Influence of the Preparation Technique on the Magnetic Characteristics of ε-Fe2O3-Based Composites
Abstract
:1. Introduction
2. Synthesis Methods for ε-Fe2O3
3. Materials and Methods
4. Results and Discussion
4.1. X-ray Diffractograms
4.2. Magnetic Properties
- The rapid decrease between 1.8 K and 60–70 K;
- Increase between 60–70 K and 150 K;
- The relatively gradual decrease between 150 K and room temperature.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses; Wiley-VCH: Weinheim, Germany, 2003. [Google Scholar] [CrossRef]
- Tuček, J.; Machala, L.; Ono, S.; Namai, A.; Yoshikiyo, M.; Imoto, K.; Tokoro, H.; Ohkoshi, S.-I.; Zbořil, R. Zeta-Fe2O3—A new stable polymorph in iron(III) oxide famil. Sci. Rep. 2015, 5, 15091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levato, C. Iron Oxides Prehistoric Mines: A European Overview. Anthropol. Præhistorica 2016, 126, 9–23. [Google Scholar]
- Gay-Lussac, J.L. Extrait d’un Mémoire sur les oxides de fer. Ann. Chim. 1811, 80, 163–170. [Google Scholar]
- Xu, H.; Lee, S.; Xu, H. Luogufengite: A new nano-mineral of Fe2O3 polymorph with giant coercive field. Am. Mineral. 2017, 102, 711–719. [Google Scholar] [CrossRef]
- Sprain, C.J.; Feinberg, J.M.; Lamers, R.; Bono, R.K. Characterization of magnetic mineral assemblages in clinkers: Potential tools for full vector paleomagnetic studies. Geochem. Geophys. Geosystems 2021, 22, e2021GC009795. [Google Scholar] [CrossRef]
- Dejoie, C.; Sciau, P.; Li, W.; Noé, L.; Mehta, A.; Chen, K.; Luo, H.; Kunz, M.; Tamura, N.; Liu, Z. Learning from the past: Rare ε-Fe2O3 in the ancient black-glazed Jian (Tenmoku) wares. Sci. Rep. 2014, 4, 4941. [Google Scholar] [CrossRef] [Green Version]
- López-Sánchez, J.; McIntosh, G.; Osete, M.L.; del Campo, A.; Villalaín, J.J.; Pérez, L.; Kovacheva, M.; Rodríguez de la Fuente, O. Epsilon iron oxide: Origin of the high coercivity stable low Curie temperature magnetic phase found in heated archeological materials. Geochem. Geophys. Geosystems 2017, 18, 2646–2656. [Google Scholar] [CrossRef]
- López-Sánchez, J.; Palencia-Ortas, A.; del Campo, A.; McIntosh, G.; Kovacheva, M.; Martín-Hernández, F.; Carmona, N.; Rodríguez de la Fuente, O.; Marín, P.; Molina-Cardín, A.; et al. Further progress in the study of epsilon iron oxide in archaeological baked clays. Phys. Earth Planet. Inter. 2020, 307, 106554. [Google Scholar] [CrossRef]
- Forestier, H.; Guiot-Guillain, G. New ferromagnetic variety of ferric oxide. C. R. Acad. Sci. Paris 1934, 199, 720–724. [Google Scholar]
- Darken, L.S.; Gurry, R.W. The System Iron—Oxygen. II. Equilibrium and Thermodynamics of Liquid Oxide and Other Phases. J. Am. Chem. Soc. 1946, 68, 798–816. [Google Scholar] [CrossRef]
- Schrader, R.; Büttner, G. Eine neue Eisen (III)-oxide phase: ε-Fe2O3. Z. Anorg. Allg. Chem. 1963, 320, 220–234. [Google Scholar] [CrossRef]
- Tronc, E.; Chanéac, C.; Jolivet, J.P. Structural and Magnetic Characterization of ε-Fe2O3. J. Solid State Chem. 1998, 139, 93–104. [Google Scholar] [CrossRef]
- Gich, M.; Frontera, C.; Roig, A.; Taboada, E.; Molins, E.; Rechenberg, H.R.; Ardisson, J.D.; Macedo, W.A.A.; Ritter, C.; Hardy, V.; et al. High- and low-temperature crystal and magnetic structures of ε-Fe2O3 and their correlation to its magnetic properties. Chem. Mater. 2006, 18, 3889–3897. [Google Scholar] [CrossRef]
- Gich, M.; Roig, A.; Frontera, C.; Molins, E.; Sort, J.; Popovici, M.; Chouteau, G.; Martin y Marero, D.; Nogués, J. Large coercivity and low-temperature magnetic reorientation in ε-Fe2O3 nanoparticles. J. Appl. Phys. 2005, 98, 044307. [Google Scholar] [CrossRef]
- Jones, R.; Nickel, R.; Manna, P.K.; Hilman, J.; van Lierop, J. Temperature and field evolution of site-dependent magnetism in ε-Fe2O3 nanoparticles. Phys. Rev. B 2019, 100, 094425. [Google Scholar] [CrossRef] [Green Version]
- Ohkoshi, S.-I.; Kuroki, S.; Sakurai, S.; Matsumoto, K.; Sato, K.; Sasaki, S. A Millimeter-Wave Absorber Based on Gallium-Substituted ε-Iron Oxide Nanomagnets. Angew. Chem. Int. Ed. 2007, 46, 8392–8395. [Google Scholar] [CrossRef]
- Namai, A.; Sakurai, S.; Nakajima, M.; Suemeto, T.; Matsumoto, K.; Goto, M.; Sasaki, S.; Ohkoshi, S.J. Synthesis of an electromagnetic wave absorber for high-speed wireless communication. J. Am. Chem. Soc. 2009, 131, 1170–1173. [Google Scholar] [CrossRef]
- Seemann, K.; Leiste, H.; Bekker, V.A. A new generation of CMOS-compatible high frequency micro-inductors with ferromagnetic cores: Theory, fabrication and characterization. J. Magn. Magn. Mater. 2006, 302, 321–326. [Google Scholar] [CrossRef]
- Ghasemi, A.; Hossienpour, A.; Morisako, A.; Saatchi, A.; Salehi, M.J. Electromagnetic properties and microwave absorbing characteristics of doped barium hexaferrite. J. Magn. Magn. Mater. 2006, 302, 429–435. [Google Scholar] [CrossRef]
- Gich, M.; Frontera, C.; Roig, A.; Fontcuberta, J.; Molins, E.; Bellido, N.; Simon, C.; Fleta, C. Magnetoelectric coupling in ε-Fe2O3 nanoparticles. Nanotechnology 2006, 17, 687–691. [Google Scholar] [CrossRef] [Green Version]
- Gareev, K.G.; Khmelnitskiy, I.K.; Mandrik, I.V.; Orekhov, Y.D.; Testov, D.O. Microfluidic System for Drug Delivery Based on Microneedle Array and IPMC Valveless Pump. In Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (2021 ElConRus), St. Petersburg, Russia, 26–29 January 2021; pp. 1744–1747. [Google Scholar] [CrossRef]
- Testov, D.O.; Gareev, K.G.; Khmelnitskiy, I.K.; Kosterov, A.; Maraeva, E.V.; Klimtsova, I.V. Synthesis of high-coercive epsilon-iron oxide nanoparticles for biomedical applications. In Proceedings of the 2022 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (2022 ElConRus), St. Petersburg, Russia, 25–28 January 2022; pp. 1620–1623. [Google Scholar] [CrossRef]
- Popovici, M.; Gich, M.; Niznansky, D.; Roig, A.; Savii, C. Optimized Synthesis of the Elusive ε-Fe2O3 Phase via Sol-Gel Chemistry. Chem. Mater. 2004, 16, 5542–5548. [Google Scholar] [CrossRef]
- Khan, I.; Morishita, S.; Higashinaka, R.; Matsuda, T.D.; Aoki, Y.; Kuzmann, E.; Kubuki, S. Synthesis, characterization and magnetic properties of ε-Fe2O3 nanoparticles prepared by sol-gel method. J. Magn. Magn. Mater. 2021, 538, 168264. [Google Scholar] [CrossRef]
- Bukhtiyarova, G.A.; Mart’yanov, O.N.; Yakushkin, S.S.; Shuvaeva, M.A.; Bayukov, O.A. State of iron in nanoparticles prepared by impregnation of silica gel and aluminum oxide with FeSO4 solutions. Phys. Solid State 2010, 52, 826–837. [Google Scholar] [CrossRef]
- Bukhtiyarova, G.A.; Shuvaeva, S.S.; Bayukov, O.A.; Yakushkin, M.A.; Mart’yanov, O.N. Facile synthesis of nanosized ε-Fe2O3 particles on the silica support. J. Nanopart. Res. 2011, 13, 5527–5534. [Google Scholar] [CrossRef]
- Balaev, D.A.; Dubrovskiy, A.A.; Shaykhutdinov, K.A.; Bayukov, O.A.; Yakushkin, S.S.; Bukhtiyarova, G.A.; Martyanov, O.N. Surface effects and magnetic ordering in few-nanometer-sized ε-Fe2O3 particles. J. Appl. Phys. 2013, 114, 163911. [Google Scholar] [CrossRef]
- Balaev, D.A.; Yakushkin, S.S.; Dubrovskii, A.A.; Bukhtiyarova, G.A.; Shaikhutdinov, K.A.; Martyanov, O.N. Study of the high-coercivity material based on ε-Fe2O3 nanoparticles in the silica gel matrix. Tech. Phys. Lett. 2016, 42, 347–350. [Google Scholar] [CrossRef]
- Yakushkin, S.S.; Dubrovskiy, A.A.; Balaev, D.A.; Shaykhutdinov, K.A.; Bukhtiyarova, G.A.; Martyanov, O.N. Magnetic properties of few nanometers e-Fe2O3 nanoparticles supported on the silica. J. Appl. Phys. 2012, 111, 044312. [Google Scholar] [CrossRef]
- Jin, J.; Ohkoshi, S.I.; Hashimoto, K. Giant coercive field of nanometer-sized iron oxide. Adv. Mater. 2004, 16, 48–51. [Google Scholar] [CrossRef]
- Sakurai, S.; Shimoyama, J.; Hashimoto, K.; Ohkoshi, S. Large coercive field in magnetic-field oriented ε-Fe2O3 nanorods. Chem. Phys. Lett. 2008, 458, 333–336. [Google Scholar] [CrossRef]
- David, B.; Pizúrová, N.; Synek, P.; Kudrle, V.; Jašek, O.; Schneeweiss, O. ε-Fe2O3 nanoparticles synthesized in atmospheric-pressure microwave torch. Mater. Lett. 2014, 116, 370–373. [Google Scholar] [CrossRef]
- Tanskanen, A.; Mustonen, O.; Karppinen, M. Simple ALD process for ε-Fe2O3. APL Mater. 2017, 5, 056104. [Google Scholar] [CrossRef] [Green Version]
- Ukleev, V.; Suturin, S.; Nakajima, T.; Arima, T.-h.; Saerbeck, T.; Hanashima, T.; Sitnikova, A.; Kirilenko, D.; Yakovlev, N.; Sokolov, N. Unveiling structural, chemical and magnetic interfacial peculiarities in ε-Fe2O3/GaN (0001) epitaxial films. Sci. Rep. 2018, 8, 8741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suturin, S.M.; Korovin, A.M.; Sitnikova, A.A.; Kirilenko, D.A.; Volkov, M.P.; Dvortsova, P.A.; Ukleev, V.A.; Tabuchi, M.; Sokolov, N.S. Correlation between crystal structure and magnetism in PLD grown epitaxial films of ε-Fe2O3 on GaN. Sci. Technol. Adv. Mater. 2021, 22, 85–99. [Google Scholar] [CrossRef] [PubMed]
- Kelm, K.; Mader, W. Synthesis and Structural Analysis of ε-Fe2O3. Z. Anorg. Allg. Chem. 2005, 631, 2383–2389. [Google Scholar] [CrossRef]
- Ohkoshi, S.I.; Tokoro, H. Hard Magnetic Ferrite: ε-Fe2O3. Bull. Chem. Soc. Jpn. 2013, 86, 897–907. [Google Scholar] [CrossRef] [Green Version]
- Di Cerbo, R.K.; Seybolt, A.U. Lattice Parameters of the α-Fe2O3-Cr2O3 Solid Solution. J. Am. Ceram. Soc. 1959, 42, 430–431. [Google Scholar] [CrossRef]
- Trautmann, J.-M.; Forestier, H. Nouvelle préparation et étude de l’oxyde ε-Fe2O3. C. R. Acad. Sci. Paris 1965, 261, 4423–4425. [Google Scholar]
- Dézsi, I.; Coey, J.M.D. Magnetic and thermal properties of ε-Fe2O3. Phys. Stat. Sol. (a) 1973, 15, 681–685. [Google Scholar] [CrossRef]
- Kurmoo, M.; Rehspringer, J.L.; Hutlova, A.; D’Orleans, C.; Vilminot, S.; Estournes, C.; Niznansky, D. Formation of nanoparticles of e-Fe2O3 from yttrium iron garnet in a silica matrix: An unusually hard magnet with a Morin-like transition below 150 K. Chem. Mater. 2005, 17, 1106–1114. [Google Scholar] [CrossRef]
- Sakurai, S.; Jin, J.; Hashimoto, K.; Ohkoshi, S.-I. Reorientation phenomenon in a magnetic phase of ε-Fe2O3 nanocrystal. J. Phys. Soc. Jpn. 2005, 74, 1946–1949. [Google Scholar] [CrossRef]
- Sakurai, S.; Namai, A.; Hashimoto, K.; Ohkoshi, S.-i. First observation of phase transformation of all four Fe2O3 phases (γ → ε → β → α-phase). J. Am. Chem. Soc. 2009, 131, 18299–18303. [Google Scholar] [CrossRef] [PubMed]
- López-Sánchez, J.; Munoz-Noval, A.; Serrano, A.; Abuin, M.; de la Figuera, J.; Marco, J.F.; Perez, L.; Carmona, N.; Rodriguez de la Fuente, O. Growth, structure and magnetism of ε-Fe2O3 in nanoparticle form. RSC Adv. 2016, 6, 46380–46387. [Google Scholar] [CrossRef]
- García-Muñoz, J.L.; Romaguera, A.; Fauth, F.; Nogués, J.; Gich, M. Unveiling a new high-temperature ordered magnetic phase in ε-Fe2O3. Chem. Mater. 2017, 29, 9705–9713. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Hashimoto, K.; Ohkoshi, S.-I. Formation of spherical and rod-shaped ε-Fe2O3 nanocrystals with a large coercive field. J. Mater. Chem. 2005, 15, 1067–1071. [Google Scholar] [CrossRef]
- Nikolić, V.N.; Tadić, M.; Panjan, M.; Kopanja, L.; Cvjetićanin, N.; Spasojević, V. Influence of annealing treatment on magnetic properties of Fe2O3/SiO2 and formation of ε-Fe2O3 phase. Ceram. Int. 2017, 43, 3147–3155. [Google Scholar] [CrossRef]
- Kubíčková, L.; Brázda, P.; Veverka, M.; Kaman, O.; Herynek, V.; Vosmanská, M.; Dvořák, P.; Bernášek, K.; Kohout, J. Nanomagnets for ultra-high field MRI: Magnetic properties and transverse relaxivity of silica-coated ε-Fe2O3. J. Magn. Magn. Mater. 2019, 480, 154–163. [Google Scholar] [CrossRef]
- Tokoro, H.; Fukui, J.; Watanabe, K.; Yoshikiyo, M.; Namai, A.; Ohkoshi, S.-I. Crystal growth control of rod-shaped ε-Fe2O3 nanocrystals. RSC Adv. 2020, 10, 39611–39616. [Google Scholar] [CrossRef]
- Morin, F.J. Magnetic susceptibility of αFe2O3 and αFe2O3 with added titanium. Phys. Rev. 1950, 78, 819–820. [Google Scholar] [CrossRef]
- Morrish, A.H. Canted Antiferromagnetism: Hematite; World Scientific Publishing Company: Singapore, 1995. [Google Scholar]
- Bando, Y.; Kiyama, M.; Yamamoto, N.; Takada, T.; Shinjo, T.; Takaki, H. The magnetic properties of α-Fe2O3 fine particles. J. Phys. Soc. Jpn. 1965, 20, 2086. [Google Scholar] [CrossRef] [Green Version]
- Schroeer, D.; Nininger, R.C., Jr. Morin transition in α-Fe2O3 microcyrstals. Phys. Rev. Lett. 1967, 19, 632–634. [Google Scholar] [CrossRef]
- Nininger, R.C., Jr.; Schroeer, D. Mössbauer studies of the Morin transition in bulk and microcrystalline α-Fe2O3. J. Phys. Chem. Solids 1978, 39, 137–144. [Google Scholar] [CrossRef]
- Amin, N.; Arajs, S. Morin temperature of annealed submicronic α-Fe2O3 particles. Phys. Rev. B 1987, 35, 4810–4811. [Google Scholar] [CrossRef] [PubMed]
Method | Shape of ε-Fe2O3 | Matrix/ Substrate | Associated Polymorphs | Max. Annealing T, °C | Duration of One Synthesis Cycle, h | Particle Size, nm | Neel T, °C | Coercive Force, kOe | Ref. |
---|---|---|---|---|---|---|---|---|---|
Sol-gel | NPs | SiO2/- | α-Fe2O3 | 1100 | 528 | 25 | 510 | 4–6 | [24,25] |
Silica gel impregnation | NPs | SiO2/- | α-Fe2O3 | 900 | 30 | 20–80 | 470 | 9 | [26,27,28,29,30] |
Microemulsion | NPs | SiO2/- | - | 1100 | 40 | 20–100 | 480 | 10–20 | [31,32] |
CVD | NPs | - | γ-Fe2O3 α-Fe2O3 | n/a | 1 * | n/a | n/a | n/a | [33] |
Thin film deposition | Thin film | -/GaN | γ-Fe2O3 α-Fe2O3 | 800 | 36+ | 10–30 | n/a | 1,6–15 | [34,35,36] |
Thermal decomposition | Crystal | Pd/- | α-Fe2O3 unidentified phase | 970 | 168 | 50–200 | n/a | n/a | [37] |
№ | Sample | Synthesis Method | Precursors | Matrix | Annealing Temperature, °C |
---|---|---|---|---|---|
1 | SUP | Silica gel Impregnation | FeSO4 | Chromatographic Superico silicagel | 900 |
2 | SUP-2 | ||||
3 | S75 | Silica gel Impregnation | FeSO4 | Silipor 075 | 900 |
4 | S300S | Silica gel Impregnation | FeSO4 | Silipor-300 | 900 |
5 | S300S-2 | Silipor-300 | |||
6 | S300S-2 at 200 K | Silipor-300 | |||
7 | S300N | Silica gel Impregnation | Fe(NO3)3 | Silipor-300 | 900 |
8 | S300N at 200 K | Silipor-300 | |||
9 | ME-A | Microemulsion | TEOS Fe(NO3)3 Ba(NO3)2 | SiO2 formed during the synthesis process | 1000 |
10 | ME-B | ||||
11 | ME-M |
Sample | ε-Fe2O3 | Hematite (α-Fe2O3) | |||||
---|---|---|---|---|---|---|---|
Content, % | a (Å) | b (Å) | c (Å) | Content, % | a (Å) | c (Å) | |
SUP | 61 | 5.094(2) | 8.797(4) | 9.482(2) | 39 | 5.0377(5) | 13.7539(16) |
SUP-2 | 58.8 | 5.0992(13) | 8.784(2) | 9.485(2) | 41.2 | 5.0367(4) | 13.7512(12) |
S75 | 38.6 | 5.0945(15) | 8.784(3) | 9.486(2) | 61.4 | 5.0382(3) | 13.7534(11) |
S300S | 73.1 | 5.098(2) | 8.795(4) | 9.490(3) | 26.9 | 5.0392(14) | 13.768(4) |
S300S-2 | 69.0 | 5.086(3) | 8.799(5) | 9.493(3) | 31.0 | 5.0368(3) | 13.7504(11) |
S300-N | 25.3 | 5.084(12) | 8.82(2) | 9.507(12) | 74.7 | 5.043(2) | 13.771(7) |
ME-A | 60.9 | 5.057(4) | 8.796(3) | 9.465(3) | 39.1 | 5.03077(19) | 13.7360(7) |
ME-B | 39.2 | 5.048(4) | 8.797(3) | 9.467(3) | 60.8 | 5.0310(2) | 13.7363(8) |
ME-M | 37.2 | 4.951(4) | 8.863(6) | 9.473(5) | 62.8 | 5.0294(5) | 13.727(2) |
Sample | M (7 T, 300 K), Am2/kg | Mr (300 K, 7 T loop), Am2/kg | Mr (300 K, 5 T), Am2/kg | ZFC (1.8 K, 5 T), Am2/kg | FC (1.8 K, 5 T), Am2/kg | µ0·Hc, mT | µ0·Hcr, mT |
---|---|---|---|---|---|---|---|
SUP | 3.842 | 1.227 | 1.209 | 1.026 | 0.9691 | 1121 | 1734 |
SUP-2 | 3.595 | 1.13 | 1.113 | 1.405 | 1.545 | 1089 | 1742 |
S75 | 2.222 | 0.7528 | 0.7337 | 0.7668 | 0.9171 | 1243 | 2047 |
S300S | 2.735 | 0.7513 | 0.7014 | 1.073 | 1.212 | 4.96 | 23.3 |
S300S-2 | 2.925 | 0.5294 | 0.5292 | 0.6499 | 0.7830 | 1.71 | 1617 |
S300S-2 at 200 K | 3.158 | 0.8410 | 0.8411 | 1.040 | 1.211 | 576 | 1834 |
S300N | 1.874 | 0.3042 | 0.2856 | 0.7179 | 0.8422 | 50.3 | 1190 |
S300N at 200 K | 2.097 | 0.4292 | 0.4327 | 0.7336 | 0.8799 | 256 | 1666 |
ME-A | 1.647 | 0.4844 | 0.4774 | 0.4204 | 0.4340 | 896 | 2160 |
ME-B | 1.751 | 0.5838 | 0.5793 | 0.4799 | 0.4643 | 1070 | 2143 |
ME-M | 0.7439 | 0.1577 | 0.1560 | 0.1935 | 0.2047 | 342 | 2130 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Testov, D.O.; Gareev, K.G.; Khmelnitskiy, I.K.; Kosterov, A.; Surovitskii, L.; Luchinin, V.V. Influence of the Preparation Technique on the Magnetic Characteristics of ε-Fe2O3-Based Composites. Magnetochemistry 2023, 9, 10. https://doi.org/10.3390/magnetochemistry9010010
Testov DO, Gareev KG, Khmelnitskiy IK, Kosterov A, Surovitskii L, Luchinin VV. Influence of the Preparation Technique on the Magnetic Characteristics of ε-Fe2O3-Based Composites. Magnetochemistry. 2023; 9(1):10. https://doi.org/10.3390/magnetochemistry9010010
Chicago/Turabian StyleTestov, Dmitriy O., Kamil G. Gareev, Ivan K. Khmelnitskiy, Andrei Kosterov, Leonid Surovitskii, and Victor V. Luchinin. 2023. "Influence of the Preparation Technique on the Magnetic Characteristics of ε-Fe2O3-Based Composites" Magnetochemistry 9, no. 1: 10. https://doi.org/10.3390/magnetochemistry9010010
APA StyleTestov, D. O., Gareev, K. G., Khmelnitskiy, I. K., Kosterov, A., Surovitskii, L., & Luchinin, V. V. (2023). Influence of the Preparation Technique on the Magnetic Characteristics of ε-Fe2O3-Based Composites. Magnetochemistry, 9(1), 10. https://doi.org/10.3390/magnetochemistry9010010