40 µm SAP particles increased with a decreasing degree of cross-linker from 66 g/g SAP with 1 mol% cross-linker to 270 g/g SAP in case of 0.15 mol% cross-linker, and was about three to four times larger than the swelling capacity in the prepared cement filtrate. The SAPs were tested for their effect on mortar workability, cement hydration kinetics and mechanical properties of the hardened mortar. With proper compensation for the absorbed water by the SAPs, the mortar workability was not negatively affected and the reduction in flow over the first two hours remained limited. The SAPs with the lowest swelling capacity, resulting in the smallest total amount of macro pores formed, showed the smallest negative effect on mortar compressive strength (a reduction of 23% compared to the reference after 28 days for an addition of 0.5 m% SAP) and a negligible effect on cement hydration. The difference in strength with the reference decreased as a function of mortar age. When using SAPs with particle sizes in the range of 10–100 µm, no significant differences between the studied particle sizes were found concerning the mortar properties. With the ease of upscaling in mind, the need to purify the SAPs and to remove the non-cross-linked soluble fraction was further investigated. It was shown that the solubles had no effect on the mortar properties, except for increasing the setting time with almost 100%. Full article
(This article belongs to the Special Issue Self-Healing and Smart Cementitious Construction Materials)
Show Figures

Figure 1

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

1. Giovanni Anglani,  Jean-Marc Tulliani*, Paola Antonaci
   Politecnico di Torino, Italy
   Behaviour of pre-cracked self-healing cementitious materials under static and cyclic loading

2. Chrysoula Litina, Wenting Mao, Abir Al-Tabbaa*
    University of Cambridge
    Development and performance of sodium silicate microcapsule-based self-healing oilwell cement

 

Back to TopTop