E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "Peptides for Health Benefits"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Bioactives and Nutraceuticals".

Deadline for manuscript submissions: closed (31 July 2018)

Special Issue Editors

Guest Editor
Dr. Blanca Hernández-Ledesma

Instituto de Investigación en Ciencias de la Alimentación. Consejo Superior de Investigaciones Científicas (CSIC)
Website | E-Mail
Interests: bioactive peptides; chemoprevention; antioxidant activity; food proteins; bioavailability
Guest Editor
Dr. Cristina Martínez-Villaluenga

Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), Juan de la Cierva 3, Madrid 28006, Spain
E-Mail

Special Issue Information

Dear Colleagues,

In recent years, peptides have received increased interest by the pharmaceutical industry. The high potency, specificity and good safety profile are the main strengths of bioactive peptides as new and promising therapies that may fill the gap between small molecules and protein drugs. These positive attributes of peptides, along with advances in drug delivery technologies, have afforded a renewed interest in the discovery, optimization and development of peptides as pharmacological therapy. Among bioactive peptides, those released from food protein sources have acquired importance as nutraceutical and active components in functional foods because they are known to possess regulatory functions that can lead to health benefits.

This Special Issue, “Peptides for Health Benefits”, will cover a selection of recent research papers, reviews, short communications, as well as perspectives in the field of bioactive peptides. It aims to cover all aspects of peptide research in relation to health promotion. In particular, this Special Issue emphasizes current knowledge and research trends concerning bioactive peptides, including identification and quantification of peptides from new sources, methods for their production and purification, structure-function relationships, mechanisms of action, development of novel in vitro and in vivo assays for the evaluation of their bioactivity, physiological evidence to support health benefits, and peptide stability, bioavailability, and sensory (or techno-functional) properties. Papers regarding the development of new drugs, functional foods or nutraceuticals based on bioactive peptides will be also taken into consideration.

Dr. Blanca Hernandez-Ledesma
Dr. Cristina Martínez-Villaluenga
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Human health
  • Bioactive peptides
  • Food peptides
  • Biological activity
  • Peptidomics
  • In vitro and in vivo assays
  • Identification and characterization
  • Functional foods
  • Peptides-based therapies

Published Papers (12 papers)

View options order results:
result details:
Displaying articles 1-12
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle Dissection of the Structural Features of a Fungicidal Antibody-Derived Peptide
Int. J. Mol. Sci. 2018, 19(12), 3792; https://doi.org/10.3390/ijms19123792
Received: 6 November 2018 / Revised: 20 November 2018 / Accepted: 27 November 2018 / Published: 28 November 2018
PDF Full-text (4149 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The synthetic peptide T11F (TCRVDHRGLTF), derived from the constant region of human IgM antibodies, proved to exert a significant activity in vitro against yeast strains, including multidrug resistant isolates. Alanine substitution of positively charged residues led to a decrease in candidacidal activity. A
[...] Read more.
The synthetic peptide T11F (TCRVDHRGLTF), derived from the constant region of human IgM antibodies, proved to exert a significant activity in vitro against yeast strains, including multidrug resistant isolates. Alanine substitution of positively charged residues led to a decrease in candidacidal activity. A more dramatic reduction in activity resulted from cysteine replacement. Here, we investigated the conformational properties of T11F and its alanine-substituted derivatives by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy. Peptide interaction with Candida albicans cells was studied by confocal and scanning electron microscopy. T11F and most of its derivatives exhibited CD spectra with a negative band around 200 nm and a weaker positive band around 218 nm suggesting, together with NMR coupling constants, the presence of a polyproline II (PPII) helix, a conformational motif involved in a number of biological functions. Analysis of CD spectra revealed a critical role for phenylalanine in preserving the PPII helix. In fact, only the F11A derivative presented a random coil conformation. Interestingly, the loss of secondary structure influenced the rate of killing, which turned out to be significantly reduced. Overall, the obtained results suggest that the PPII conformation contributes in characterising the cell penetrating and fungicidal properties of the investigated peptides. Full article
(This article belongs to the Special Issue Peptides for Health Benefits)
Figures

Graphical abstract

Open AccessArticle AWRK6, a Novel GLP-1 Receptor Agonist, Attenuates Diabetes by Stimulating Insulin Secretion
Int. J. Mol. Sci. 2018, 19(10), 3053; https://doi.org/10.3390/ijms19103053
Received: 30 July 2018 / Revised: 30 September 2018 / Accepted: 3 October 2018 / Published: 7 October 2018
PDF Full-text (3320 KB) | HTML Full-text | XML Full-text
Abstract
Diabetes is a metabolic disorder leading to many complications. The treatment of diabetes mainly depends on hypoglycemic drugs, often with side effects, which drive us to develop novel agents. AWRK6 was a peptide developed from the antimicrobial peptide Dybowskin-2CDYa in our previous study,
[...] Read more.
Diabetes is a metabolic disorder leading to many complications. The treatment of diabetes mainly depends on hypoglycemic drugs, often with side effects, which drive us to develop novel agents. AWRK6 was a peptide developed from the antimicrobial peptide Dybowskin-2CDYa in our previous study, and the availability of AWRK6 on diabetes intervention was unknown. Here, in vivo and in vitro experiments were carried out to investigate the effects of AWRK6 against diabetes. In diabetic mice, induced by high-fat diet followed by streptozocin (STZ) administration, the daily administration of AWRK6 presented acute and sustained hypoglycemic effects. The plasma insulin was significantly elevated by AWRK6 during an oral glucose tolerance test (OGTT). The relative β cell mass in diabetic mice was increased by AWRK6 treatment. The body weight and food intake were remarkably reduced by AWRK6 administration. In the mouse pancreatic β cell line Min6 cells, the intracellular calcium concentration was found to be enhanced under the treatment with AWRK6, and protein kinase A (PKA) inhibitor H-89 and Epac2 inhibitor HJC0350 represented inhibitory effects of the insulinotropic function of AWRK6. By FITC-AWRK6 incubation and GLP-1 receptor (GLP-1R) knockdown, AWRK6 proved to be a novel GLP-1R agonist. In addition, AWRK6 showed no toxicity in cell viability and membrane integrity in Min6 cells, and no hypoglycemia risk and no lethal toxicity in mice. In summary, AWRK6 was found as a novel agonist of GLP-1R, which could stimulate insulin secretion to regulate blood glucose and energy metabolism, via cAMP-calcium signaling pathway, without significant toxicity. The peptide AWRK6 might become a novel candidate for diabetes treatment. Full article
(This article belongs to the Special Issue Peptides for Health Benefits)
Figures

Figure 1

Open AccessArticle Bioactive Peptides from Germinated Soybean with Anti-Diabetic Potential by Inhibition of Dipeptidyl Peptidase-IV, α-Amylase, and α-Glucosidase Enzymes
Int. J. Mol. Sci. 2018, 19(10), 2883; https://doi.org/10.3390/ijms19102883
Received: 30 July 2018 / Revised: 14 September 2018 / Accepted: 19 September 2018 / Published: 22 September 2018
PDF Full-text (1543 KB) | HTML Full-text | XML Full-text
Abstract
Functional foods containing peptides offer the possibility to modulate the absorption of sugars and insulin levels to prevent diabetes. This study investigates the potential of germinated soybean peptides to modulate postprandial glycaemic response through inhibition of dipeptidyl peptidase IV (DPP-IV), salivary α-amylase, and
[...] Read more.
Functional foods containing peptides offer the possibility to modulate the absorption of sugars and insulin levels to prevent diabetes. This study investigates the potential of germinated soybean peptides to modulate postprandial glycaemic response through inhibition of dipeptidyl peptidase IV (DPP-IV), salivary α-amylase, and intestinal α-glucosidases. A protein isolate from soybean sprouts was digested by pepsin and pancreatin. Protein digest and peptide fractions obtained by ultrafiltration (<5, 5–10 and >10 kDa) and subsequent semipreparative reverse phase liquid chromatography (F1, F2, F3, and F4) were screened for in vitro inhibition of DPP-IV, α-amylase, maltase, and sucrase activities. Protein digest inhibited DPP-IV (IC50 = 1.49 mg/mL), α-amylase (IC50 = 1.70 mg/mL), maltase, and sucrase activities of α-glucosidases (IC50 = 3.73 and 2.90 mg/mL, respectively). Peptides of 5–10 and >10 kDa were more effective at inhibiting DPP-IV (IC50 = 0.91 and 1.18 mg/mL, respectively), while peptides of 5–10 and <5 kDa showed a higher potency to inhibit α-amylase and α-glucosidases. Peptides in F1, F2, and F3 were mainly fragments from β-conglycinin, glycinin, and P34 thiol protease. The analysis of structural features of peptides in F1–F3 allowed the tentative identification of potential antidiabetic peptides. Germinated soybean protein showed a promising potential to be used as a nutraceutical or functional ingredient for diabetes prevention. Full article
(This article belongs to the Special Issue Peptides for Health Benefits)
Figures

Figure 1

Open AccessArticle A Dairy-Derived Ghrelinergic Hydrolysate Modulates Food Intake In Vivo
Int. J. Mol. Sci. 2018, 19(9), 2780; https://doi.org/10.3390/ijms19092780
Received: 20 August 2018 / Revised: 10 September 2018 / Accepted: 12 September 2018 / Published: 15 September 2018
PDF Full-text (7809 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Recent times have seen an increasing move towards harnessing the health-promoting benefits of food and dietary constituents while providing scientific evidence to substantiate their claims. In particular, the potential for bioactive protein hydrolysates and peptides to enhance health in conjunction with conventional pharmaceutical
[...] Read more.
Recent times have seen an increasing move towards harnessing the health-promoting benefits of food and dietary constituents while providing scientific evidence to substantiate their claims. In particular, the potential for bioactive protein hydrolysates and peptides to enhance health in conjunction with conventional pharmaceutical therapy is being investigated. Dairy-derived proteins have been shown to contain bioactive peptide sequences with various purported health benefits, with effects ranging from the digestive system to cardiovascular circulation, the immune system and the central nervous system. Interestingly, the ability of dairy proteins to modulate metabolism and appetite has recently been reported. The ghrelin receptor (GHSR-1a) is a G-protein coupled receptor which plays a key role in the regulation of food intake. Pharmacological manipulation of the growth hormone secretagogue receptor-type 1a (GHSR-1a) receptor has therefore received a lot of attention as a strategy to combat disorders of appetite and body weight, including age-related malnutrition and the progressive muscle wasting syndrome known as cachexia. In this study, a milk protein-derivative is shown to increase GHSR-1a-mediated intracellular calcium signalling in a concentration-dependent manner in vitro. Significant increases in calcium mobilisation were also observed in a cultured neuronal cell line heterologously expressing the GHS-R1a. In addition, both additive and synergistic effects were observed following co-exposure of GHSR-1a to both the hydrolysate and ghrelin. Subsequent in vivo studies monitored standard chow intake in healthy male and female Sprague-Dawley rats after dosing with the casein hydrolysate (CasHyd). Furthermore, the provision of gastro-protected oral delivery to the bioactive in vivo may aid in the progression of in vitro efficacy to in vivo functionality. In summary, this study reports a ghrelin-stimulating bioactive peptide mixture (CasHyd) with potent effects in vitro. It also provides novel and valuable translational data supporting the potential role of CasHyd as an appetite-enhancing bioactive. Further mechanistic studies are required in order to confirm efficacy as a ghrelinergic bioactive in susceptible population groups. Full article
(This article belongs to the Special Issue Peptides for Health Benefits)
Figures

Graphical abstract

Open AccessArticle Therapeutic Peptide Amphiphile as a Drug Carrier with ATP-Triggered Release for Synergistic Effect, Improved Therapeutic Index, and Penetration of 3D Cancer Cell Spheroids
Int. J. Mol. Sci. 2018, 19(9), 2773; https://doi.org/10.3390/ijms19092773
Received: 26 July 2018 / Revised: 10 September 2018 / Accepted: 12 September 2018 / Published: 14 September 2018
PDF Full-text (3431 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Despite the great progress in the field of drug delivery systems for cancer treatment over the last decade, many challenges still lie ahead, such as low drug loading, deep penetration of tumors, side effects, and the development of drug resistance. A class of
[...] Read more.
Despite the great progress in the field of drug delivery systems for cancer treatment over the last decade, many challenges still lie ahead, such as low drug loading, deep penetration of tumors, side effects, and the development of drug resistance. A class of cationic membrane lytic peptides has shown potential as an anticancer agent by inducing cancer cell death via membrane disruption; meanwhile, their intrinsic selectivity renders them as having low cytotoxicity towards noncancerous cells. Here, we report the use of a cationic peptide amphiphile (PA), named PAH6, to load doxorubicin (Dox) that is intercalated in an ATP-binding aptamer-incorporated DNA scaffold. The PA contains a cationic lytic sequence, (KLAKLAK)2, a polyhistidine segment for the “proton sponge” effect, and a hydrophobic alkyl tail to drive the self-assembly. Dox-loaded DNA was found to form a spherical nanocomplex (NC) with PAH6 with particle sizes below 100 nm at various ratios. Since the carrier PAH6 is also a therapeutic agent, the drug loadings of the NC reached up to ~86% within the ratios we tested, and Dox was released from the NC in an ATP-rich environment. In vitro studies indicate that the presence of PAH6 could permeabilize cell membranes and kill cells through fast membrane disruption and depolarization of mitochondrial membranes. The cytotoxicity tests were conducted using A549 nonsmall cell lung cancer cells and NIH-3T3 fibroblast cells. PAH6 showed selectivity towards A549 cells. Significantly, the Dox-DNA/PAH6 NC exhibited a synergistic effect against A549 cells, with the IC50 decreased up to ~90% for Dox and ~69% for PAH6 when compared to the IC50 values of the two components, respectively. Furthermore, the selectivity of PAH6 conferred to the complex an improved therapeutic index between A549 and NIH-3T3 cells. A 3D-cultured A549 spheroid model was adopted to test the capability of Dox-DNA/PAH6 for tumor penetration. The PAH6 or Dox-DNA/PAH6 complex was found to break the spheroids into pieces, while Dox-treated spheroids maintained their shapes. In summary, this work provides a new strategy for constructing nanomedicines using therapeutic agents to meet the features required by anticancer treatment. Full article
(This article belongs to the Special Issue Peptides for Health Benefits)
Figures

Graphical abstract

Open AccessArticle A Synthetic Peptide AWRK6 Alleviates Lipopolysaccharide-Induced Liver Injury
Int. J. Mol. Sci. 2018, 19(9), 2661; https://doi.org/10.3390/ijms19092661
Received: 24 July 2018 / Revised: 24 August 2018 / Accepted: 5 September 2018 / Published: 7 September 2018
PDF Full-text (3325 KB) | HTML Full-text | XML Full-text
Abstract
During lipopolysaccharide (LPS)-induced sepsis, the liver plays central roles in toxins phagocytosis and clearance to protect the whole body. The liver cells were constantly irritated by LPS which leads to liver injury. While most anti-LPS agents showed little clinical activity against LPS-induced liver
[...] Read more.
During lipopolysaccharide (LPS)-induced sepsis, the liver plays central roles in toxins phagocytosis and clearance to protect the whole body. The liver cells were constantly irritated by LPS which leads to liver injury. While most anti-LPS agents showed little clinical activity against LPS-induced liver injury. Here, the protective effects of the synthetic peptide AWRK6 against LPS-induced liver injury have been investigated in vivo and in vitro. In mice liver homogenate, LPS administration elevated ALT (alanine aminotransferase), iNOS (inducible nitric oxide synthase) and repressed SOD (superoxide dismutase) activities and these changes were remarkably reversed by AWRK6. Histologically, AWRK6 effectively alleviated the histological changes and repressed LPS-induced neutrophils infiltration. By TUNEL assay on liver sections, AWRK6 was proven to inhibit apoptosis induced by LPS in mice livers, which was also verified by the protein levels of cleaved-caspase 9, Bax and Bcl-2. In addition, by in vitro study using HepG2 cells, AWRK6 was found to recover the LPS-reduced cell viability and reduce LPS-induced apoptosis. For mechanisms, AWRK6 was demonstrated to alleviate the LPS-induced phosphorylation of ERK, JNK and p38 MAPK, indicating the involvement of MAPKs in the protection of AWRK6 against liver injury. In summary, we have found the synthetic peptide AWRK6 as a promising novel agent for LPS-induced liver injury, by inhibiting cell apoptosis through MAPK signaling pathways, which might bring new strategies for the treatment of acute and chronic liver injuries. Full article
(This article belongs to the Special Issue Peptides for Health Benefits)
Figures

Graphical abstract

Open AccessArticle Antioxidant Properties of Buffalo-Milk Dairy Products: A β-Lg Peptide Released after Gastrointestinal Digestion of Buffalo Ricotta Cheese Reduces Oxidative Stress in Intestinal Epithelial Cells
Int. J. Mol. Sci. 2018, 19(7), 1955; https://doi.org/10.3390/ijms19071955
Received: 13 June 2018 / Revised: 26 June 2018 / Accepted: 3 July 2018 / Published: 4 July 2018
PDF Full-text (1775 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Redox signaling regulates different gastrointestinal (G.I.) epithelium functions. At the intestinal level, the loss of redox homeostasis in intestinal epithelial cells (IECs) is responsible for the pathogenesis and development of a wide diversity of G.I. disorders. Thus, the manipulation of oxidative stress in
[...] Read more.
Redox signaling regulates different gastrointestinal (G.I.) epithelium functions. At the intestinal level, the loss of redox homeostasis in intestinal epithelial cells (IECs) is responsible for the pathogenesis and development of a wide diversity of G.I. disorders. Thus, the manipulation of oxidative stress in IECs could represent an important pharmacological target for different diseases. In this study, peptides released from in vitro gastro intestinal digestion of different buffalo-milk commercial dairy products were identified and evaluated for their bioactive properties. In particular, six G.I. digests of dairy products were tested in a model of oxidative stress for IECs. Among them, buffalo ricotta cheese was the most active and the presence of an abundant β-lactoglobulin peptide (YVEELKPTPEGDL, f:60-72) was also revealed. The antioxidant potential of the identified peptide was also evaluated in a model of hydrogen peroxide (H2O2)-induced oxidative stress in the IEC-6 cell line. The peptide was able to reduce ROS release, while, on the other hand, it increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activation and the expression of antioxidant cytoprotective factors, such as heme oxygenase 1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO1), and superoxide dismutase (SOD). These results indicate that buffalo ricotta cheese-isolated peptide could have potential in the treatment of some gastrointestinal disorders. Full article
(This article belongs to the Special Issue Peptides for Health Benefits)
Figures

Graphical abstract

Open AccessArticle Amyloid Beta Peptide Is Released during Thrombosis in the Skin
Int. J. Mol. Sci. 2018, 19(6), 1705; https://doi.org/10.3390/ijms19061705
Received: 3 April 2018 / Revised: 4 June 2018 / Accepted: 6 June 2018 / Published: 8 June 2018
PDF Full-text (7898 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
While it is known that amyloid beta (Aβ) deposits are found in different tissues of both Alzheimer’s disease (AD) patients and healthy individuals, there remain questions about the physiological role of these deposits, the origin of the Aβ peptide, and the mechanisms of
[...] Read more.
While it is known that amyloid beta (Aβ) deposits are found in different tissues of both Alzheimer’s disease (AD) patients and healthy individuals, there remain questions about the physiological role of these deposits, the origin of the Aβ peptide, and the mechanisms of its localization to the tissues. Using immunostaining with specific antibodies, as well as enzyme-linked immunosorbent assay, this study demonstrated Aβ40 peptide accumulation in the skin during local experimental photothrombosis in mice. Specifically, Aβ peptide accumulation was concentrated near the dermal blood vessels in thrombotic skin. It was also studied whether the released peptide affects microorganisms. Application of Aβ40 (4 µM) to the external membrane of yeast cells significantly increased membrane conductance with no visible effect on mouse host cells. The results suggest that Aβ release in the skin is related to skin injury and thrombosis, and occurs along with clotting whenever skin is damaged. These results support the proposition that Aβ release during thrombosis serves as part of a natural defense against infection. Full article
(This article belongs to the Special Issue Peptides for Health Benefits)
Figures

Figure 1

Open AccessArticle Tryptophan-Containing Dual Neuroprotective Peptides: Prolyl Endopeptidase Inhibition and Caenorhabditis elegans Protection from β-Amyloid Peptide Toxicity
Int. J. Mol. Sci. 2018, 19(5), 1491; https://doi.org/10.3390/ijms19051491
Received: 16 April 2018 / Revised: 9 May 2018 / Accepted: 14 May 2018 / Published: 16 May 2018
PDF Full-text (8343 KB) | HTML Full-text | XML Full-text
Abstract
Neuroprotective peptides represent an attractive pharmacological strategy for the prevention or treatment of age-related diseases, for which there are currently few effective therapies. Lactoferrin (LF)-derived peptides (PKHs) and a set of six rationally-designed tryptophan (W)-containing heptapeptides (PACEIs) were characterized as prolyl endopeptidase (PEP)
[...] Read more.
Neuroprotective peptides represent an attractive pharmacological strategy for the prevention or treatment of age-related diseases, for which there are currently few effective therapies. Lactoferrin (LF)-derived peptides (PKHs) and a set of six rationally-designed tryptophan (W)-containing heptapeptides (PACEIs) were characterized as prolyl endopeptidase (PEP) inhibitors, and their effect on β-amyloid peptide (Aβ) toxicity in a Caenorhabditis elegans model of Alzheimer’s disease (AD) was evaluated. Two LF-derived sequences, PKH8 and PKH11, sharing a W at the C-terminal end, and the six PACEI heptapeptides (PACEI48L to PACEI53L) exhibited significant in vitro PEP inhibition. The inhibitory peptides PKH11 and PACEI50L also alleviated Aβ-induced paralysis in the in vivo C. elegans model of AD. Partial or total loss of the inhibitory effect on PEP was achieved by the substitution of W residues in PKH11 and PACEI50L and correlated with the loss of protection against Aβ toxicity, pointing out the relevance of W on the neuroprotective activity. Further experiments suggest that C. elegans protection might not be mediated by an antioxidant mechanism but rather by inhibition of Aβ oligomerization and thus, amyloid deposition. In conclusion, novel natural and rationally-designed W-containing peptides are suitable starting leads to design effective neuroprotective agents. Full article
(This article belongs to the Special Issue Peptides for Health Benefits)
Figures

Graphical abstract

Open AccessArticle AWRK6, A Synthetic Cationic Peptide Derived from Antimicrobial Peptide Dybowskin-2CDYa, Inhibits Lipopolysaccharide-Induced Inflammatory Response
Int. J. Mol. Sci. 2018, 19(2), 600; https://doi.org/10.3390/ijms19020600
Received: 14 January 2018 / Revised: 11 February 2018 / Accepted: 13 February 2018 / Published: 17 February 2018
Cited by 4 | PDF Full-text (3887 KB) | HTML Full-text | XML Full-text
Abstract
Lipopolysaccharides (LPS) are major outer membrane components of Gram-negative bacteria and produce strong inflammatory responses in animals. Most antibiotics have shown little clinical anti-endotoxin activity while some antimicrobial peptides have proved to be effective in blocking LPS. Here, the anti-LPS activity of the
[...] Read more.
Lipopolysaccharides (LPS) are major outer membrane components of Gram-negative bacteria and produce strong inflammatory responses in animals. Most antibiotics have shown little clinical anti-endotoxin activity while some antimicrobial peptides have proved to be effective in blocking LPS. Here, the anti-LPS activity of the synthetic peptide AWRK6, which is derived from antimicrobial peptide dybowskin-2CDYa, has been investigated in vitro and in vivo. The positively charged α-helical AWRK6 was found to be effective in blocking the binding of LBP (LPS binding protein) with LPS in vitro using ELISA. In a murine endotoxemia model, AWRK6 offered satisfactory protection efficiency against endotoxemia death, and the serum levels of LPS, IL-1β, IL-6, and TNF-α were found to be attenuated using ELISA. Further, histopathological analysis suggested that AWRK6 could improve the healing of liver and lung injury in endotoxemia mice. The results of real-time PCR and Western blotting showed that AWRK6 significantly reversed LPS-induced TLR4 overexpression and IκB depression, as well as the enhanced IκB phosphorylation. Additionally, AWRK6 did not produce any significant toxicity in vivo and in vitro. In summary, AWRK6 showed efficacious protection from LPS challenges in vivo and in vitro, by blocking LPS binding to LBP, without obvious toxicity, providing a promising strategy against LPS-induced inflammatory responses. Full article
(This article belongs to the Special Issue Peptides for Health Benefits)
Figures

Graphical abstract

Review

Jump to: Research

Open AccessReview Peptides as Therapeutic Agents for Inflammatory-Related Diseases
Int. J. Mol. Sci. 2018, 19(9), 2714; https://doi.org/10.3390/ijms19092714
Received: 28 July 2018 / Revised: 7 September 2018 / Accepted: 9 September 2018 / Published: 11 September 2018
PDF Full-text (975 KB) | HTML Full-text | XML Full-text
Abstract
Inflammation is a physiological mechanism used by organisms to defend themselves against infection, restoring homeostasis in damaged tissues. It represents the starting point of several chronic diseases such as asthma, skin disorders, cancer, cardiovascular syndrome, arthritis, and neurological diseases. An increasing number of
[...] Read more.
Inflammation is a physiological mechanism used by organisms to defend themselves against infection, restoring homeostasis in damaged tissues. It represents the starting point of several chronic diseases such as asthma, skin disorders, cancer, cardiovascular syndrome, arthritis, and neurological diseases. An increasing number of studies highlight the over-expression of inflammatory molecules such as oxidants, cytokines, chemokines, matrix metalloproteinases, and transcription factors into damaged tissues. The treatment of inflammatory disorders is usually linked to the use of unspecific small molecule drugs that can cause undesired side effects. Recently, many efforts are directed to develop alternative and more selective anti-inflammatory therapies, several of them imply the use of peptides. Indeed, peptides demonstrated as elected lead compounds toward several targets for their high specificity as well as recent and innovative synthetic strategies. Several endogenous peptides identified during inflammatory responses showed anti-inflammatory activities by inhibiting, reducing, and/or modulating the expression and activity of mediators. This review aims to discuss the potentialities and therapeutic use of peptides as anti-inflammatory agents in the treatment of different inflammation-related diseases and to explore the importance of peptide-based therapies. Full article
(This article belongs to the Special Issue Peptides for Health Benefits)
Figures

Graphical abstract

Open AccessReview Regenerative and Protective Actions of the GHK-Cu Peptide in the Light of the New Gene Data
Int. J. Mol. Sci. 2018, 19(7), 1987; https://doi.org/10.3390/ijms19071987
Received: 18 May 2018 / Revised: 25 June 2018 / Accepted: 2 July 2018 / Published: 7 July 2018
PDF Full-text (234 KB) | HTML Full-text | XML Full-text
Abstract
The human peptide GHK (glycyl-l-histidyl-l-lysine) has multiple biological actions, all of which, according to our current knowledge, appear to be health positive. It stimulates blood vessel and nerve outgrowth, increases collagen, elastin, and glycosaminoglycan synthesis, as well as supports
[...] Read more.
The human peptide GHK (glycyl-l-histidyl-l-lysine) has multiple biological actions, all of which, according to our current knowledge, appear to be health positive. It stimulates blood vessel and nerve outgrowth, increases collagen, elastin, and glycosaminoglycan synthesis, as well as supports the function of dermal fibroblasts. GHK’s ability to improve tissue repair has been demonstrated for skin, lung connective tissue, boney tissue, liver, and stomach lining. GHK has also been found to possess powerful cell protective actions, such as multiple anti-cancer activities and anti-inflammatory actions, lung protection and restoration of chronic obstructive pulmonary disease (COPD) fibroblasts, suppression of molecules thought to accelerate the diseases of aging such as NFκB, anti-anxiety, anti-pain and anti-aggression activities, DNA repair, and activation of cell cleansing via the proteasome system. Recent genetic data may explain such diverse protective and healing actions of one molecule, revealing multiple biochemical pathways regulated by GHK. Full article
(This article belongs to the Special Issue Peptides for Health Benefits)
Back to Top