Supporting Information

Figure S1. Spectrophotometric titrations of (a) $\mathrm{PQ} / \mathrm{DNA}\left(\mathrm{CPQ}_{\mathrm{PQ}}=9.30 \times 10^{-6} \mathrm{M}, \mathrm{CDNA}\right.$ from 0 (solid) to $6.49 \times 10^{-4} \mathrm{M}$ (dash)) and (B) DQ/DNA (CDQ $=6.87 \times 10^{-6} \mathrm{M}$, CdNA from 0 (solid) to $7.71 \times 10^{-6} \mathrm{M}$ (dash)). $\mathrm{NaCl} 0.1 \mathrm{M}, \mathrm{NaCac} 2.5$ $\mathrm{mM}, \mathrm{pH} 7.0,37.0^{\circ} \mathrm{C}$.

Figure S2. Fluorescence exchange titration of EtBr-saturated DNA with DQ at $25.0^{\circ} \mathrm{C}\left(\mathrm{Cetbr}=9.96 \times 10^{-5} \mathrm{M}, \mathrm{CdNa}\right.$ $=2.43 \times 10^{-4} \mathrm{M}, \mathrm{CdQ}$ from 0 (solid) to $8.03 \times 10^{-4} \mathrm{M}$ (dash), $\mathrm{NaCl} 0.1 \mathrm{M}, \mathrm{NaCac} 2.5 \mathrm{mM}, \mathrm{pH} 7.0,25.0^{\circ} \mathrm{C}, \lambda_{\text {exc }}=510$ $\mathrm{nm}, \lambda_{\mathrm{em}}=595 \mathrm{~nm}$.

Figure S3. Spectrophotometric titration for the Tel23-DQ system; $C_{\text {Tel }}=7.77 \times 10^{-9}(-)-5.00 \times 10^{-7} \mathrm{M}(--) ; C_{D Q}=$ $8.87 \times 10^{-6} \mathrm{M}, \mathrm{KCl} 0.1 \mathrm{M}, \mathrm{KCac} 2.5 \mathrm{mM}, \mathrm{pH} 7.0,25.0^{\circ} \mathrm{C}$.

Figure S4. Spectrofluorimetric titration for the DQ/BSA system. The grey area highlights the distortions due to DQ absorbance effects. The arrow indicates the fluorescence emission profile likely due to free DQ contribution, which becomes evident for $\mathrm{CDQ}_{\mathrm{DQ}}>1.86 \times 10^{-6} \mathrm{M}$; accordingly, the binding isotherm in Figure 7 is cut at $\mathrm{CDQ}_{\mathrm{DQ}}<1.86 \times 10^{-6} \mathrm{M}$; $\mathrm{C}_{\mathrm{BSA}}=1.50 \times 10^{-6} \mathrm{M}$, CDQ from 0 (dashed blue line) to $1.86 \times 10^{-6} \mathrm{M}$ (dotted red line) and $1.07 \times 10^{-5} \mathrm{M}$ (straight black line), $\mathrm{NaCl} 0.1 \mathrm{M}, \mathrm{NaCac} 2.5 \mathrm{mM}, \mathrm{pH} 7.0,37.0^{\circ} \mathrm{C}, \lambda_{\text {exc }}=295 \mathrm{~nm}$.

Figure S5. HypSpec2014 analysis of the fluorescence changes observed upon addition of DQ to BSA; CBSA $=$ $1.50 \times 10^{-6} \mathrm{M}$, CdQ from 0 to $1.77 \times 10^{-6} \mathrm{M}, \mathrm{NaCl} 0.1 \mathrm{M}, \mathrm{NaCac} 2.5 \mathrm{mM}, \mathrm{pH} 7.0,37.0^{\circ} \mathrm{C}, \lambda_{\text {exc }}=295 \mathrm{~nm}$. Left: titration curve at 345 nm (open diamond = experimental, cross = calculated) and species distribution (dark red $=$ free BSA, red $=\mathrm{PQ} / \mathrm{BSA}$ adduct). Right: fluorescence spectrum ((open diamond $=$ experimental, dashed red line $=$ calculated) and relevant deconvolution (dark red $=$ free BSA, red $=\mathrm{PQ} / \mathrm{BSA}$ adduct). The bottom panels are the residuals.

Figure S6. HypSpec2014 analysis of the fluorescence changes observed upon addition of PQ to BSA; CBSA $=$ $1.54 \times 10^{-6} \mathrm{M}$, Cpo from 0 to $5.12 \times 10^{-5} \mathrm{M}, \mathrm{NaCl} 0.1 \mathrm{M}, \mathrm{NaCac} 2.5 \mathrm{mM}, \mathrm{pH} 7.0,37.0^{\circ} \mathrm{C}, \lambda_{\text {exc }}=295 \mathrm{~nm}$. Left: titration curve at 345 nm (open diamond = experimental, cross $=$ calculated) and species distribution (dark red $=$ free BSA, red $=\mathrm{PQ} / \mathrm{BSA}$ adduct). Right: fluorescence spectrum ((open diamond $=$ experimental, dashed red line $=$ calculated) and relevant deconvolution (dark red $=$ free $B S A$, red $=\mathrm{PQ} / \mathrm{BSA}$ adduct). The bottom panels are the residuals.

Figure S7. Plot of $\Delta \mathrm{H}$ vs. $\mathrm{T} \Delta \mathrm{S}$ for different ligands binding to BSA according to https://doi.org/10.1016/j.jinorgbio.2020.111305. Different points relate to the different driving forces for binding: $(\bullet)=$ hydrophobic forces, $(\boldsymbol{\bullet})=$ van der Waals/H-bonding, $(\mathbf{\Delta})=$ electrostatic. Full point refer to organic molecules, open points refer to metal complexes. The star refers to what was found in this work for the $\mathrm{PQ} / \mathrm{BSA}$ system.

Figure S8. Absorbance spectra of (a) PQ in SDS 0.01 M before (solid) and after (dash) ultrafiltration and (b) DQ in DTAC 0.01 M before (solid) and after (dash) ultrafiltration; $\mathrm{NaCl} 0.1 \mathrm{M}, \mathrm{NaCac} 2.5 \mathrm{mM}, \mathrm{pH} 7.0$.

