Sustainable Valorization of Seafood By-Products through Recovery of Valuable Bioactive Compounds

A special issue of Marine Drugs (ISSN 1660-3397). This special issue belongs to the section "Marine-Derived Ingredients for Drugs, Cosmeceuticals and Nutraceuticals".

Deadline for manuscript submissions: 30 June 2024 | Viewed by 11336

Special Issue Editors


E-Mail Website
Guest Editor
CSIC - Instituto de Ciencia y Tecnologia de Alimentos y Nutricion (ICTAN), Institute of Food Science, Technology and Nutrition (ICTAN, CSIC), Madrid, Spain
Interests: seafood by-products; bioactive molecules; in vivo assays; enzymes; protein hydrolysates; upgrading; bioactive ingredients
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Laboratory for the Improvement of Plants and Valorization of Agroressources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia
Interests: seafood processing and utilization of processing by-products; marine peptides and protein hydrolysates; marine glycosaminoglycans; nutraceuticals and functional foods

Special Issue Information

Dear Colleagues,                

Seafood processing, mainly on factory vessels, generates a large number of by-products, such as heads, bones and guts, which represent between 30% and 70% of the whole weight. These by-products, although hardly used, are a good source of macro and micronutrients, as well as of molecules with bioactive potential such as polyunsaturated fatty acids, peptides, or chitosan. An improved waste processing strategy is, however, necessary to extract these compounds, especially in the framework of a circular economy.

In this context, we invite authors to contribute to this Special Issue with articles on the extraction of bioactive molecules from seafood processing by-products, with cosmetic (e.g., wound repairers), pharmaceutical, or nutraceutical interest (antihypertensives, hypoglycaemics, nootropics, anti-aging, anti-tumour, etc.). Articles describing an optimisation of the extraction process of these molecules, mainly using green technologies; their bioactive effect in vitro and/or in vivo; as well as processes that favour their production (e.g., fermentation), are also welcome.

Dr. Oscar Martinez-Alvarez
Prof. Dr. Ali Bougatef
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • seafood upgrading
  • bioactive molecules
  • nutraceuticals
  • cosmeceuticals
  • high-throughput screenings
  • protein hydrolysates
  • marine ingredients
  • functional food

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

11 pages, 681 KiB  
Article
Content and Bioaccessibility of Minerals and Proteins in Fish-Bone Containing Side-Streams from Seafood Industries
by Marie Bagge Jensen, Jette Jakobsen, Charlotte Jacobsen, Jens J. Sloth, Jone Ibarruri, Carlos Bald, Bruno Iñarra, Niels Bøknæs and Ann-Dorit Moltke Sørensen
Mar. Drugs 2024, 22(4), 162; https://doi.org/10.3390/md22040162 - 03 Apr 2024
Viewed by 450
Abstract
With the aim to upcycle fish side-streams, enzymatic hydrolysis is often applied to produce protein hydrolysates with bioactive properties or just as a protein source for food and feed. However, the production of hydrolysates generates a side-stream. For underutilized fish and fish backbone [...] Read more.
With the aim to upcycle fish side-streams, enzymatic hydrolysis is often applied to produce protein hydrolysates with bioactive properties or just as a protein source for food and feed. However, the production of hydrolysates generates a side-stream. For underutilized fish and fish backbone this side-stream will contain fish bones and make it rich in minerals. The aim of this study was to assess the relative bioaccessibility (using the standardized in vitro model INFOGEST 2.0) of minerals in a dietary supplement compared to bone powder generated after enzymatic hydrolysis of three different fish side-streams: undersized whole hake, cod and salmon backbones consisting of insoluble protein and bones. Differences in the bioaccessibility of protein between the powders were also investigated. The enzyme hydrolysis was carried out using different enzymes and hydrolysis conditions for the different fish side-streams. The content and bioaccessibility of protein and the minerals phosphorus (P), calcium (Ca), potassium (K) and magnesium (Mg) were measured to evaluate the potential of the powder as an ingredient in, e.g., dietary supplements. The bone powders contained bioaccessible proteins and minerals. Thus, new side-streams generated from enzymatic hydrolysis can have possible applications in the food sector due to bioaccessible proteins and minerals. Full article
Show Figures

Figure 1

19 pages, 889 KiB  
Article
New Forms of Neuroactive Phospholipids for DHA Enrichment in Brain
by Romina Gomes, Inês Mendes, Maria Paula Duarte, Narcisa M. Bandarra and Ana Gomes-Bispo
Mar. Drugs 2024, 22(3), 116; https://doi.org/10.3390/md22030116 - 29 Feb 2024
Viewed by 1251
Abstract
Low levels of docosahexaenoic acid (DHA) in the brain have been related to neurological disorders, like Alzheimer’s disease (AD). After ingestion, dietary DHA must cross the blood–brain barrier, where it is absorbed as lysophosphatidylcholine (LPC), due to its role as a preferential DHA [...] Read more.
Low levels of docosahexaenoic acid (DHA) in the brain have been related to neurological disorders, like Alzheimer’s disease (AD). After ingestion, dietary DHA must cross the blood–brain barrier, where it is absorbed as lysophosphatidylcholine (LPC), due to its role as a preferential DHA carrier in the brain. This work aimed at the production of LPC-DHA extracts to be used in supplementation/food fortification intended neural enrichment in DHA. As it is rich in DHA, especially its phospholipids (PL), Atlantic mackerel (Scomber scombrus, caught in Spring/2022) was used as a raw material. The polar lipids fraction was separated and hydrolysed with Rhizomucor miehei lipase, to enzymatically convert phosphatidylcholine (PC) into LPC. The fish (muscle and by-products) lipids fraction was used for total lipids (TL) content, lipid classes (LC) and fatty acid (FA) profile evaluation, whilst polar lipids extracts were studied for LC production and FA analysis. Muscle TL ranged between 1.45 and 4.64 g/100 g (WW), while by-products accounted for 7.56-8.96 g/100 g, with the highest contents being found in March. However, PL were more abundant in muscle (22.46–32.20% of TL). For polar lipids extracts, PL represented 50.79% of TL, among which PC corresponded to 57.76% and phosphatidylethanolamine to 42.24%. After hydrolysis, nearly half of this PC was converted into LPC. When compared to the initial PC, DHA relative content (33.6% of total FA) was significantly higher after hydrolysis: 55.6% in PC and 73.6% in LPC. Such extract, obtained from this undervalued species, may represent a promising strategy to increase DHA uptake into brain cells while allowing this species to upgrade. Full article
Show Figures

Figure 1

18 pages, 7846 KiB  
Article
Production of Bioactive Peptides from Hake By-Catches: Optimization and Scale-Up of Enzymatic Hydrolysis Process
by Bruno Iñarra, Carlos Bald, Monica Gutierrez, David San Martin, Jaime Zufía and Jone Ibarruri
Mar. Drugs 2023, 21(11), 552; https://doi.org/10.3390/md21110552 - 25 Oct 2023
Cited by 4 | Viewed by 1269
Abstract
Fish by-catches, along with other fish side-streams, were previously used as raw material for the production of fishmeal and fish oil but appropriate handling allows their use in more valuable options. The aim of this research was to valorize undersized hake (Merluccius [...] Read more.
Fish by-catches, along with other fish side-streams, were previously used as raw material for the production of fishmeal and fish oil but appropriate handling allows their use in more valuable options. The aim of this research was to valorize undersized hake (Merluccius merluccius) as a model of using fish by-catch from the Bay of Biscay to produce protein hydrolysates with bioactivities. Six enzymes, with different proteolytic activities (endo- or exoproteases) and specificities, were tested to produce protein hydrolysates. Products obtained with an endoprotease of serine resulted in the most promising results in terms of protein extraction yield (68%), with an average molecular weight of 2.5 kDa, and bioactivity yield (antioxidant activity = 88.5 mg TE antioxidant capacity/g fish protein; antihypertensive activity = 47% inhibition at 1 mg/mL). Then, process conditions for the use of this enzyme to produce bioactive products were optimized using Box–Behnken design. The most favorable process conditions (time = 2 h, solids = 50% and enzyme/substrate = 2% with respect to protein) were scaled up (from 0.5 L to 150 L reactor) to confirm laboratory scale and model forecasts. The results obtained in the pilot-scale testing matched the outcomes predicted by the model, confirming the technical viability of the proposed process. Full article
Show Figures

Figure 1

20 pages, 2745 KiB  
Article
Effect of Deployment and Harvest Date on Growth and High-Value Compounds of Farmed Alaria esculenta
by Silvia Blanco, Maria Sapatinha, Mick Mackey, Julie Maguire, Simona Paolacci, Susana Gonçalves, Helena Maria Lourenço, Rogério Mendes, Narcisa Maria Bandarra and Carla Pires
Mar. Drugs 2023, 21(5), 305; https://doi.org/10.3390/md21050305 - 17 May 2023
Cited by 1 | Viewed by 1357
Abstract
Alaria esculenta is a brown seaweed farmed in many European countries for its biomass rich in useful bio compounds. This study aimed to identify the optimal growing season to maximise biomass production and quality. The seeded longlines of the brown seaweed were deployed [...] Read more.
Alaria esculenta is a brown seaweed farmed in many European countries for its biomass rich in useful bio compounds. This study aimed to identify the optimal growing season to maximise biomass production and quality. The seeded longlines of the brown seaweed were deployed in the southwest of Ireland in October and November 2019 and samples of the biomass were harvested in different dates, between March and June 2020. Biomass gain and composition, phenolic and flavonoid content (TPC and TFC) and biological activities (antioxidant and anti-hypertensive activities) of seaweed extracts prepared with Alcalase were evaluated. The biomass production was significantly higher for the line deployed in October (>20 kg·m−1). In May and June, an increasing amount of epiphytes was observed on the surface of A. esculenta. The protein content of A. esculenta varied between 11.2 and 11.76% and fat content was relatively low (1.8–2.3%). Regarding the fatty acids profile, A. esculenta was rich in polyunsaturated fatty acids (PUFA), especially in eicosapentaenoic acid (EPA). The samples analysed were very rich in Na, K, Mg, Fe, Mn, Cr and Ni. The content of Cd, Pb Hg was relatively low and below the maximum levels allowed. The highest TPC and TFC were obtained in extracts prepared with A. esculenta collected in March and levels of these compounds decreased with time. In general, the highest radical scavenging activities (ABTS and DPPH), as well as chelating activities (Fe2+ and Cu2+) were observed in early spring. Extracts from A. esculenta collected in March and April presented higher ACE inhibitory activity. The extracts from seaweeds harvested in March exhibited higher biological activity. It was concluded that an earlier deployment allows for maximising growth and harvest of biomass earlier when its quality is at the highest levels. The study also confirms the high content of useful bio compounds that can be extracted from A. esculenta and used in the nutraceutical and pharmaceutical industry. Full article
Show Figures

Figure 1

28 pages, 3197 KiB  
Article
Insights into Common Octopus (Octopus vulgaris) Ink Proteome and Bioactive Peptides Using Proteomic Approaches
by Md Abdus Shukur Imran, Mónica Carrera, Sara Pérez-Polo, Jaime Pérez, Lorena Barros, Sonia Dios and Camino Gestal
Mar. Drugs 2023, 21(4), 206; https://doi.org/10.3390/md21040206 - 24 Mar 2023
Cited by 3 | Viewed by 1908
Abstract
The common octopus (Octopus vulgaris) is nowadays the most demanded cephalopod species for human consumption. This species was also postulated for aquaculture diversification to supply its increasing demand in the market worldwide, which only relies on continuously declining field captures. In [...] Read more.
The common octopus (Octopus vulgaris) is nowadays the most demanded cephalopod species for human consumption. This species was also postulated for aquaculture diversification to supply its increasing demand in the market worldwide, which only relies on continuously declining field captures. In addition, they serve as model species for biomedical and behavioral studies. Body parts of marine species are usually removed before reaching the final consumer as by-products in order to improve preservation, reduce shipping weight, and increase product quality. These by-products have recently attracted increasing attention due to the discovery of several relevant bioactive compounds. Particularly, the common octopus ink has been described as having antimicrobial and antioxidant properties, among others. In this study, the advanced proteomics discipline was applied to generate a common octopus reference proteome to screen potential bioactive peptides from fishing discards and by-products such as ink. A shotgun proteomics approach by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) using an Orbitrap Elite instrument was used to create a reference dataset from octopus ink. A total of 1432 different peptides belonging to 361 non-redundant annotated proteins were identified. The final proteome compilation was investigated by integrated in silico studies, including gene ontology (GO) term enrichment, pathways, and network studies. Different immune functioning proteins involved in the innate immune system, such as ferritin, catalase, proteasome, Cu/Zn superoxide dismutase, calreticulin, disulfide isomerase, heat shock protein, etc., were found in ink protein networks. Additionally, the potential of bioactive peptides from octopus ink was addressed. These bioactive peptides can exert beneficial health properties such as antimicrobial, antioxidant, antihypertensive, and antitumoral properties and are therefore considered lead compounds for developing pharmacological, functional foods or nutraceuticals. Full article
Show Figures

Figure 1

16 pages, 657 KiB  
Article
Identification of ACE I-Inhibitory Peptides Released by the Hydrolysis of Tub Gurnard (Chelidonichthys lucerna) Skin Proteins and the Impact of Their In Silico Gastrointestinal Digestion
by Hajer Bougatef, Cristina de la Vega-Fernández, Assaad Sila, Ali Bougatef and Oscar Martínez-Alvarez
Mar. Drugs 2023, 21(2), 131; https://doi.org/10.3390/md21020131 - 17 Feb 2023
Cited by 5 | Viewed by 1417
Abstract
Tub gurnard is a highly abundant fishery species caught as a discard in the Mediterranean Sea. This work proposes its valorisation through the release of potential antihypertensive peptides and glycosaminoglycans (GAGs) through the controlled hydrolysis of tub gurnard skin proteins. Four proteases (Esperase, [...] Read more.
Tub gurnard is a highly abundant fishery species caught as a discard in the Mediterranean Sea. This work proposes its valorisation through the release of potential antihypertensive peptides and glycosaminoglycans (GAGs) through the controlled hydrolysis of tub gurnard skin proteins. Four proteases (Esperase, Alcalase, Trypsin and Pronase E) were used to obtain potent angiotensin converting enzyme I (ACE)-inhibitory hydrolysates. Peptides and GAGs were separated and evaluated for their antihypertensive potential by fluorometry. The peptide-rich fractions derived from the Esperase and Alcalase hydrolysates showed very low IC50 values (47 and 68 μg/mL, respectively). Only the GAGs from the Trypsin and Esperase hydrolysates were relevant ACE inhibitors (63 and 52% at 1 mg/mL, respectively). The peptide composition of the most potent ACE-inhibitory fractions derived from the Esperase and Alcalase hydrolysates (IC50 values of 33 and 29 μg/mL, respectively) was analysed by RP-LC-ESI-MS/MS. The analysis suggests that the ACE-inhibitory activity is related to the peptide hydrophobicity, as well as to the presence of specific residues at any of the last four C-terminal positions. The in silico gastrointestinal digestion of these fractions yielded small peptides with antihypertensive potential. Full article
Show Figures

Figure 1

Review

Jump to: Research

37 pages, 2634 KiB  
Review
Trash to Treasure: An Up-to-Date Understanding of the Valorization of Seafood By-Products, Targeting the Major Bioactive Compounds
by Vikash Chandra Roy, Md. Rakibul Islam, Sultana Sadia, Momota Yeasmin, Jin-Seok Park, Hee-Jeong Lee and Byung-Soo Chun
Mar. Drugs 2023, 21(9), 485; https://doi.org/10.3390/md21090485 - 09 Sep 2023
Cited by 7 | Viewed by 2844
Abstract
Fishery production is exponentially growing, and its by-products negatively impact industries’ economic and environmental status. The large amount of bioactive micro- and macromolecules in fishery by-products, including lipids, proteins, peptides, amino acids, vitamins, carotenoids, enzymes, collagen, gelatin, chitin, chitosan, and fucoidan, need to [...] Read more.
Fishery production is exponentially growing, and its by-products negatively impact industries’ economic and environmental status. The large amount of bioactive micro- and macromolecules in fishery by-products, including lipids, proteins, peptides, amino acids, vitamins, carotenoids, enzymes, collagen, gelatin, chitin, chitosan, and fucoidan, need to be utilized through effective strategies and proper management. Due to the bioactive and healthy compounds in fishery discards, these components can be used as functional food ingredients. Fishery discards have inorganic or organic value to add to or implement in various sectors (such as the agriculture, medical, and pharmaceutical industries). However, the best use of these postharvest raw materials for human welfare remains unelucidated in the scientific community. This review article describes the most useful techniques and methods, such as obtaining proteins and peptides, fatty acids, enzymes, minerals, and carotenoids, as well as collagen, gelatin, and polysaccharides such as chitin–chitosan and fucoidan, to ensure the best use of fishery discards. Marine-derived bioactive compounds have biological activities, such as antioxidant, anticancer, antidiabetic, anti-inflammatory, and antimicrobial activities. These high-value compounds are used in various industrial sectors, such as the food and cosmetic industries, owing to their unique functional and characteristic structures. This study aimed to determine the gap between misused fishery discards and their effects on the environment and create awareness for the complete valorization of fishery discards, targeting a sustainable world. Full article
Show Figures

Graphical abstract

Back to TopTop