Magnetic, Electric and Optical Properties of Ion Doped CuCr2O4 Nanoparticles
Abstract
:1. Introduction
2. The Model
3. Numerical Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prasad, R.; Singh, P. Applications and Preparation Methods of Copper Chromite Catalysts: A Review. Bull. Chem. React. Eng. Catal. 2011, 6, 63–113. [Google Scholar] [CrossRef] [Green Version]
- Kanti, P.K.; Chereches, E.I.; Minea, A.A.; Sharma, K.V. Experiments on thermal properties of ionic liquid enhanced with alumina nanoparticles for solar applications. J. Therm. Anal. Calorim. 2022. [Google Scholar] [CrossRef]
- Gurgel, T.T.; Buzinaro, M.A.; Moreno, N.O. Magnetization Study in CuCr2O4 Spinel Oxide. J. Supercond. Nov. Magn. 2013, 26, 2557–2559. [Google Scholar] [CrossRef]
- Tripathi, T.S.; Yadav, C.S.; Karppinen, M. Transparent ferrimagnetic semiconducting CuCr2O4 thin films by atomic layer deposition. APL Mater. 2016, 4, 046106. [Google Scholar] [CrossRef] [Green Version]
- Iwata, J.M.; Chopdekar, R.V.; Wong, F.; Nelson-Cheeseman, B.B.; Arenholz, E.; Suzuki, Y. Enhanced Magnetization of CuCr2O4 Thin Films by Substrate-Induced Strain. J. Appl. Phys. 2009, 105, 07A905. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Singh, Y. A magnetocaloric study on the series of 3d-metal chromites ACr2O4 where A = Mn, Fe, Co, Ni, Cu and Zn. J. Magn. Magn. Mater. 2020, 499, 166253. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.-G.; Crottaz, O.; Vaudano, F.; Kubel, F.; Tissot, P.; Schmid, K. Single crystal growth, structure refinement, ferroelastic domains and phase transitions of the hausmannite CuCr2O4. Ferroel. 1994, 162, 103. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, A.; Dey, J.K.; Majumdar, S.; Dippel, A.-C.; Gutowski, O.; Zimmermann, M.V.; Giri, S. Tuning of multiferroic order with Co doping in CuCr2O4: Interplay between structure and orbital order. Phys. Rev. Mater. 2019, 3, 104403. [Google Scholar] [CrossRef] [Green Version]
- Rajeswari, G.; Prabavathi, N.; Tamizhdurai, P.; Prakasam, A.; Kumar, G. Enhancement of the structure, solar cells and vibrational studies of undoped CuCr2O4 and La-doped CuCr2O4 semiconductor compounds. Heliyon 2022, 8, e09233. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.; Sharma, S.; Sau, T.; da Silva, I.; Lalla, N.P. Jahn-Teller and geometric frustration effects on the structural and magnetic ground states of substituted spinels (Ni,A)Cr2O4 (A = Mn/Cu). J. All. Compd. 2020, 826, 154139. [Google Scholar] [CrossRef]
- Singh, K.; Maignana, A.; Simon, C.; Martin, C. FeCr2O4 and CoCr2O4 spinels: Multiferroicity in the collinear magnetic state? Appl. Phys. Lett. 2011, 99, 172903. [Google Scholar] [CrossRef]
- Habibi, M.H.; Fakhri, F. Fabrication and Characterization of CuCr2O4 Nanocomposite by XRD, FESEM, FTIR, and DRS. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2016, 46, 847. [Google Scholar] [CrossRef]
- Beshkar, F.; Zinatloo-Ajabshir, S.; Salavati-Niasari, M. Preparation and characterization of the CuCr2O4 nanostructures via a new simple route. J. Mater. Sci. Mater. Electron. 2015, 26, 5043. [Google Scholar] [CrossRef]
- Krause, M.; Sonnenberg, J.; Munnik, F.; Grenzer, J.; Huebner, R.; Garcia-Valenzuela, A.; Gemming, S. Formation, structure, and optical properties of copper chromite thin films for high-temperature solar absorbers. Materialia 2021, 18, 101156. [Google Scholar] [CrossRef]
- Lahmar, H.; Kebir, M.; Nasrallah, N.; Trari, M. Photocatalytic reduction of Cr(VI) on the new hetero-system CuCr2O4/ZnO. J. Mol. Catal. A Chem. 2012, 353–354, 74–79. [Google Scholar] [CrossRef]
- Ghorai, K.; Panda, A.; Hossain, A.; Bhattacharjee, M.; Chakraborty, M.; Bhattacharya, S.K.; Bera, P.; Kim, H.; Seikh, M.M.; Gayen, A. Anatase TiO2 decorated CuCr2O4 nanocomposite: A versatile photocatalyst under domestic LED light irradiation. Appl. Surf. Sc. 2021, 568, 150838. [Google Scholar] [CrossRef]
- Benrighi, Y.; Nasrallah, N.; Chaabane, T.; Belkacemi, H.; Bourkeb, K.W.; Kenfoud, H.; Baaloudj, O. Characterization and application of the spinel CuCr2O4 synthesized by sol–gel method for sunset yellow photodegradation. J. Sol.-Gel. Sc. Techn. 2022, 101, 390. [Google Scholar] [CrossRef]
- Soleimani, F.; Salehi, M.; Gholizadeh, A. Synthesis and characterization of new spinel Mn0.5Cu0.5Cr2O4 and degradation of Malachite Green from wastewater in comparison with CuCr2O4. Int. J. Nano Dimens. 2019, 10, 260–271. [Google Scholar]
- Nagaev, E.L. Spin Polaron Theory for Magnetic Semiconductors with Narrow Bands. Phys. Status Sol. B 1974, 65, 11. [Google Scholar] [CrossRef]
- Nolting, W. Theory of ferromagnetic semiconductors. Phys. Status Sol. B 1979, 96, 11. [Google Scholar] [CrossRef]
- Kochelaev, B.I. Spin-Phonon Interaction and the EPR Linewidth in La2CuO4 and Related Cuprates. J. Supercond. 1999, 12, 53. [Google Scholar] [CrossRef]
- Tserkovnikov, Y.A. Decoupling of chains of equations for two-time Green’s functions. Teor. Mat. Fiz. 1971, 7, 250. [Google Scholar] [CrossRef]
- Apostolova, I.N.; Apostolov, A.T.; Wesselinowa, J.M. Multiferroic and phonon properties of pure and ion doped CoCr2O4-Bulk and nanoparticles. J. All. Comp. 2021, 852, 156885. [Google Scholar] [CrossRef]
- Katsura, H.; Nagaosa, N.; Balatsky, A.V. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 2005, 95, 057205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaks, V.G. Introduction to the Microscopic Theory of Ferroelectrics; Nauka: Moscow, Russia, 1973; p. 158. (In Russian) [Google Scholar]
- Goryachev, E.; Kuzmin, E.V.; Ovchinnikov, S.G. Metal-insulator transition in the Hubbard model by the irreducible Green functions method. J. Phys. C 1982, 15, 1481. [Google Scholar] [CrossRef]
- Lawes, G.; Melot, B.; Page, K.; Ederer, C.; Hayward, M.A.; Proffen, T.; Seshadri, R. Dielectric anomalies and spiral magnetic order in CoCr2O4. Phys. Rev. B 2006, 74, 024413. [Google Scholar] [CrossRef] [Green Version]
- Kocsis, V.; Bordacs, S.; Varjas, D.; Penc, K.; Abouelsayed, A.; Kuntscher, C.A.; Ohgushi, K.K.; Tokura, Y.; Kezsmarki, I. Magnetoelasticity in ACr2O4 spinel oxides (A = Mn, Fe, Co, Ni, and Cu). Phys. Rev. B 2013, 87, 064416. [Google Scholar] [CrossRef] [Green Version]
- Wesselinowa, J.M.; Apostolov, A.T. Anharmonic effects in ferromagnetic semiconductors. J. Phys. Cond. Matter 1996, 8, 473–488. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Kan, X.; Feng, S.; Wang, W.; Liu, C.; Li, Y. Synthesis and Analysis of Zn-Substituted CoCr2O4 Spinel Oxide. J. Supercond. Novel Magn. 2022, 35, 753–762. [Google Scholar] [CrossRef]
- Hosseini, S.G.; Abazari, R.; Gavi, A. Pure CuCr2O4 nanoparticles: Synthesis, characterization and their morphological and size effects on the catalytic thermal decomposition of ammonium perchlorate. Solid State Sc. 2014, 37, 72–79. [Google Scholar]
- Ortuno-Lopez, M.B.; Sotelo-Lerma, M.; Mendoza-Galvana, A.; Ramirez-Bona, R. Optical band gap tuning and study of strain in CdS thin films. Vacuum 2004, 76, 181. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apostolov, A.T.; Apostolova, I.N.; Wesselinova, J.M. Magnetic, Electric and Optical Properties of Ion Doped CuCr2O4 Nanoparticles. Magnetochemistry 2022, 8, 122. https://doi.org/10.3390/magnetochemistry8100122
Apostolov AT, Apostolova IN, Wesselinova JM. Magnetic, Electric and Optical Properties of Ion Doped CuCr2O4 Nanoparticles. Magnetochemistry. 2022; 8(10):122. https://doi.org/10.3390/magnetochemistry8100122
Chicago/Turabian StyleApostolov, Angel Todorov, Iliana Naumova Apostolova, and Jilia Mihailowa Wesselinova. 2022. "Magnetic, Electric and Optical Properties of Ion Doped CuCr2O4 Nanoparticles" Magnetochemistry 8, no. 10: 122. https://doi.org/10.3390/magnetochemistry8100122
APA StyleApostolov, A. T., Apostolova, I. N., & Wesselinova, J. M. (2022). Magnetic, Electric and Optical Properties of Ion Doped CuCr2O4 Nanoparticles. Magnetochemistry, 8(10), 122. https://doi.org/10.3390/magnetochemistry8100122