Special Issue "Synthetic, Natural and Natural-Synthetic Hybrid Magnetic Structures: Technology and Application"

A special issue of Magnetochemistry (ISSN 2312-7481). This special issue belongs to the section "Magnetic Nanospecies".

Deadline for manuscript submissions: 30 December 2022 | Viewed by 5371

Special Issue Editors

Dr. Kamil Gareev
E-Mail Website1 Website2
Guest Editor
Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
Interests: magnetic composites; radio-wave absorbing materials; electromagnetic measurements; sol–gel; nanomaterials; theranostics; superparamagnetism; magnetic nanoparticles; biomineralization; magnetosomes; continuous flow synthesis
Special Issues, Collections and Topics in MDPI journals
Dr. Ksenia Chichay
E-Mail Website1 Website2
Guest Editor
International Research Center “X-ray Coherent Optics”, Immanuel Kant Baltic Federal University, 236022 Kaliningrad, Russia
Interests: magnetism and magnetic materials; X-ray methods for studying materials; micro- and nanostructures

Special Issue Information

Dear Colleagues,

This issue is devoted to the study of magnetic structures, including magnetic nanoparticles, of three main classes: synthetic structures, natural structures, and hybrid natural–synthetic structures. It covers aspects of classical and modern soft chemistry techniques used to obtain magnetic structures such as the sol–gel process and continuous flow synthesis in microfluidic chip reactors. Automated synthesis of magnetic nanoparticles is the only step to the biomineralization processes occurring in bacterial magnetosomes; thus, these natural ferrimagnets have attracted a great amount of scientific interest to the mechanisms providing such high chemical and crystallinity perfection. The yield of bacterial magnetosomes is very low, and the created bioreactors do not allow industrial-scale production of magnetic nanoparticles for biomedical and other applications. For this reason, hybrid structures consisting of natural and synthetic components are also of interest. To understand the physical and chemical mechanisms determining the magnetic properties of such structures, the issue also addresses theoretical modeling tasks. Finally, the practical use of these magnetic structures in solving technical and biomedical problems is also considered.

In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following:

  1. Magnetotactic bacteria, being in nature, cultivation, isolation of magnetosomes;
  2. Features of physical and chemical properties and magnetic state of magnetosomes;
  3. Magnetic structures based on natural magnetic ores, their study, and possible applications;
  4. Synthetic magnetic structures, including nature-like and biomimetic;
  5. Hybrid magnetic structures based on synthetic and natural components for microwave absorption, biomedicine, and other applications;
  6. Micromagnetic modeling of natural, synthetic, and hybrid magnetic structures;
  7. New methods of synthesis and study of magnetic structures.

We look forward to receiving your contributions.

Dr. Kamil G. Gareev
Dr. Ksenia Chichay
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Magnetochemistry is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • magnetic nanoparticles
  • soft chemistry
  • sol–gel
  • continuous flow synthesis
  • natural ferrimagnets
  • biomineralization
  • magnetotactical bacteria
  • magnetosomes
  • natural–synthetic magnetic structures
  • theoretical modeling

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Synthesis and Single Crystal Growth by Floating Zone Technique of FeCr2O4 Multiferroic Spinel: Its Structure, Composition, and Magnetic Properties
Magnetochemistry 2022, 8(8), 86; https://doi.org/10.3390/magnetochemistry8080086 - 05 Aug 2022
Viewed by 279
Abstract
We present the new synthesis root of spinel-structure FeCr2O4 and its single crystal growth by the optical floating zone method, ensuring its single phase and near-ideal composition. The advantage of the proposed synthesis method is the creation of the reducing [...] Read more.
We present the new synthesis root of spinel-structure FeCr2O4 and its single crystal growth by the optical floating zone method, ensuring its single phase and near-ideal composition. The advantage of the proposed synthesis method is the creation of the reducing atmosphere in the oven needed for preserving the Fe2+ oxidation state via decomposition of the iron (II) oxalate FeC2O4 used as one of the initial components. The occurrence of the Fe3+ ions in the obtained polycrystalline samples as well as grown single crystals was carefully monitored by means of Mössbauer spectroscopy. Magnetic susceptibility and heat capacity temperature dependences reveal a sequence of the structural (138 K) and magnetic (at 65 K and 38 K) phase transition characteristics for the FeCr2O4 compound. Full article
Show Figures

Figure 1

Article
Revisiting the Potential Functionality of the MagR Protein
Magnetochemistry 2021, 7(11), 147; https://doi.org/10.3390/magnetochemistry7110147 - 11 Nov 2021
Viewed by 858
Abstract
Recent findings have sparked great interest in the putative magnetic receptor protein MagR. However, in vivo experiments have revealed no magnetic moment of MagR at room temperature. Nevertheless, the interaction of MagR and MagR fusion proteins with silica-coated magnetite beads have proven useful [...] Read more.
Recent findings have sparked great interest in the putative magnetic receptor protein MagR. However, in vivo experiments have revealed no magnetic moment of MagR at room temperature. Nevertheless, the interaction of MagR and MagR fusion proteins with silica-coated magnetite beads have proven useful for protein purification. In this study, we recombinantly produced two different MagR proteins in Escherichia coli BL21(DE3) to (1) expand earlier protein purification studies, (2) test if MagR can magnetize whole E. coli cells once it is expressed to a high cytosolic, soluble titer, and (3) investigate the MagR-expressing E. coli cells’ magnetic properties at low temperatures. Our results show that MagR induces no measurable, permanent magnetic moment in cells at low temperatures, indicating no usability for cell magnetization. Furthermore, we show the limited usability for magnetic bead-based protein purification, thus closing the current knowledge gap between theoretical considerations and empirical data on the MagR protein. Full article
Show Figures

Figure 1

Article
Enriched Synthesis of Magnetosomes by Expanding the Magnetospirillum magneticum AMB-1 Culture at Optimal Iron Concentration
Magnetochemistry 2021, 7(8), 115; https://doi.org/10.3390/magnetochemistry7080115 - 11 Aug 2021
Cited by 1 | Viewed by 911
Abstract
The Magnetospirillum magneticum AMB-1 species is one of the most widely used magnetotactic bacterial strains for producing magnetosomes under laboratory conditions. Nevertheless, there exist several challenges in expanding and purifying the AMB-1 culture due to the restricted culture conditions. In an attempt to [...] Read more.
The Magnetospirillum magneticum AMB-1 species is one of the most widely used magnetotactic bacterial strains for producing magnetosomes under laboratory conditions. Nevertheless, there exist several challenges in expanding and purifying the AMB-1 culture due to the restricted culture conditions. In an attempt to enrich the production of magnetosomes, this study reports the utilization of fermenter culture, which substantially promotes the cell densities at different concentrations of iron content. The experimental results confirmed magnetosomes’ high yield (production rate of 21.1 mg L−1) at the iron content of 0.2 μmol L−1. Moreover, different characterization techniques systematically confirmed the coated lipid membrane, particle size, dispersity, stability, and elemental composition of magnetosomes. Notably, the fermenter culture-based process resulted in highly discrete, dispersed, and stable magnetosomes with an average particle diameter of 50 nm and presented the integrated lipid membrane around the surface. The chemical composition by EDS of magnetosomes represented the presence of various elements, i.e., C, O, Na, P, and Fe, at appropriate proportions. In conclusion, the culture method in our study effectively provides a promising approach towards the culture of the magnetotactic bacterium for the enriched production of magnetosomes. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

Review
Magnetotactic Bacteria and Magnetosomes: Basic Properties and Applications
Magnetochemistry 2021, 7(6), 86; https://doi.org/10.3390/magnetochemistry7060086 - 18 Jun 2021
Cited by 10 | Viewed by 2420
Abstract
Magnetotactic bacteria (MTB) belong to several phyla. This class of microorganisms exhibits the ability of magneto-aerotaxis. MTB synthesize biominerals in organelle-like structures called magnetosomes, which contain single-domain crystals of magnetite (Fe3O4) or greigite (Fe3S4) characterized [...] Read more.
Magnetotactic bacteria (MTB) belong to several phyla. This class of microorganisms exhibits the ability of magneto-aerotaxis. MTB synthesize biominerals in organelle-like structures called magnetosomes, which contain single-domain crystals of magnetite (Fe3O4) or greigite (Fe3S4) characterized by a high degree of structural and compositional perfection. Magnetosomes from dead MTB could be preserved in sediments (called fossil magnetosomes or magnetofossils). Under certain conditions, magnetofossils are capable of retaining their remanence for millions of years. This accounts for the growing interest in MTB and magnetofossils in paleo- and rock magnetism and in a wider field of biogeoscience. At the same time, high biocompatibility of magnetosomes makes possible their potential use in biomedical applications, including magnetic resonance imaging, hyperthermia, magnetically guided drug delivery, and immunomagnetic analysis. In this review, we attempt to summarize the current state of the art in the field of MTB research and applications. Full article
Show Figures

Figure 1

Back to TopTop