Molecular Speciation of Size Fractionated Particulate Water-Soluble Organic Carbon by Two-Dimensional Nuclear Magnetic Resonance (NMR) Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. NMR Analysis
2.3. Calculations
2.3.1. Size Distribution
2.3.2. Functional Group Diagram
3. Results
3.1. Size Distribution
3.2. Functional Characterization
3.3. 2D-NMR Characterization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Y.; Shen, H.; Chen, H.; Wang, R.; Zhang, Y.; Su, S.; Chen, Y.; Lin, N.; Zhuo, S.; Zhong, Q.; et al. Quantification of Global Primary Emissions of PM2.5, PM10, and TSP from Combustion and Industrial Process Sources. Environ. Sci. Technol. 2014, 48, 13834–13843. [Google Scholar] [CrossRef] [PubMed]
- Barbaro, E.; Feltracco, M.; Cesari, D.; Padoan, S.; Zangrando, R.; Contini, D.; Barbante, C.; Gambaro, A. Characterization of the water soluble fraction in ultrafine, fine, and coarse atmospheric aerosol. Sci. Total Environ. 2019, 658, 1423–1439. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Wang, G.; Meng, J.; Wang, Q.; Cao, J.; Li, J.; Wang, J. Size-resolved airborne particulate oxalic and related secondary organic aerosol species in the urban atmosphere of Chengdu, China. Atmos. Res. 2015, 161-162, 134–142. [Google Scholar] [CrossRef]
- Chalbot, M.-C.; McElroy, B.; Kavouras, I.G. Sources, trends and regional impacts of fine particulate matter in southern Mississippi valley: Significance of emissions from sources in the Gulf of Mexico coast. Atmos. Res. 2013, 13, 3721–3732. [Google Scholar] [CrossRef] [Green Version]
- Masri, S.; Kang, C.-M.; Koutrakis, P. Composition and sources of fine and coarse particles collected during 2002-2010 in Boston, MA. J. Air Waste Manag. Assoc. 2015, 65, 287–297. [Google Scholar] [CrossRef] [Green Version]
- Bi, X.; Simoneit, B.R.; Sheng, G.; Ma, S.; Fu, J. Composition and major sources of organic compounds in urban aerosols. Atmos. Res. 2008, 88, 256–265. [Google Scholar] [CrossRef]
- Fuzzi, S.; Andreae, M.O.; Huebert, B.J.; Kulmala, M.; Bond, T.C.; Boy, M.; Doherty, S.J.; Guenther, A.; Kanakidou, M.; Kawamura, K.; et al. Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmos. Chem. Phys. 2006, 6, 2017–2038. [Google Scholar] [CrossRef] [Green Version]
- Shiraiwa, M.; Ueda, K.; Pozzer, A.; Lammel, G.; Kampf, C.J.; Fushimi, A.; Enami, S.; Arangio, A.M.; Fröhlich-Nowoisky, J.; Fujitani, Y.; et al. Aerosol Health Effects from Molecular to Global Scales. Environ. Sci. Technol. 2017, 51, 13545–13567. [Google Scholar] [CrossRef]
- Brent, L.C.; Reiner, J.L.; Dickerson, R.R.; Sander, L.C. Method for Characterization of Low Molecular Weight Organic Acids in Atmospheric Aerosols Using Ion Chromatography Mass Spectrometry. Anal. Chem. 2014, 86, 7328–7336. [Google Scholar] [CrossRef]
- Cropper, P.M.; Overson, D.K.; Cary, R.A.; Eatough, D.J.; Chow, J.C.; Hansen, J.C. Development of the GC-MS organic aerosol monitor (GC-MS OAM) for in-field detection of particulate organic compounds. Atmos. Environ. 2017, 169, 258–266. [Google Scholar] [CrossRef]
- Eugene, A.J.; Xia, S.-S.; Guzman, M.I. Aqueous Photochemistry of Glyoxylic Acid. J. Phys. Chem. A 2016, 120, 3817–3826. [Google Scholar] [CrossRef] [PubMed]
- Lavrich, R.J.; Hays, M.D. Validation Studies of Thermal Extraction-GC/MS Applied to Source Emissions Aerosols. 1. Semivolatile Analyte−Nonvolatile Matrix Interactions. Anal. Chem. 2007, 79, 3635–3645. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Xue, M.; An, Z.; Zhou, W.; Jiang, J. Quartz filter-based thermal desorption gas chromatography mass spectrometry for in-situ molecular level measurement of ambient organic aerosols. J. Chromatogr. A 2019, 1589, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.S.; Laskin, A.; Laskin, J. Molecular Characterization of Biomass Burning Aerosols Using High-Resolution Mass Spectrometry. Anal. Chem. 2008, 81, 1512–1521. [Google Scholar] [CrossRef]
- Wan, E.C.H.; Yu, J.Z. Analysis of Sugars and Sugar Polyols in Atmospheric Aerosols by Chloride Attachment in Liquid Chromatography/Negative Ion Electrospray Mass Spectrometry. Environ. Sci. Technol. 2007, 41, 2459–2466. [Google Scholar] [CrossRef]
- Decesari, S.; Facchini, M.C.; Fuzzi, S.; Tagliavini, E. Characterization of water-soluble organic compounds in atmospheric aerosol: A new approach. J. Geophys. Res. Atmos. 2000, 105, 1481–1489. [Google Scholar] [CrossRef]
- Nozière, B.; Kalberer, M.; Claeys, M.; Allan, J.; D’Anna, B.; Decesari, S.; Finessi, E.; Glasius, M.; Grgić, I.; Hamilton, J.F.; et al. The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges. Chem. Rev. 2015, 115, 3919–3983. [Google Scholar] [CrossRef]
- Duarte, R.M.O.; Piñeiro-Iglesias, M.; López-Mahía, P.; Muniategui-Lorenzo, S.; Moreda-Piñeiro, J.; Silva, A.M.; Duarte, A.C. Comparative study of atmospheric water-soluble organic aerosols composition in contrasting suburban environments in the Iberian Peninsula Coast. Sci. Total Environ. 2019, 648, 430–441. [Google Scholar] [CrossRef]
- Duarte, R.M.O.; Silva, A.M.S.; Duarte, A.C. Two-Dimensional NMR Studies of Water-Soluble Organic Matter in Atmospheric Aerosols. Environ. Sci. Technol. 2008, 42, 8224–8230. [Google Scholar] [CrossRef]
- Decesari, S.; Facchini, M.; Matta, E.; Lettini, F.; Mircea, M.; Fuzzi, S.; Tagliavini, E.; Putaud, J.-P. Chemical features and seasonal variation of fine aerosol water-soluble organic compounds in the Po Valley, Italy. Atmos. Environ. 2001, 35, 3691–3699. [Google Scholar] [CrossRef]
- Chalbot, M.-C.G.; Chitranshi, P.; Da Costa, G.G.; Pollock, E.D.; Kavouras, I.G. Characterization of water-soluble organic matter in urban aerosol by 1 H-NMR spectroscopy. Atmos. Environ. 2016, 128, 235–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalbot, M.C.G.; Brown, J.; Chitranshi, P.; Da Costa, G.G.; Pollock, E.D.; Kavouras, I.G. Functional characterization of the water-soluble organic carbon of size-fractionated aerosols in the southern Mississippi valley. Atmos. Chem. Phys. 2014, 14, 6075–6088. [Google Scholar] [CrossRef] [Green Version]
- Kavouras, I.G.; Stephanou, E.G. Particle size distribution of organic primary and secondary aerosol constituents in urban, background marine, and forest atmosphere. J. Geophys. Res. Atmos. 2002, 107, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Chalbot, M.-C.G.; Kavouras, I.G. Nuclear Magnetic Resonance Characterization of Water Soluble Organic Carbon of Atmospheric Aerosol Types. Nat. Prod. Commun. 2019, 14. [Google Scholar] [CrossRef] [Green Version]
- Cleveland, M.; Ziemba, L.D.; Griffin, R.J.; Dibb, J.E.; Anderson, C.; Lefer, B.; Rappenglück, B. Characterization of urban aerosol using aerosol mass spectrometry and proton nuclear magnetic resonance spectroscopy. Atmos. Environ. 2012, 54, 511–518. [Google Scholar] [CrossRef]
- Decesari, S.; Finessi, E.; Rinaldi, M.; Paglione, M.; Fuzzi, S.; Stephanou, E.G.; Tziaras, T.; Spyros, A.; Ceburnis, D.; O’Dowd, C.; et al. Primary and secondary marine organic aerosols over the North Atlantic Ocean during the MAP experiment. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Decesari, S.; Fuzzi, S.; Facchini, M.C.; Mircea, M.; Emblico, L.; Cavalli, F.; Maenhaut, W.; Chi, X.; Schkolnik, G.; Falkovich, A.; et al. Characterization of the organic composition of aerosols from Rondônia, Brazil, during the LBA-SMOCC 2002 experiment and its representation through model compounds. Atmos. Chem. Phys. 2006, 6, 375–402. [Google Scholar] [CrossRef] [Green Version]
- Shakya, K.M.; Place, P.F.; Griffin, R.J.; Talbot, R.W. Carbonaceous content and water-soluble organic functionality of atmospheric aerosols at a semi-rural New England location. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Cristofanelli, P.; Fierli, F.; Marinoni, A.; Calzolari, F.; Duchi, R.; Burkhart, J.; Stohl, A.; Maione, M.; Arduini, J.; Bonasoni, P. Influence of biomass burning and anthropogenic emissions on ozone, carbon monoxide and black carbon at the Mt. Cimone GAW-WMO global station (Italy, 2165 m a.s.l.). Atmos. Chem. Phys. 2013, 13, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Graham, B.; Mayol-Bracero, O.L.; Guyon, P.; Roberts, G.C.; Decesari, S.; Facchini, M.C.; Artaxo, P.; Maenhaut, W.; Köll, P.; Andreae, M.O. Water-soluble organic compounds in biomass burning aerosols over Amazonia1. Characterization by NMR and GC-MS. J. Geophys. Res. Atmos. 2002, 107. [Google Scholar] [CrossRef] [Green Version]
- Duarte, R.M.O.; Matos, J.T.V.; Paula, A.S.; Lopes, S.P.; Pereira, G.M.; Vasconcellos, P.; Gioda, A.; Carreira, R.; Silva, A.M.; Duarte, A.C.; et al. Structural signatures of water-soluble organic aerosols in contrasting environments in South America and Western Europe. Environ. Pollut. 2017, 227, 513–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theodosi, C.; Panagiotopoulos, C.; Nouara, A.; Zarmpas, P.; Nicolaou, P.; Violaki, K.; Kanakidou, M.; Sempéré, R.; Mihalopoulos, N. Sugars in atmospheric aerosols over the Eastern Mediterranean. Prog. Oceanogr. 2018, 163, 70–81. [Google Scholar] [CrossRef]
- Yan, C.; Sullivan, A.P.; Cheng, Y.; Zheng, M.; Zhang, Y.; Zhu, T.; Collett, J.L. Characterization of saccharides and associated usage in determining biogenic and biomass burning aerosols in atmospheric fine particulate matter in the North China Plain. Sci. Total Environ. 2019, 650, 2939–2950. [Google Scholar] [CrossRef] [PubMed]
- Brege, M.; Paglione, M.; Gilardoni, S.; Decesari, S.; Facchini, M.C.; Mazzoleni, L.R. Molecular insights on aging and aqueous-phase processing from ambient biomass burning emissions-influenced Po Valley fog and aerosol. Atmos. Chem. Phys. 2018, 18, 13197–13214. [Google Scholar] [CrossRef] [Green Version]
- Zielinska, B.; Sagebiel, J.; Arnott, W.P.; Rogers, C.F.; Kelly, K.E.; Wagner, D.A.; Lighty, J.S.; Sarofim, A.F.; Palmer, G. Phase and Size Distribution of Polycyclic Aromatic Hydrocarbons in Diesel and Gasoline Vehicle Emissions. Environ. Sci. Technol. 2004, 38, 2557–2567. [Google Scholar] [CrossRef]
- Park, S.; Son, S.-C. Size distribution and sources of humic-like substances in particulate matter at an urban site during winter. Environ. Sci. Process. Impacts 2015, 18, 32–41. [Google Scholar] [CrossRef]
- Van Vaeck, L.; Broddin, G.; Van Cauwenberghe, K. On the relevance of air pollution measurements of aliphatic and polyaromatic hydrocarbons in ambient particulate matter. Biomed. Mass Spectrom. 1980, 7, 473–483. [Google Scholar] [CrossRef]
- Liu, W.-J.; Li, W.; Jiang, H.; Yu, H.-Q. Fates of Chemical Elements in Biomass during Its Pyrolysis. Chem. Rev. 2017, 117, 6367–6398. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the chemical composition of biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Huang, X.-F.; Dai, J.; Zhu, Q.; Yu, K.; Du, K. Abundant Biogenic Oxygenated Organic Aerosol in Atmospheric Coarse Particles: Plausible Sources and Atmospheric Implications. Environ. Sci. Technol. 2019, 54, 1425–1430. [Google Scholar] [CrossRef]
- Feltracco, M.; Barbaro, E.; Tedeschi, S.; Spolaor, A.; Turetta, C.; Vecchiato, M.; Morabito, E.; Zangrando, R.; Barbante, C.; Gambaro, A. Interannual variability of sugars in Arctic aerosol: Biomass burning and biogenic inputs. Sci. Total Environ. 2020, 706, 136089. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Kawakami, M.; Akasaka, K. 1H NMR Application for Characterizing Water-Soluble Organic Compounds in Urban Atmospheric Particles. Environ. Sci. Technol. 2001, 35, 2656–2664. [Google Scholar] [CrossRef] [PubMed]
- Facchini, M.C.; Decesari, S.; Rinaldi, M.; Carbone, C.; Finessi, E.; Mircea, M.; Fuzzi, S.; Moretti, F.; Tagliavini, E.; Ceburnis, D.; et al. Important Source of Marine Secondary Organic Aerosol from Biogenic Amines. Environ. Sci. Technol. 2008, 42, 9116–9121. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Kawamura, K.; Kunwar, B.; Cao, J.; Zhang, J.; Zhan, C.; Zheng, J.; Yao, R.; Liu, T.; Xiao, W. Dicarboxylic acids and related compounds in fine particulate matter aerosols in Huangshi, central China. J. Air Waste Manag. Assoc. 2019, 69, 513–526. [Google Scholar] [CrossRef]
- Decesari, S.; Allan, J.D.; Plass-Duelmer, C.; Williams, B.J.; Paglione, M.; Facchini, M.C.; O’Dowd, C.; Harrison, R.M.; Gietl, J.K.; Coe, H.; et al. Measurements of the aerosol chemical composition and mixing state in the Po Valley using multiple spectroscopic techniques. Atmos. Chem. Phys. 2014, 14, 12109–12132. [Google Scholar] [CrossRef] [Green Version]
- Decesari, S.; Facchini, M.C.; Fuzzi, S.; McFiggans, G.; Coe, H.; Bower, K.N. The water-soluble organic component of size-segregated aerosol, cloud water and wet depositions from Jeju Island during ACE-Asia. Atmos. Environ. 2005, 39, 211–222. [Google Scholar] [CrossRef]
- Chen, Q.; Ikemori, F.; Higo, H.; Asakawa, D.; Mochida, M. Chemical Structural Characteristics of HULIS and Other Fractionated Organic Matter in Urban Aerosols: Results from Mass Spectral and FT-IR Analysis. Environ. Sci. Technol. 2016, 50, 1721–1730. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-C.; Chen, J.; Budisulistiorini, S.H.; Itoh, M.; Shiodera, S.; Kuwata, M. Polarity-Dependent Chemical Characteristics of Water-Soluble Organic Matter from Laboratory-Generated Biomass-Burning Revealed by 1-Octanol–Water Partitioning. Environ. Sci. Technol. 2019, 53, 8047–8056. [Google Scholar] [CrossRef]
- Fuzzi, S.; Decesari, S.; Facchini, M.C.; Matta, E.; Mircea, M.; Tagliavini, E. A simplified model of the water soluble organic component of atmospheric aerosols. Geophys. Res. Lett. 2001, 28, 4079–4082. [Google Scholar] [CrossRef]
- Turpin, B.J.; Lim, H.-J. Species Contributions to PM2.5 Mass Concentrations: Revisiting Common Assumptions for Estimating Organic Mass. Aerosol Sci. Technol. 2001, 35, 602–610. [Google Scholar] [CrossRef]
Samples | Particle Size Range (μm) | |||||
30–7.2 | 7.2–3.0 | 3.0–1.5 | 1.5–0.96 | 0.96–0.49 | <0.49 | |
Particle mass (μg/m3) | 3.3 ± 0.5 | 4.1 ± 1.0 | 4.4 ± 1.0 | 3.4 ± 0.5 | 4.8 ± 0.5 | 33.1 ± 10.3 |
TWSE (μg/m3) | 0.7 ± 0.1 | 0.9 ± 0.2 | 1.1 ± 0.3 | 1.4 ± 0.3 | 2.6 ± 0.3 | 4.6 ± 0.7 |
Total Org H (nmol/m3) | 4.8 ± 0.8 | 5.5 ± 1.3 | 10.5 ± 4.7 | 5.5 ± 1.0 | 15.7 ± 0.8 | 45.3 ± 7.7 |
Functional groups | ||||||
R-H (nmol/m3) | 1.6 ± 0.2 | 1.6 ± 0.3 | 3.2 ± 1.8 | 2.2 ± 0.5 | 6.0 ± 0.4 | 15.1 ± 1.7 |
H-C-C= (nmol/m3) | 1.0 ± 0.1 | 1.0 ± 0.2 | 2.2 ± 1.2 | 1.4 ± 0.3 | 5.2 ± 0.2 | 11.1 ± 1.5 |
H-C-O (nmol/m3) | 2.0 ± 0.5 | 2.7 ± 0.8 | 4.7 ± 2.1 | 1.6 ± 0.1 | 3.6 ± 0.4 | 16.3 ± 5.7 |
O-CH-O and H-C= (nmol/m3) | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.6 ± 0.1 | 1.4 ± 0.3 |
Ar-H (nmol/m3) | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.3 ± 0.1 | 1.4 ± 0.3 |
Regions 1H-1H-NMR | F2/F1 Ranges (ppm) | Regions 1H-13C- HSQC | F2/F1 Ranges (ppm) | Regions 1H-13C- HMBC | F2/F1 Ranges (ppm) | Compounds | Size Range (μm) | Source |
---|---|---|---|---|---|---|---|---|
A | 0.5–2.5 0.5–2.5 | I | 0.5–2.5 10–40 | Ia | 0.8–1.5 10–40 | intra-aliphatic chain couplings in aliphatic compounds | all sizes | all sources |
monocarboxylic acids (valeric acid) | >7.2 | biomass, road, soil, pollen | ||||||
propionic acid (P) isobutyric acid (Ibu) | >0.2 <1.5 | road road | ||||||
dicarbocylic acids (suberic, adipic, pimelic acid) long chain carboxylic acids (>5 carbons) | >7.2 <1.5 | road, soil, vegetation, biomass burning | ||||||
amino acids | <0.96 | pollen, vegetation | ||||||
triethylamine (TEA) | all sizes | traffic, soil | ||||||
Ib | 0.8–1.5 40–60 | methylene adjacent to amines (R-CH2-N) or chlorine (R-CH2-Cl) | >3.0 <0.49 | traffic | ||||
Ic | 0.8–1.5 60–100 | methylene adjacent to hydroxyl (R-CH2-O). | >3.0 <0.49 | pollen, road | ||||
B | 2.4–3.2 0.8–1.8 | II | 1.8–3.2 16–56 | IId | 2.4–3.2 30–56 | Amine | Traffic, secondary processes | |
C | 1.8–3.2 1.8–3.2 | II | 1.8–3.2 16–56 | IIa | 1.8–2.5 20–50 | Oxo-acids levulinic acid hydroxyacids malic acid | <7.2 >7.2 | Traffic Vegetation |
IIb | 1.8–2.5 160–190 | compounds with carboxylic and ester | all sizes | |||||
IIc | 1.8–2.5 200–230 | compounds with ketones | all sizes | |||||
D | 3.0–4.6 0.8–2.5 | III, IV | 3.2–4.4 44–60 | III, IV | 3.0–4.6 50–115 | methyl-polyols secondary organic Aerosols lactic acid, hydroxyacids amino acids | all sizes <3.0 <3.0 | soil gas-to-particle conversion biomass burning, road and soil road, soil, pollen |
E | 3.2–4.6 3.2–4.6 | III, IV | 3.2–4.4 44–60 | III, IV | 3.0–4.6 50–115 | glucose, fructose sucrose levoglucosan ethanolamine choline HMSA | all sizes all sizes <7.2 <3.0 all sizes 0.96–0.49 | pollen, vegetation microorganisms biomass burning animal husbandry metabolites traffic |
F | 4.8–5.25 3.2–4.4 | V | 4.4–5.6 84–115 | V | 4.4–5.6 60–110 | anomeric carbons of carbohydrate | all sizes | pollen microorganisms |
G | 5.25–5.5 4.8–5.0 | V | 4.4–5.6 84–115 | V | 4.4–5.6 60–110 | anomeric carbons of anhydrohexose | <7.2 | biomass burning |
H | 6.6–8.2 5.5–6.8 | VI | 6.6–9.0 115–140 | n/a | alkene | <0.49 | soil | |
I | 6.4–8.8 6.4–8.8 | VI | 6.6–9.0 115–140 | n/a | Aromatic Trigonelline | >7.2 | Pollen | |
J | 4.6–6.6 0.8–2.6 | V | 4.4–5.6 84–115 | V | 4.4–5.6 60–110 | olefinic compounds | <3.0 | Soil, traffic Pollen |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chalbot, M.-C.; Siddiqui, S.; Kavouras, I.G. Molecular Speciation of Size Fractionated Particulate Water-Soluble Organic Carbon by Two-Dimensional Nuclear Magnetic Resonance (NMR) Spectroscopy. Int. J. Environ. Res. Public Health 2021, 18, 1334. https://doi.org/10.3390/ijerph18031334
Chalbot M-C, Siddiqui S, Kavouras IG. Molecular Speciation of Size Fractionated Particulate Water-Soluble Organic Carbon by Two-Dimensional Nuclear Magnetic Resonance (NMR) Spectroscopy. International Journal of Environmental Research and Public Health. 2021; 18(3):1334. https://doi.org/10.3390/ijerph18031334
Chicago/Turabian StyleChalbot, Marie-Cecile, Salma Siddiqui, and Ilias G. Kavouras. 2021. "Molecular Speciation of Size Fractionated Particulate Water-Soluble Organic Carbon by Two-Dimensional Nuclear Magnetic Resonance (NMR) Spectroscopy" International Journal of Environmental Research and Public Health 18, no. 3: 1334. https://doi.org/10.3390/ijerph18031334