Exopolysaccharide Isolated from Marine Microorganisms

A special issue of Marine Drugs (ISSN 1660-3397). This special issue belongs to the section "Marine Chemoecology for Drug Discovery".

Deadline for manuscript submissions: closed (31 July 2025) | Viewed by 2399

Special Issue Editors


E-Mail Website
Guest Editor

E-Mail Website
Guest Editor
Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, I-80126 Napoli, Italy
Interests: lipopolysaccharides; glycoconjugates; extracellular polysaccharide; capsular polysaccharide; NMR spectroscopy; anti-biofilm molecules; mass spectrometry; cold-adapted bacteria
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We invite you to participate in this Special Issue about extracellular polysaccharides. These biopolymers surround the bacterial cell as a capsule or are released in the growth medium as free macromolecules. In addition, they contribute to the extracellular matrix of the biofilm. Marine extracellular polysaccharides are employed in many industrial applications, such as food, cosmetics, nutraceuticals, and pharmaceuticals. Therefore, the interest in finding new polymers or modifying existing ones is very wide.

The aim of this Special Issue, “Exopolysaccharide Isolated from Marine Microorganisms”, is to collect as much as possible original research and reviews concerning marine exopolysaccharide isolation, structural determination, physico-chemical properties, biological activity, structure/activity relationships, and applications such as hydrogels, films, or nanoparticles in the food, cosmetics, nutraceutical, and pharmaceutical fields.

Prof. Dr. Maria Michela Corsaro
Dr. Angela Casillo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • capsular polysaccharide
  • biofilm
  • hydrogels
  • biofouling
  • biological activity
  • biosurfactants
  • adhesion ability

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 7562 KB  
Article
Mannan-Containing Polymers from Hadal Bacterium Psychrobacter pulmonis: Preparation, Structural Analysis, Immunological Activity and Antitumor Effects
by Mingxing Qi, Shuqiang Yan, Yukun Cui, Yanan Huang, Yang Liu, Wenhui Wu, Xi Yu and Peipei Wang
Mar. Drugs 2025, 23(8), 326; https://doi.org/10.3390/md23080326 - 12 Aug 2025
Viewed by 434
Abstract
Microbial exopolysaccharides from extreme environments are increasingly becoming valuable candidates for drug development. In this study, four fractions named XL-1, XMRS-1, XL-1-D, and XMRS-1-D were isolated and purified from the hadal bacterium Psychrobacter pulmonis by column chromatography. The structural features of these fractions [...] Read more.
Microbial exopolysaccharides from extreme environments are increasingly becoming valuable candidates for drug development. In this study, four fractions named XL-1, XMRS-1, XL-1-D, and XMRS-1-D were isolated and purified from the hadal bacterium Psychrobacter pulmonis by column chromatography. The structural features of these fractions were characterized by molecular weight, monosaccharide composition, Fourier transform infrared (FTIR) spectrum, amino acid analysis and NMR. The results showed that XL-1 and XMRS-1 were mainly composed of mannose, glucose, and glucosamine, while XL-1-D and XMRS-1-D were mainly composed of mannose. In vitro bioactivity assays demonstrated that all four fractions significantly enhanced RAW264.7 macrophage proliferation and phagocytosis, stimulated nitric oxide (NO) and reactive oxygen species (ROS) production, and induced the secretion of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and the expression of inducible nitric oxide synthase (iNOS) mRNA. Moreover, plate cloning tests, cell scratch tests, and apoptosis assays, along with RT-qPCR analysis, demonstrated that the four fractions significantly inhibited A549 cells’ proliferation. Specifically, XMRS-1 and XMRS-1-D upregulated Bax, Caspase-3, Caspase-8, and Caspase-9, while downregulating Bcl-2, suggesting transcriptional activation of apoptosis-related pathways. These results offered a reference for the further development and utilization of this hadal bacterium in the future. Full article
(This article belongs to the Special Issue Exopolysaccharide Isolated from Marine Microorganisms)
Show Figures

Figure 1

16 pages, 8075 KB  
Article
Structure of a Sulfated Capsular Polysaccharide from the Marine Bacterium Cobetia marina KMM 1449 and a Genomic Insight into Its Biosynthesis
by Maxim S. Kokoulin, Yulia V. Savicheva, Alina P. Filshtein, Ludmila A. Romanenko and Marina P. Isaeva
Mar. Drugs 2025, 23(1), 29; https://doi.org/10.3390/md23010029 - 8 Jan 2025
Viewed by 1476
Abstract
Some marine and extremophilic microorganisms are capable of synthesizing sulfated polysaccharides with a unique structure. A number of studies indicate significant biological properties of individual sulfated polysaccharides, such as antiproliferative activity, which makes them a promising area for further research. In this study, [...] Read more.
Some marine and extremophilic microorganisms are capable of synthesizing sulfated polysaccharides with a unique structure. A number of studies indicate significant biological properties of individual sulfated polysaccharides, such as antiproliferative activity, which makes them a promising area for further research. In this study, the capsular polysaccharide (CPS) was obtained from the bacterium Cobetia marina KMM 1449, isolated from a marine sediment sample collected along the shore of the Sea of Japan. The CPS was isolated by saline solution, purified by a series of chromatographic procedures, and studied by chemical methods along with 1D and 2D 1H and 13C NMR spectroscopy. The following new structure of the CPS from C. marina KMM 1449 was established and consisted of sulfated and simultaneously phosphorylated disaccharide repeating units: →4)-α-L-Rhap2S-(1→3)-β-D-Manp6PGro-(1→. To elucidate the genetic basis of the CPS biosynthesis, the whole genomic sequence of C. marina KMM 1449 was obtained. The CPS biosynthetic gene cluster (BGC) of about 70 genes composes four regions encoding nucleotide sugar biosynthesis (dTDP-Rha and GDP-Man), assembly (GTs genes), translocation (ABC transporter genes), sulfation (PAPS biosynthesis and sulfotransferase genes) and lipid carrier biosynthesis (wcb operon). Comparative analysis of the CPS BGCs from available Cobetia genomes showed the presence of KMM 1449-like CPS BGC among strains of all three Cobetia species. The study of new natural sulfated polysaccharides, as well as the elucidation of the pathways of their biosynthesis, provides the basis for the development of potential anticancer drugs. Full article
(This article belongs to the Special Issue Exopolysaccharide Isolated from Marine Microorganisms)
Show Figures

Figure 1

Back to TopTop