Special Issue "Feature Papers in Environmental Science and Engineering"

A special issue of International Journal of Environmental Research and Public Health (ISSN 1660-4601). This special issue belongs to the section "Environmental Science and Engineering".

Deadline for manuscript submissions: 31 December 2020.

Special Issue Editors

Prof. Dr. Yu-Pin Lin
Website
Guest Editor
Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
Interests: spatial statistics and modeling in environmental and ecological systems; applications of GIS and remote sensing in environmental and ecological systems; freshwater monitoring and modeling; optimal environmental monitoring network design; landscape ecology in land-use management and planning; ecohydrology; groundwater modeling; land-use planning and modeling; soil heavy metal pollution assessment; multiscale analysis in environmental and ecological systems; system dynamic modeling in environmental systems; ecosystem services; system dynamic modeling; optimization techniques
Special Issues and Collections in MDPI journals
Dr. Marta Otero
Website
Guest Editor
Universidade de Aveiro, Department of Environment and Planning, Aveiro, Portugal
Interests: pollution and contamination of waters, soils and sediments; decontamination and purification of water: global treatment systems; sustainable treatment processes; clean and alternative technologies; biowastes management and valorization; new materials: production, characterization and utilization; thermal analysis
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

We are pleased to announce the Special Issue entitled “Feature Papers in Environmental Science and Engineering". This is a collection of highly relevant papers (original research articles or comprehensive review papers) published in open-access form by editorial board members, or prominent scholars invited by the board and the editorial office. This Special Issue aims to provide an up-to-date and comprehensive view on the state of the art in environmental science and technology. We consider this issue to be the best forum to disseminate important research findings and share innovative ideas in the field.

We hope this topic is of interest to you and  invite you to send a tentative title and short abstract to our editorial office ([email protected]) for evaluation before submission. Please note that selected papers are still subject to thorough peer review.

Prof. Dr. Yu-Pin Lin
Dr. Marta Otero
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Environmental Research and Public Health is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2300 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • environmental pollution and remediation
  • environmental quality and treatment
  • environmental modeling and exposure or risk assessment
  • environmental engineering techniques in public health
  • environmental toxicological assessment
  • environmental systems and public health
  • environmental management and public health
  • environmental governance and public health.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Green Microalgae Scenedesmus Obliquus Utilization for the Adsorptive Removal of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) from Water Samples
Int. J. Environ. Res. Public Health 2020, 17(10), 3707; https://doi.org/10.3390/ijerph17103707 - 25 May 2020
Cited by 1
Abstract
In view of the valorisation of the green microalga Scenedesmus obliquus biomass, it was used for the biosorption of two nonsteroidal anti-inflammatory drugs, namely salicylic acid and ibuprofen, from water. Microalgae biomass was characterized, namely by the determination of the point of zero [...] Read more.
In view of the valorisation of the green microalga Scenedesmus obliquus biomass, it was used for the biosorption of two nonsteroidal anti-inflammatory drugs, namely salicylic acid and ibuprofen, from water. Microalgae biomass was characterized, namely by the determination of the point of zero charge (pHPZC), by Fourier transform infrared (FT-IR) analysis, simultaneous thermal analysis (STA) and scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS). Kinetic and equilibrium batch experiments were carried out and results were found to fit the pseudo-second order equation and the Langmuir isotherm model, respectively. The Langmuir maximum capacity determined for salicylic acid (63 mg g−1) was larger than for ibuprofen (12 mg g−1), which was also verified for a commercial activated carbon used as reference (with capacities of 250 and 147 mg g−1, respectively). For both pharmaceuticals, the determination of thermodynamic parameters allowed us to infer that adsorption onto microalgae biomass was spontaneous, favourable and exothermic. Furthermore, based on the biomass characterization after adsorption and energy associated with the process, it was deduced that the removal of salicylic acid and ibuprofen by Scenedesmus obliquus biomass occurred by physical interaction. Full article
(This article belongs to the Special Issue Feature Papers in Environmental Science and Engineering)
Show Figures

Graphical abstract

Open AccessArticle
Horizontal Flow Constructed Wetland for Greywater Treatment and Reuse: An Experimental Case
Int. J. Environ. Res. Public Health 2020, 17(7), 2317; https://doi.org/10.3390/ijerph17072317 - 30 Mar 2020
Cited by 1
Abstract
In the coming years, water stress is destined to worsen considering that the consumption of water is expected to increase significantly, and climate change is expected to become more evident. Greywater (GW) has been studied as an alternative water source in arid and [...] Read more.
In the coming years, water stress is destined to worsen considering that the consumption of water is expected to increase significantly, and climate change is expected to become more evident. Greywater (GW) has been studied as an alternative water source in arid and semiarid zones. Although there is no single optimal solution in order to treat GW, constructed wetlands proved to be effective. In this paper, the results of the treatment of a real GW by a horizontal flow constructed wetland (HFCW) for more than four months are shown. In the preliminary laboratory-scale plant, Phragmites australis, Carex oshimensis and Cyperus papyrus were tested separately and showed very similar results. In the second phase, pilot-scale tests were conducted to confirm the performance at a larger scale and evaluate the influence of hydraulic retention time, obtaining very high removal yields on turbidity (>92%), total suspended solids (TSS) (>85%), chemical oxygen demand (COD) (>89%), and five-day biological oxygen demand (BOD5) (>88%). Based on the results of the pilot-scale HFCW, a comparison with international recommendations by World Health Organization and European Union is discussed. Full article
(This article belongs to the Special Issue Feature Papers in Environmental Science and Engineering)
Show Figures

Figure 1

Open AccessArticle
The BioChemical Clogging of Landfill Leachate Collection System: Based on Laboratory Studies
Int. J. Environ. Res. Public Health 2020, 17(7), 2299; https://doi.org/10.3390/ijerph17072299 - 29 Mar 2020
Abstract
Leachate collection system (LCS) clogging is a common operational problem in municipal solid waste (MSW) landfills in China, which can result in high leachate levels that threaten the safety of landfill operations and subsequently increase the leachate leakage risk. In our previous research, [...] Read more.
Leachate collection system (LCS) clogging is a common operational problem in municipal solid waste (MSW) landfills in China, which can result in high leachate levels that threaten the safety of landfill operations and subsequently increase the leachate leakage risk. In our previous research, a filtration test was conducted and the physical clogging effect was evaluated. To fully analyze the LCS failure, in this study, a set of column experiments were carried out to investigate the biochemical clogging development and mechanisms. Results showed that the biofilm and deposited CaCO3 composed the primary clogging materials. During the experimental period, the hydraulic conductivities in simulated gravel and nonwoven geotextile drainage layers were observed (91.7% and five orders of magnitude reduction), and decreased to 10−4 and 10−8 m s−1, respectively. Therefore, the significance of the geotextile layer in LCS designing needs to be reconsidered. The biochemical clogging was positively correlated with volatile fatty acids (VFAs), and Ca2+ loading and the Ca2+ played the dominant role. Meanwhile, an improved method for analyzing biochemical clogging development was proposed. Full article
(This article belongs to the Special Issue Feature Papers in Environmental Science and Engineering)
Show Figures

Figure 1

Open AccessArticle
Biosurfactant Production in Sub-Oxic Conditions Detected in Hydrocarbon-Degrading Isolates from Marine and Estuarine Sediments
Int. J. Environ. Res. Public Health 2020, 17(5), 1746; https://doi.org/10.3390/ijerph17051746 - 07 Mar 2020
Abstract
Hydrocarbon bioremediation in anoxic sediment layers is still challenging not only because it involves metabolic pathways with lower energy yields but also because the production of biosurfactants that contribute to the dispersion of the pollutant is limited by oxygen availability. This work aims [...] Read more.
Hydrocarbon bioremediation in anoxic sediment layers is still challenging not only because it involves metabolic pathways with lower energy yields but also because the production of biosurfactants that contribute to the dispersion of the pollutant is limited by oxygen availability. This work aims at screening populations of culturable hydrocarbonoclastic and biosurfactant (BSF) producing bacteria from deep sub-seafloor sediments (mud volcanos from Gulf of Cadiz) and estuarine sub-surface sediments (Ria de Aveiro) for strains with potential to operate in sub-oxic conditions. Isolates were retrieved from anaerobic selective cultures in which crude oil was provided as sole carbon source and different supplements were provided as electron acceptors. Twelve representative isolates were obtained from selective cultures with deep-sea and estuary sediments, six from each. These were identified by sequencing of 16S rRNA gene fragments belonging to Pseudomonas, Bacillus, Ochrobactrum, Brevundimonas, Psychrobacter, Staphylococcus, Marinobacter and Curtobacterium genera. BSF production by the isolates was tested by atomized oil assay, surface tension measurement and determination of the emulsification index. All isolates were able to produce BSFs under aerobic and anaerobic conditions, except for isolate DS27 which only produced BSF under aerobic conditions. These isolates presented potential to be applied in bioremediation or microbial enhanced oil recovery strategies under conditions of oxygen limitation. For the first time, members of Ochrobactrum, Brevundimonas, Psychrobacter, Staphylococcus, Marinobacter and Curtobacterium genera are described as anaerobic producers of BSFs. Full article
(This article belongs to the Special Issue Feature Papers in Environmental Science and Engineering)
Show Figures

Figure 1

Review

Jump to: Research

Open AccessReview
Biotic and Abiotic Factors Influencing Arsenic Biogeochemistry and Toxicity in Fluvial Ecosystems: A Review
Int. J. Environ. Res. Public Health 2020, 17(7), 2331; https://doi.org/10.3390/ijerph17072331 - 30 Mar 2020
Abstract
This review is focused on the biogeochemistry of arsenic in freshwaters and, especially, on the key role that benthic microalgae and prokaryotic communities from biofilms play together in through speciation, distribution, and cycling. These microorganisms incorporate the dominant iAs (inorganic arsenic) form and [...] Read more.
This review is focused on the biogeochemistry of arsenic in freshwaters and, especially, on the key role that benthic microalgae and prokaryotic communities from biofilms play together in through speciation, distribution, and cycling. These microorganisms incorporate the dominant iAs (inorganic arsenic) form and may transform it to other arsenic forms through metabolic or detoxifying processes. These transformations have a big impact on the environmental behavior of arsenic because different chemical forms exhibit differences in mobility and toxicity. Moreover, exposure to toxicants may alter the physiology and structure of biofilms, leading to changes in ecosystem function and trophic relations. In this review we also explain how microorganisms (i.e., biofilms) can influence the effects of arsenic exposure on other key constituents of aquatic ecosystems such as fish. At the end, we present two real cases of fluvial systems with different origins of arsenic exposure (natural vs. anthropogenic) that have improved our comprehension of arsenic biogeochemistry and toxicity in freshwaters, the Pampean streams (Argentina) and the Anllóns River (Galicia, Spain). We finish with a briefly discussion of what we consider as future research needs on this topic. This work especially contributes to the general understanding of biofilms influencing arsenic biogeochemistry and highlights the strong impact of nutrient availability on arsenic toxicity for freshwater (micro) organisms. Full article
(This article belongs to the Special Issue Feature Papers in Environmental Science and Engineering)
Show Figures

Figure 1

Back to TopTop