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Abstract: Livestock production systems generate nuisance odor and gaseous emissions affecting
local communities and regional air quality. There are also concerns about the occupational health and
safety of farmworkers. Proven mitigation technologies that are consistent with the socio-economic
challenges of animal farming are needed. We have been scaling up the photocatalytic treatment of
emissions from lab-scale, aiming at farm-scale readiness. In this paper, we present the design, testing,
and commissioning of a mobile laboratory for on-farm research and demonstration of performance
in simulated farm conditions before testing to the farm. The mobile lab is capable of treating up to
1.2 m3/s of air with titanium dioxide, TiO2-based photocatalysis, and adjustable UV-A dose based on
LED lamps. We summarize the main technical requirements, constraints, approach, and performance
metrics for a mobile laboratory, such as the effectiveness (measured as the percent reduction) and
cost of photocatalytic treatment of air. The commissioning of all systems with standard gases resulted
in ~9% and 34% reduction of ammonia (NH3) and butan-1-ol, respectively. We demonstrated the
percent reduction of standard gases increased with increased light intensity and treatment time.
These results show that the mobile laboratory was ready for on-farm deployment and evaluating the
effectiveness of UV treatment.

Keywords: air pollution control; air quality; volatile organic compounds; odor; environmental
technology; advanced oxidation; UV-A; titanium dioxide

1. Introduction

Over the past few decades, livestock and poultry farmers have adopted new tech-
nology and have scaled up farming operations to meet society’s demand for high-quality
meats, milk, eggs, and by-products. Large confined animal feeding operations (CAFOs)
are common in many parts of the world. This has generated profits and jobs, but the
environmental problems associated with local air quality have been exacerbated. These
unwanted side-effects of animal production require sustainable solutions for the benefit of
workers, rural communities, and the industry.

The U.S. National Air Emissions Monitoring Study (NAEMS) developed an accurate
baseline emission database for CAFO regulation by the US EPA through the notification
provisions of the Emergency Planning and Community Right-to-Know Act (EPCRA) and
the Clean Air Act (CAA) [1,2]. NAEMS and the companion projects focused on monitoring
emissions of odor, volatile odorous compounds (VOCs), ammonia (NH3), hydrogen sulfide
(H2S), carbon dioxide (CO2), methane (CH4), the total suspended particulates (TSP), PM10,
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and PM2.5 in the egg, broiler, dairy, and swine production industries [1–7]. While the
NAEMS can be used as a standard and a source of pollutants emitted from farms, there is
still a need to develop and test mitigation technologies that are consistent with the socio-
economic reality of CAFOs. Mitigation technologies for gaseous emissions from livestock
operations could be classified amongst approximately 12 approaches, including facility
barriers, biofilters, chimneys, diet manipulation, electrostatic precipitation, landscaping, oil
sprinkling, pit ventilation, scrubbers, siting, urine (or feces) segregation, and UV light [8].
The overview of each mitigation technology and citations in research papers is summarized
elsewhere [8,9].

Farm-scale performance data are a prerequisite for the adoption of proposed new
technology. Farmers need proven technologies before agreeing on farm-scale trials. Well-
intentioned, laboratory-scale experimentation cannot fully duplicate the on-farm variability.
Maurer et al. (2016) summarized the current state of adoption of technologies for mitigation
of gaseous emissions from livestock agriculture [9]. Only ~25% of mitigation technologies
developed and tested in lab-scale have been tested in real-farm conditions. We have been
scaling up the photocatalytic treatment of emissions from the lab- to pilot-scales, aiming
at farm-scale readiness [10–17]. Several other research teams have also been testing UV
photocatalytic technology [18–21] for the mitigation of gaseous emissions from livestock
operations.

UV light treatment is a promising technology for mitigating gaseous pollutants.
The use of either shorter UV wavelengths or a photocatalyst improves the mitigation
effects [12,14,15]. In addition, catalytic coating type, coating dose, UV dose, relative hu-
midity, temperature, and dust accumulation (on photocatalyst) are important variables
to consider and optimize for improved reduction of targeted odorous gases [12,17]. The
photocatalytic treatment has been found to show a significant reduction in odorous VOCs
even after short effective treatment times that are consistent with fast-moving ventilation
air on farms [10,15]. Previous studies have reported the varying effect of reducing NH3,
H2S, greenhouse gases, VOCs, odor, and particulate matter (PM) with UV in livestock farm
conditions [9–20].

Only a selected few studies reported on testing UV technology on a pilot scale [11,13,15]
or farm-scale [18,19]. For that reason, there is a lack of information on UV doses and cost to
reduce odorous gases in farm-scale conditions. In addition, depending on the wavelengths
of UV light, direct exposure to the light or its by-products (e.g., ozone) generated by shorter
wavelength UV (e.g., 254 nm) can be risky to workers and livestock. Our previous research
showed that the intrinsically safer UV-A (365 nm) could be effective in treating NH3, N2O,
ozone, selected VOCs, and odor on lab- and pilot-scales [11–13].

Therefore, we hypothesize that the UV-A based photocatalysis can be effective in
reducing selected gaseous emissions at a much larger scale. A UV-A mobile lab is a
research tool that could be used to perform on-site trials at different farms and industrial
emissions sources to demonstrate UV-A performance at realistic conditions. The farmers
and industry appreciate these types of trials that do not disrupt current operations while
providing necessary decision-making data. This was the motivation behind the design
of a self-contained mobile laboratory that can directly sample the gases from a livestock
farm and carry out the evaluation of photocatalysis UV treatment and cost prior to the next
logical step, i.e., scaling up and installation of UV treatment on a farm or other emissions
source.

The objective of this research was to design and test a mobile laboratory for the
mitigation of gaseous emissions from livestock barns with UV-A photocatalysis. To our
knowledge, this is the first study to evaluate the effect of UV-A photocatalysis treatment
under conditions similar to a livestock farm using a mobile laboratory of this type. We
summarize the main technical requirements, constraints, approach, and performance
metrics for the mobile laboratory, such as the effectiveness (measured as the percent
reduction) and cost of photocatalytic treatment of air. We provide the mitigation effect
for two representative odorous gases (NH3 and butan-1-ol) with the mobile laboratory. In
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addition, preliminary economic analysis for the cost of gaseous emissions treatment with
LED UV-A lights was provided.

2. Materials and Methods
2.1. Requirements for Testing UV Photocatalysis at the Mobile Laboratory

The mobile laboratory (7.2 m × 2.4 m × 2.4 m exterior dimensions) was designed to
evaluate the effectiveness of UV photocatalysis by directly connecting to the exhaust gases
emitted from the farm (Figure 1).
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Figure 1. Schematic of a flow-through UV mobile laboratory with an upstream filtration unit. Brown
arrow: inlet of untreated air; red arrow: inlet air with reduced particle matter load (after filtration);
blue arrow: UV-treated air. The untreated air (brown arrow) could be either standard gas (illustrated
by the green compressed gas cylinder), a mixture of standard gases, surrogate odorous air, exhaust
from livestock barn, or other air pollution source. Yellow: gas sampling ports used for evaluation of
treatment efficiency. Air moves in a serpentine pattern through a series of twelve ‘chambers,’ each
equipped with UV sources (shown as the group of five vertical lamps) and clad with surface panels
coated with photocatalyst (TiO2).

The technical requirements and constraints for the mobile laboratory are summarized
in Table 1. It explains the approach, the performance metric, and the location of the detailed
description in the manuscript that addresses each of the five main requirements and
constraints. In summary, we have implemented: (1) construction of treatment chambers
capable of irradiating UV light and collecting real-time gas samples, (2) control of the UV
dose, (3) control of the airflow, (4) control of the photocatalyst dose, and (5) control of
airborne particulate matter.

2.2. Light Intensity Measurement

Light intensity was measured (Figure A3) with an ILT-1700 radiometer (International
Light Technologies, Peabody, MA, USA) equipped with an NS365 filter and SED033 detector
(International Light Technologies, Peabody, MA, USA). Prior to use, the radiometer and
sensor were sent to the manufacturer company (International Light Technologies, Peabody,
MA, USA) for factory calibration. For economic analysis, the electric power consumption
was measured using a wattage meter (P3, Lexington, NY, USA).
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Table 1. Requirements for the mobile laboratory to evaluate the effectiveness of UV photocatalysis at a farm-scale.
SM = Supplementary Materials.

Requirement Constraints Approach Performance Metric Detailed
Description

(1) Mobile lab
for on-site
testing of UV
treatment on
gaseous
emissions
from livestock
barns

Mobility Repurposed mobile trailer Can be towed on public
roads

Figure 1

Figure A1

SM 1

The safe work environment
for lab personnel to work

on-site year-round

(a) Space divided of UV
treatment chamber and work
area for samples

(a) Can be safely operated
(e.g., collecting data)
during UV treatment Figure 1

Figure A6
Figure A7

SM 1, 6, and 8

(b) Negative-pressure ventilation
inside the UV treatment area

(b) Maintaining room
temperature inside the
work area regardless of
ambient air

(c) Heating, air condition

(d) Airtight UV treatment
chamber

(e) Rodent-proof

Installation of coated FRP for
photocatalytic reaction

Fixed the coated FRP to all
surfaces of the UV chamber with

a pushpin

Coated ~76% of the total
surface area in each

chamber with a
photocatalytic coating

SM 1

Connectivity to the air
pollution source

Large (dia = 0.5 m) flexible
ducting for easy connection to

barn exhaust fans

Figure A6
SM 1

SM 1

Safe routing of the excess of fan
exhaust

It cannot affect the barn fan
performance

‘Plug-and-play’ 110V power
management for 50 Amp lab

30 m (grade type) cable with
NEMA (type) plug

Sufficient, TiO2-coated
surface for photocatalysis

with UV light

Constructed vertical baffles
inside the UV treatment chamber SM 1 SM 1

(2) Control the
UV dose (via
lamps’ power)

Sufficient number of
installed lamps to facilitate
the photocatalysis reaction

Installed additional UV lamp
holders Can control UV dose

(~5.8 mJ/cm2, SM 3, 4, and 5)

Figure A2

measuring UV irradiance
Figure A4

SM 2

(3) Control the
volumetric
airflow

Ability to treat ~0.25 to
1.0 m3/s of air

(a) Installed two fans and 1
anemometer fan

Can control airflow from
~0.25 m3/s (535 CFM) to
~1.23 m3/s (2,600 CFM).

SM 6 and 8(b) Built a monitor system to see
the volumetric flow rate
measured by the anemometer
fan

(4) Control the
photocatalyst
dose

The necessity of coating TiO2
on the FPR surface

Coated through precise spray
control

Material and Method
Section 2.4

Discussion
Section 4.2

Appendix B

(5) Control
airborne
particulate
matter

The necessity to remove
airborne substances from the
incoming gases for accurate
investigation of the reduction

effect by photocatalysis

Installed the MERV filtration
unit

SM 7

Figure A5

SM 7

FRP = fiberglass reinforced plastic; NEMA = National Electrical Manufacturers Association; CFM = cubic feet per min; MERV = minimum
efficiency reporting value.
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2.3. Measurement of Standard Gases Concentration (NH3 and Butan-1-ol)

Two odorous gases were used for testing and commissioning. The butan-1-ol (a
representative standard gas for VOCs and a mild odorant) and NH3 concentrations were
measured in order to evaluate the percent reduction by UV photocatalysis treatment
(Figure 2). The calibrations for both standard gases were at R2 > 0.99.
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Figure 2. Calibration method for measuring targeted gas concentration. (1) Five standard gas
concentrations were prepared/diluted to be within the range of the target gas to be measured. (2)
Standard gas samples were analyzed with SPME-GC-MS or electrochemical gas sensors resulting in
a gas concentration calibration curve.

For NH3, standard gas and dry air were adjusted using a mass flow controller
(FMA5400A/5500A Series, OMEGA, Norwalk, CT, USA) to make five diluted gas samples
generally within the range of the target gas to be measured. In the case of NH3, diluted
samples were collected in a Tedlar bag, and the concentration was measured using the gas
monitoring system (OMS-300, Smart Control & Sensing Inc., Daejeon, Korea) equipped with
electrochemical gas sensors of Membrapor Co. (Wallisellen, Switzerland). The calibration
curve is drawn using the obtained voltage from the sensor and the known concentration of
the diluted sample (Figure 3).
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Figure 3. Calibration for real-time NH3 measurements.

Air samples for butan-1-ol measurements were collected using 1 L glass gas sampling
bulbs (Supelco, Bellefonte, PA, USA). Air samples were taken using a portable vacuum
sampling pump (Leland Legacy; SKC Inc., Eighty-Four, PA, USA) with a set flow rate of
5 L/min for 3 min. Chemical analyses were completed using a solid-phase microextraction
(SPME) (50/30 µm DVB/CAR/PDMS; 2 cm-long fibers, Supelco, Bellefonte, PA, USA)
using static extraction for 1 h at room temperature and gas chromatography-mass spec-
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trometry (GC-MS) system for analyses (Agilent 6890 GC; Microanalytics, Round Rock, TX,
USA). The calibration for butan-1-ol is shown in Figure 4.
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Figure 4. Calibration for butan-1-ol measurements.

2.4. Photocatalyst (TiO2) Coating

TiO2 coating was applied in the same way as in the previous study [11]. TiO2 coating
on the pre-cut panels for the UV reactor was carried out based on an application protocol
provided by PureTi (Cincinnati, OH, USA). In addition, training was provided by SATA
(Spring Valley, MN, USA) for accurate spraying control. The temperature (25 ◦C) and
relative humidity (40–45%) were adjusted to prevent instant evaporation of the sprayed
TiO2 solution (nanostructured anatase 10 µg/cm2 TiO2, PureTi, Cincinnati, OH, USA)
before application. After cleaning the surface of the panel, the TiO2 solution was sprayed.
The spray pressure was adjusted to 60 psi with a regulator from the compressor, and the
distance between the panel and the spray was ~0.15 m (6 in) at an angle of 90. Coated
panels were dried at room temperature for 3 days.

2.5. SEM-EDS Analysis of Photocatalyst Coating and Surfaces

The photocatalytic coating was analyzed to analyze the morphology and chemical
composition on the surface of common building materials used for livestock barn interi-
ors. Passive treatment of indoor air inside livestock facilities is the ultimate goal for UV
treatment. Thus, the surface analyses of how the TiO2 coating interacts with common
building materials is important, as the mitigation of emissions is, in part, driven by the pho-
tocatalyst integrity and uniformity. The scanning electron microscopy-energy-dispersive
X-ray spectroscopy (SEM-EDS) analyses were performed at the Materials Analysis and
Research Lab, Iowa State University. The SEM-EDS analysis was performed to analyze
the TiO2 coating morphology on the photocatalyst-coated surfaces. Samples coated TiO2
were additionally coated with 2 nm iridium for conductivity and were lightly sprayed
with canned air to remove loose dust particles before starting the analysis of SEM-EDS.
The samples were examined in an FEI Quanta-FEG 250™ SEM (FEI Company, Hillsboro,
OR, USA) 10 kV. A range of magnifications was used. The samples used the electrons
(S.E.) imaging and analyzed them in a high vacuum mode for improved resolution. Energy
Dispersive Spectroscopy (EDS) analysis was done using an Oxford Instruments Aztec
energy-dispersive spectrometer with an X-Max 80 light-element detector (80 mm2 active
areas) for elemental and chemical analysis of a sample surface. A beam current of ~0.5 nA
was used to generate an X-ray count rate of about 15k cps. X-ray maps of 256 × 244 pixels
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were collected for 10 min to show the distribution of the elements. That also produced a
“sum” spectrum showing the overall X-ray signal from the field of view.

In addition, samples used in the previous study [12] were analyzed to compare
whether there is a difference according to the material coated with the TiO2 photocatalyst.
For the TiO2 sample coated on the glass used in the previous lab-scale study, samples on
the glass were imaged with backscattered electrons (BSE), for which the brightness of the
signal correlates with the density/average atomic number of the material for checking
the TiO2 coating morphology according to the material coated with TiO2. In addition,
samples were analyzed in variable pressure mode, where 60–100 Pa of water vapor was
introduced into the chamber to dissipate the charge. Through this analysis, it was possible
to confirm the chemical composition, arrangement, and morphology of the TiO2-coated
sample surface.

2.6. Data Analysis–Effectiveness and Cost of Photocatalytic Treatment of Air

The overall mean percent reduction for each measured gas was estimated as:

% R = (Ccon − CTreat)/Ccon × 100 (1)

where: %R = percent reduction in gas concentrations during UV treatment.
CCon & CTreat = the mean measured concentrations in control and treated air, respec-

tively.
Measured gas concentrations were adjusted to standard conditions (defined as 1 atm,

273.15 K) and dry air using collected environmental data:

C = C′/(1 −W) × (P·MW)/(R·T) (2)

where: C = a standard dry concentration of measured gas (g/m3).
C’ = the mean measured gas concentration in control and treated air (mL/m3).
W = humidity ratio was calculated with Equation (4) [1,22,23].
MW = molecular weight of target gas (g/mol).
R = 0.082057 L·atm/(mol·K).
T = measured air temperature (K).
P = measured pressure (atm).
The measured treated airflow rate was also adjusted to standard dry conditions at

both control and treatment sampling locations:

Q = Q′ × (1 −W) × (P′ × 273.15 K)/(P × T) (3)

where: Q = dry standard airflow rate (m3/min).
Q’ = actual measured (humid) airflow rate (m3/min).
W = humidity ratio calculated with Equation (4) [22,23].
P’= actual pressure at the sampling point (atm).
P = standard pressure (atm).
The humidity ratio was estimated as:

W = 0.62198 × ϕ × ef(T)/[(Ps × 101325) − ϕ × ef(T)] (4)

where: W = humidity ratio (kg of water per kg of dry air).
Ps = pressure at the sampling location (atm).
ϕ = relative humidity (decimal).
For cases where T < 273.15 K [22,23]:

f(T) = c1/T + c2 + c3T + c4T2 + c5T3 + c6T4 + c7lnT
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For cases where T > 273.16 K [22,23]:

f(T) = c8/T + c9 + c10T + c11T2 + c12T3 + c13lnT

where: c1 = −5.565·103, c2 = 6.392, c3 = −9.678·10−3, c4 = 6.222·10−7, c5 = 2.075·10−9,
c6 = −9.484·10−13, c7 = 4.163, c8 =−5.800·103, c9 = 1.391, c10 =−4.864·10−2, c11 = 4.176·10−5,
c12 = −1.445·10−8, and c13 = 6.545.

Gas emissions were calculated as a product of measured gas concentrations and the
total airflow rate:

E = C × Q (5)

where: E = gas emissions (g/min) of a target pollutant.
C = the mean measured target pollutant gas concentration in control or treated stan-

dard dry air (g/m3).
Q = dry standard airflow rate (m3/min).
The electric energy consumption was calculated using the measured power consump-

tion of UV lamps during treatment. Electric energy consumption (kWh) during treatment
was calculated using:

EEC = P × ts/(3600 × 1000) (6)

where: EEC = electric energy consumption (kWh).
P = measured electric power consumption for the UV lamps turned ‘on’ during

treatment (W).
ts = treatment time for air in contact with the UV lamps that were turned ‘on’ inside

the mobile lab (s).
The mass of mitigated gas pollutant (M) with UV during given treatment time (ts)

was estimated by comparing gas emission rate (E) in treatment and control:

M = (Econ-Etreat) × ts/60 (7)

where: M = mass of mitigated gas pollutant (g).
Econ = emission rate at the ‘control’ sampling location.
Etreat = emission rate at the ‘treatment’ sampling location.
The electric energy of UV treatment (EE, kWh/g) was estimated as using electric

energy consumption (EEC) needed to mitigate a gas pollutant mass (M):

EE = EEC/M (8)

Finally, the estimated cost of electric energy (Cost) needed for UV treatment was estimated
using the mean cost ($/kWh) of rural energy in Iowa ($0.13/kWh, [24]):

Cost = EE × $0.13/kWh (9)

where: Cost = estimated cost of electric energy needed for UV treatment to mitigate a unit
mass of pollutants in the air ($/g).

UV dose was estimated using measured light intensity (I) at a specific UV wavelength
(mW/cm2) and treatment time (ts). Since the photocatalysis reaction is assumed to be the
main mechanism for the target gas mitigation, the light intensity irradiated on the TiO2
surface was used.

UV dose = I × ts (10)

where: UV Dose = energy of the UV light on the surface of photocatalyst (mJ/cm2).

2.7. Statistical Analysis

The program of R (version 3.6.2, R Studio, Boston, MA, USA) was used to analyze
the mitigation of target standard gases under the UV-A photocatalysis treatment. The
mitigation depending on parameters of UV dose and treatment time between control con-
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centration and treatment concentration was statistically analyzed using one-way ANOVA.
The statistical difference was confirmed by obtaining the p-value through the Tukey test. A
significant difference was defined for a p-value < 0.05 in this study.

3. Results
3.1. NH3 Percent Reduction in Treated Air–Effect of UV-A Dose Controlled by Treatment Time

The NH3 percent reduction (%R) was investigated by increasing the UV dose by
controlling the treatment time (Table 2). A 5% NH3 standard gas was injected into the
filtration unit inlet (Figure 1) and mixed with ambient air resulting in 67.8 ± 0.2 ppm at the
inlet to the mobile laboratory. Initial testing used 60 UV lamps installed in 12 chambers
(Figure 1); the NH3 reduction was investigated by sampling at three different treatment
times (from 29 to 57 s). The was no significant reduction in NH3 with the largest UV dose
tested (2.2 Mj/cm2). However, the measured concentrations in the control and treatment
were reproducible. This observation led us to explore increasing the UV dose by installing
additional UV lamps.

Table 2. Mitigation of NH3 concentration under UV-A photocatalysis with 60 lamps (2.2 mJ/cm2).
Control (Chamber #1, chamber nearest to the air inlet), C#6, C#10, C#12 (chamber nearest to the air
outlet) signifies the location of air sampling ports. Airflow = 0.25 m3/s, inlet air temperature = 8 ◦C,
outlet air temperature = 9 ◦C, RH = 39% (inside mobile laboratory). All (60) LED lamps were ‘on’.

Control

Chamber Number

(Treatment Time, UV Dose)

C#6 C#10 C#12

(29 s, 1.2 mJ/cm2) (48 s, 1.9 mJ/cm2) (57 s, 2.2 mJ/cm2)

NH3
concentration

(ppm)

67.9 67.9 67.4 67.5
67.6 68.0 67.0 67.0
67.8 67.6 65.0 63.8

Average ± S.D.
67.8 ± 0.2

67.8 ± 0.2 66.5 ± 1.3 66.1 ± 2.0
(p-value) (0.79) (0.23) (0.29)

3.2. NH3 Percent Reduction in Treated Air–Effect of UV-A Dose Controlled by Light Intensity
and Time

The NH3 percent reduction (%R) was investigated by increasing the UV dose by
installing additional lamps (from 60 to a total of 160) and maximizing treatment time
(Table 3). The additional LED UV-A lamps (110 lamps) using portable UV lamp holders
were installed in two chambers (#2 and #3) (Figure 1), and then the number of lamps turned
‘on’ was controlled.

A statistically significant reduction of 9–11% was measured (Table 3) for UV doses
of 3.90 and 5.81 mJ/cm2. The extrapolated cost for removing 1 kg of NH3 from the air
was ~$53–$63. Furthermore, the high light intensity and shorter treatment time were more
cost-effective compared with low light intensity and higher residence time.

Measurement of NH3 concentration after UV treatment was repeated three times with
rapid ‘lamps on’ and ‘lamps off’ showing similar mitigation effects (Figure 5). This finding
has practical significance because of the simplicity of activating treatment with no apparent
lagtime.
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Table 3. Mitigation of NH3 with increasing UV-A light intensity and time. Airflow = 0.25 m3/s, temperature= 11 ± 3 ◦C,
RH = 34 ± 6%, number of repeated measurements (n) = 3.

UV Dose,
mJ/cm2 Measured Gas Concentration %R b Pollutant Emission Power c Electric Energy for

Mitigation of
Pollutant Mass d

Cost e

(# Lamps a,
Treatment
Time, ts)

(ppm) (p-Value) (E, g/min) (W) ($/g)

Control Treatment Control Treatment (EE, kWh/g)

0.38 67.8 67.8
0% (0.79) 0.76 0.76 160 Not estimated Not

estimated(10, 9.5 s) ±0.17 ±0.21

0.67 67.4 67.4 0% (0.93) 0.74 0.74 470 Not estimated Not
estimated(40, 9.5 s) ±0.35 ±0.42

1.33
(60, 9.5 s)

67.6
±0.69

67.4
±0.35 0% (0.41) 0.74 0.74 790 Not estimated Not

estimated

2.48
(80, 9.5 s)

67.6
±0.32

66.9
±0.82 1% (0.36) 0.76 0.74 1260 Not estimated Not

estimated

3.90
(110, 9.5 s)

67.4
±0.36

61.1
±0.30 9% (<0.01) 0.75 0.68 1730 0.41 0.05

5.81 68.9 61.1 11%
0.76 0.68 2500 0.48 0.06(160, 57 s) ±0.68 ±0.70 (<0.01)

a The number of lamps turned ‘on’ during treatment; b percent reduction in gas concentrations; c measured electric power consumption
for the UV lamps turned ‘on’ during treatment (W); d The electric energy of UV treatment (EE) estimated as using the electric energy
consumption (EEC) needed to mitigate a gas pollutant mass (M) (kWh/g); e The cost of electric energy needed for UV treatment to mitigate
a unit mass of pollutant in the air ($/g); Bold font signifies the statistical significance of treatment.
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Figure 5. Mitigation of NH3 concentration with 110 UV-A lamps inside the two chambers (#2 and #3,
Figure 1). NH3 concentration was measured at the effluent of chamber #3. Airflow = 0.25 m3/s, inlet
air temperature (influent of chamber #2) = 13 ◦C, outlet air temperature = 19 ◦C, RH = 36% (effluent
of chamber #3). The y-axis start at 60 ppm (not 0).

3.3. Butan-1-ol Percent Reduction in Treated Air–Effect of UV-A Dose Controlled by
Treatment Time

As with NH3, there was no significant percent reduction for the initial 60 lamps turned
on in 12 chambers (Table 4). A 100 ppm butan-1-ol standard gas was injected into the
filtration unit inlet (Figure 1) and mixed with ambient air resulting in 0.63 ± 0.04 ppm at
the inlet to the mobile laboratory and similar concentrations after UV treatment. Still, the
measured concentrations in the control and treatment were reproducible. This observation
led us to explore increasing the UV dose by installing additional UV lamps for this model
VOC.
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Table 4. Mitigation of butan-1-ol concentration under UV-A photocatalysis with 60 lamps. Control
(Chamber #1, chamber nearest to the air inlet), C#6, C#10, C#12 (chamber nearest to the air outlet)
signifies the location of air sampling ports. Airflow = 0.25 m3/s, inlet air temperature = 11 ◦C, outlet
air temperature = 13 ◦C, RH = 34% (inside mobile laboratory). All (60) LED UVA lamps were ‘on’.

Control
ppm

Chamber Number

(Treatment Time, UV Dose)

C#6 C#10 C#12

(29 s, 1.2 mJ/cm2) (48 s, 1.9 mJ/cm2) (57 s, 2.2 mJ/cm2)

butan-1-ol
(ppm)

0.59 0.55 0.62 0.63
0.67 0.66 0.61 0.62
0.62 0.66 0.63 0.69

Average ± S.D.
0.63 ± 0.04

0.62 ± 0.06 0.62 ± 0.01 0.65 ± 0.04
(p-value) (0.73) (0.87) (0.63)

3.4. Butan-1-ol Percent Reduction in Treated Air–Effect of UV-A Dose Controlled by Light
Intensity and Time

A statistically significant percent reduction (19–41%) in butan-1-ol was found for the
UV doses greater than 2.48 mJ/cm2 (i.e., when additional lamps were installed, Table 5).
The percent reduction for butan-1-ol was higher than for NH3. The percent reduction
increased with the UV dose, but the 3.90 mJ/cm2 appeared to be the most economically
efficient (i.e., ~$0.35 to remove/mitigate 1 mg butan-1-ol from the air).

Measurement of butan-1-ol concentration after UV treatment was repeated three times
with rapid ‘lamps on’ and ‘lamps off’ showing similar mitigation effects (Figure 6) similar
to the effect observed for NH3. This finding has practical significance because of the
simplicity of activating treatment with no apparent lagtime.
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Figure 6. Mitigation of butan-1-ol (a.k.a. n-butanol) concentration with 110 UV-A lamps in the two
chambers (#2 and #3). The reduction was measured by adding UV-A lamps inside two chambers.
Black means light off, and white means light on. Airflow = 0.25 m3/s, inlet air temperature = 13 ◦C,
outlet air temperature = 19 ◦C, RH = 36% (inside mobile laboratory).
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Table 5. Mitigation of butan-1-ol concentration with increasing light intensity. Airflow = 0.25 m3/s, temperature = 14 ± 2 ◦C,
RH = 34 ± 6%, number of repeated measurements (n) = 3.

UV Dose
mJ/cm2 Measured Gas Concentration Pollutant Emission Electric Energy for

Mitigation of
Pollutant Mass d(# Lamps a,

Treatment
Time, ts)

(ppm) %R b (E, mg/min) Power c Cost e

Control Treatment (p-Value) Control Treatment (W) (EE, kWh/mg) ($/mg)

0.38 0.63 0.62
0% (0.73) 29.9 29.5 160 Not estimated Not

estimated(10, 9.5 s) ±0.04 ±0.63

0.67 0.81 0.67 16% (0.33) 38.5 32.1 470 Not estimated Not
estimated(40, 9.5 s) ±0.27 ±0.09

1.33 0.67 0.60 10% (0.41) 32.1 28.6 790 Not estimated Not
estimated(60, 9.5 s) ±0.09 ±0.03

2.48 0.66 0.53
19% (0.04) 31.5 25.3 1260 3.40 0.44(80, 9.5 s) ±0.02 ±0.06

3.90 0.65 0.43
34% (0.03) 30.9 20.3 1730 2.71 0.35(110, 9.5 s) ±0.03 ±0.04

5.81 0.69 0.41
41% (0.02) 32.9 19.4 2500 3.10 0.40(160, 57 s) ±0.02 ±0.07

a The number of lamps turned ‘on’ during treatment; b percent reduction in gas concentrations; c measured electric power consumption
for the UV lamps turned ‘on’ during treatment (W); d The electric energy of UV treatment (EE) estimated as using the electric energy
consumption (EEC) needed to mitigate a gas pollutant mass (M) (kWh/g); e The cost of electric energy needed for UV treatment to mitigate
a unit mass of pollutant in the air ($/mg); Bold font signifies the statistical significance of treatment.

4. Discussion
4.1. Evaluation of TiO2-Based UV-A Photocatalysis

Previous research on the mitigation of selected target gases via photocatalysis with
UV-A in livestock-relevant environmental conditions was summarized in Table 6. In the
case of NH3, the photocatalysis showed a percent reduction from 7% ~ 19% as the light
intensity increased in the lab-scale experiment [12]. At the pilot-scale [11], the reduction
with photocatalysis efficiency was reduced to ~5% to 9%. Although the detailed mechanism
of photocatalysis varies with different target pollutants, it is commonly agreed that the
primary reactions responsible are interfacial redox reactions of the electron (e−) and hole
(h+) on the surface of the photocatalyst coating material. Therefore, this is considered
that inhibiting factors, such as dust and high humidity, can reduce the interfacial redox
reactions on the TiO2 surface.

In this study, a 9% reduction was observed when the average photocatalysis of light
intensity at the photocatalytic surfaces was 0.49 mW/cm2. Statistically significant NH3
reduction was observed for sufficiently high light intensity even at shorter treatment
times (9.5 s). In the environment of livestock facilities, the NH3 mitigation using UV-A
photocatalysis was found to be less than 20%. This is considered to be less attractive
compared to the 50–99% reduction efficiency of other NH3 mitigation technologies (dietary
additives, manure additive, manure storage handling, and manure incorporation [9,25,26]).
Therefore, based on this and previous research, we do not recommend the use of the UV-A
photocatalysis technology in the livestock farm for the only purpose of reducing NH3.

Depending on the type of VOC, the reduction efficiency varied greatly. It means there
was a significant decrease (mitigation) and increase (generation) in some types of VOC.
VOCs also showed a higher percent reduction in lab-scale [12,17] experiments compared
with the pilot-scale [11]. The photocatalysis showed a percent reduction from 27% ~ 100%
in the lab-scale experiment. At the pilot-scale, the reduction with photocatalysis efficiency
was reported to be as low as (–53%, generation) to ~62% (mitigation). This decreased
percent reduction could result from increased dust and relative humidity for the pilot-scale
testing. This study also showed that VOC reduction by UV-A photocatalysis could be
reduced with a short treatment time (and therefore the dose), similar to the results of
previous studies. The results highlight the requirement to carefully scale up treatments
from controlled lab-scale studies into the pilot-scale and eventually on-farm.
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Table 6. Summary of percent reduction for NH3 and VOCs with TiO2 (coating thickness: 10 µg/cm2) and UV-A light.

Reference
Experiment
Conditions

Treatment
Time a

(s)

Light Intensity
(mW/cm2)

Average Percent Reduction of

Targeted Gas

NH3 (Range) VOCs (Range)

[17]

Lab-scale

40, 200 0.06 Not reported

DMDS (35.0–40.4)
DEDS (27.7–81.0)

Temp b: 40
DMTS (37.1–76.3)

BA (62.2–86.9)

RH c: 40%
Guaiacol (37.4–100.0)
p-Cresol (27.4–93.8)

[12]
Lab-scale 40, 200 0.44 7.3–9.4 Not reported

Temp b: 25 ± 3 40, 200 4.85 10.4–18.7 Not reported
RH c: 12%

[13]
Pilot-scale

24, 47 <0.04 Not reported AA (–52.9 to –19.7)
Temp b: 22~26
RH c: 36~80% p-Cresol (–21.4–22.0)

[11]

Pilot-scale 100, 170 0.44 –0.2–5.2

DEDS (12.7–18.7)
BA (6.1–21.8)

p-Cresol (32.2–11.1)
Temp b: 28 ± 3 Skatole (–35.9–18.5)

RH c: 56% 40, 170 4.85 2.5–8.7

DEDS (18.1–47.2)
BA (22.1–61.9)

p-Cresol (21.8–49.3)
Skatole (53.6–35.4)

This
study

Pilot-scale
9.5

Photolysis d: Ave 0.88
9.4 Butan-1-ol (34.4)Temp b: 19 Photocatalysis e: Ave 0.49

RH c: 36%
a Time to irradiate the target gas with UV-A light; b Temperature (◦C); c Relative humidity; d Average of photolysis light intensity measured
at three locations (top, middle, bottom); e Average of photocatalysis light intensity measured at eleven panels; dimethyl disulfide (DMDS),
dimethyl disulfide (DEDS), dimethyl trisulfide (DMTS), acetic acid (AA), butanoic acid (BA); Bold font signifies a statistical difference in
mitigating gases with UV at (p < 0.05).

4.2. Evaluation of TiO2 Coated Surfaces with SEM-EDS Analysis

We conducted SEM-EDS analyses to gain insight into the morphology and chemical
composition of TiO2 photocatalyst and its interaction with common building materials. The
results of analyzed TiO2 coating morphology on the surface and chemical composition used
in this and our previous studies are shown in Table 7. The morphology of coated TiO2 was
different depending on the surface material. TiO2 sprayed on the glass dried in the form
of ‘droplets’. The TiO2 component was detected only on the white ‘circle’ of dried solid
material from evaporated droplets (Table 7 and Figure A8a). Therefore, it is predicted that
TiO2 and photocatalysis were most active at those selected fractions of the entire surface.
However, for the FRP (fiberglass reinforced plastic used for barn construction), the TiO2
coating was covering the whole area (Table 7 and Figure A8b). The dose of TiO2 coated on
the FRP (embossed part) was the same as the TiO2 dose coated on the glass (Figure A9).
Interestingly, a large amount of TiO2 dose was detected in the ‘valley’ formed between the
embossed parts (Figure A9c). TiO2 in the valley formed a thick ‘cake’, as shown in Figure 7.
It is considered likely that the TiO2 liquid solution was further ‘drained’ into the valley
part of FRP when spraying the solution of TiO2. It is recommended to conduct trials of
TiO2 application on surfaces to learn the spraying technique and control drying conditions
to achieve a practically uniform coating.
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Table 7. TiO2 coating morphology on the sprayed surface of common building materials.

Ref. TiO2 Dose Characteristic TiO2 Arrangement

[12] 10 µg/cm2

Coating method: spray
TiO2 coating surface: glass
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Dust accumulation on TiO2 coated surfaces can affect treatment effectiveness. Dust
and organic substances were detected on the TiO2 surface (Table 7). In fact, while most
of the dust present on the dust-accumulated TiO2 sample was removed with canned air
spray before analysis, some dust and organic substances attached to the surface were still
detected. The accumulated dust is expected to cover the surface with TiO2 (Figure A9b,d).
However, the TiO2 was also detected on the surface of the sample used in an environment
where dust accumulated.
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The chemical composition associated with TiO2 coating was presented in Figure A9.
We observed that the TiO2 coated on a glass surface was completely removed with
propan-2-ol (isopropyl alcohol, Figure A9e). Therefore, it is considered that care must
be taken when cleaning the TiO2 coated surface. However, based on the fact that TiO2 was
detected on the surface after photocatalysis in the TIO2 sample used at 60% relative humid-
ity, it is believed that TiO2 can operate under high humidity conditions for an extended
period of time. However, it is considered that additional experiments are required to test
the practical application of TiO2 coating inside farms where power-washing with water
(and sometimes with disinfectants) is performed periodically or in environments where
condensation is formed on the wall and ceiling due to temperature differences inside and
outside.

5. Conclusions

We designed, tested, and commissioned a mobile laboratory for on-farm research
and demonstration of UV treatment for gaseous emissions in real farm conditions. The
mobile lab is capable of treating up to 1.2 m3/s of air with TiO2-based photocatalysis
and adjustable UV-A dose based on LED lamps. The commissioning of all systems with
standard gases resulted in ~9% and 34% reduction of NH3 and butan-1-ol, respectively. We
demonstrated that as the percent reduction of standard gases increased with increased UV
dose by both increased light intensity and treatment time. The environmental conditions of
air flowrate, light intensity, and standard gas blending were reproducible. The estimation
of extrapolated costs of mitigating targeted gases was possible. The TiO2 coating was able
to adhere to common building materials, but the overall coating integrity and practical
re-application should be investigated in farm-scale trials. The follow-up trials to verify this
technology with the mobile UV laboratory on the farm-scale are warranted.
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