Horizontal Flow Constructed Wetland for Greywater Treatment and Reuse: An Experimental Case
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Greywater Collections
2.1.2. Laboratory-Scale Plant
2.1.3. Pilot-Scale Plant
2.2. Methods
2.2.1. Greywater Analysis
2.2.2. Plants Management and Monitoring
3. Results and Discussions
3.1. Laboratory-Scale Plant
- (i)
- Test alternative solutions to well-known Phragmites australis and obtain other data on Carex oshimensis application on real GW treatment.
- (ii)
- Nema et al. [50] highlighted that Phragmites australis showed good results on GW treatment in the short-term, but the same high performance cannot be maintained for a longer time without periods of rest. The pilot-scale implant overcomes this aspect.
- (iii)
- One of the limits of Carex oshimensis is certainly linked to the shallow depth that its roots reach (maximum 10–30 cm) [59]. Therefore, the combination of Carex oshimensis and Cyperus papyrus guarantee to overcome this limit positioning Carex oshimensis in the part closest to the entrance of the GW, and locating Cyperus papyrus (characterized by a deeper root system) in the central part of the pilot-scale plant (For further details, please see Section 2.1).
3.2. Pilot-Scale Plant
3.3. Comparison with Regulatory Parameters for Reuse
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
BOD | Biochemical oxygen demand |
COD | Chemical oxygen demand |
CW | Constructed wetland |
DO | Dissolved oxygen |
EEA | European Environmental Agency |
EU | European Union |
GW | Greywater |
HDPE | High-density polyethylene |
HFCW | Horizontal flow constructed wetland |
HRT | Hydraulic retention time |
Phase P1 | Phase of pilot-scale reactor with HRT equals to 1 day |
Phase P2 | Phase of pilot-scale reactor with HRT equals to 3 days |
PVC | Polyvinyl chloride |
TKN | Total Kjeldahl nitrogen |
TN | Total nitrogen |
TP | Total phosphorus |
TSS | Total suspended solids |
VFCW | Vertical flow constructed wetlands |
WEI | Water exploitation index |
WHO | World Health Organization |
WW | Wastewater |
References
- Fitton, N.; Alexander, P.; Arnell, N.; Bajzelj, B.; Calvin, K.; Doelman, J.; Gerber, J.S.; Havlik, P.; Hasegawa, T.; Herrero, M.; et al. The vulnerabilities of agricultural land and food production to future water scarcity. Glob. Environ. Chang. 2019, 58, 101944. [Google Scholar] [CrossRef]
- Jiang, L.; Guli·Jiapaer; Bao, A.; Yuan, Y.; Zheng, G.; Guo, H.; Yu, T.; De Maeyer, P. The effects of water stress on croplands in the Aral Sea basin. J. Clean. Prod. 2020, 254, 120114. [Google Scholar] [CrossRef]
- UNESCO. The United Nations World Water Development Report—Leaving no One Behind; UN iLibrary: Paris, France, 2019. [Google Scholar]
- FAO. Coping with Water Scarcity—An Action Framework for Agriculture and Food Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2008. [Google Scholar]
- Santasmasas, C.; Rovira, M.; Clarens, F.; Valderrama, C. Grey water reclamation by decentralized MBR prototype. Resour. Conserv. Recycl. 2013, 72, 102–107. [Google Scholar] [CrossRef]
- EEA. Water Scarcity and Drought in the European Union; European Commission: Brussels, Belgium, 2010. [Google Scholar]
- EC. Water is Too Precious to Waste. Available online: https://ec.europa.eu/environment/water/pdf/water_reuse_factsheet_en.pdf (accessed on 1 February 2020).
- Cui, R.Y.; Calvin, K.; Clarke, L.; Hejazi, M.; Kim, S.; Kyle, P.; Patel, P.; Turner, S.; Wise, M. Regional responses to future, demand-driven water scarcity. Environ. Res. Lett. 2018, 13, 094006. [Google Scholar] [CrossRef]
- Garrote, L.; Iglesias, A.; Granados, A. Country-level assessment of future risk of water scarcity in Europe. In Proceedings of the International Association of Hydrological Sciences, Beijing, China, 13–15 June 2018; Volume 379, pp. 455–462. [Google Scholar]
- Suárez-Almiñana, S.; Pedro-Monzonís, M.; Paredes-Arquiola, J.; Andreu, J.; Solera, A. Linking Pan-European data to the local scale for decision making for global change and water scarcity within water resources planning and management. Sci. Total Environ. 2017, 603–604, 126–139. [Google Scholar]
- Gampe, D.; Nikulin, G.; Ludwig, R. Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins. Sci. Total Environ. 2016, 573, 1503–1518. [Google Scholar] [CrossRef]
- EEA. Is Europe’s Freshwater Use Sustainable? Available online: https://www.eea.europa.eu/highlights/world-water-day-is-europe (accessed on 1 February 2020).
- EEA. Water Scarcity. Available online: https://www.eea.europa.eu/archived/archived-content-water-topic/featured-articles/water-scarcity (accessed on 1 February 2020).
- Serra, P.; Pons, X. Two Mediterranean irrigation communities in front of water scarcity: A comparison using satellite image time series. J. Arid. Environ. 2013, 98, 41–51. [Google Scholar] [CrossRef]
- Trulli, E.; Torretta, V.; Rada, E.C. Water restoration of an urbanized karst stream by free-water-surface constructed wetlands as municipal wastewater posttreatment. UPB Sci. Bull. 2016, 78, 163–174. [Google Scholar]
- Elbana, T.A.; Bakr, N.; Elbana, M. Reuse of treated wastewater in Egypt: Challenges and opportunities. Handb. Environ. Chem. 2019, 75, 429–453. [Google Scholar]
- Baawain, M.; Almamun, M.; Omidvarborna, H.; Al-Sabti, A.; Choudri, B.S. Public perceptions of reusing treated wastewater for urban and industrial applications: Challenges and opportunities. Environ. Dev. Sustain. 2018, 22, 1–13. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Carnevale Miino, M.; Baldi, M.; Manzi, S.; Abbà, A.; Bertanza, G. Removal of non-ionic and anionic surfactants from real laundry wastewater by means of a full-scale treatment system. Process Saf. Environ. Prot. 2019, 132, 105–115. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Carnevale Miino, M.; Arab, H.; Bestetti, M.; Franz, S. Decolorization and biodegradability of a real pharmaceutical wastewater treated by H2O2-assisted photoelectrocatalysis on TiO2 meshes. J. Hazard. Mater. 2019, 387, 121668. [Google Scholar] [CrossRef] [PubMed]
- Collivignarelli, M.C.; Abbà, A.; Benigna, I. The reuse of biosolids on agricultural land: Critical issues and perspective. Water Environ. Res. 2019, 1196. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Malchi, T.; Carter, L.J.; Li, H.; Gan, J.; Chefetz, B. Pharmaceutical and personal care products: From wastewater treatment into agro-food systems. Environ. Sci. Technol. 2019, 53, 14083–14090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egea-Corbacho Lopera, A.; Gutiérrez Ruiz, S.; Quiroga Alonso, J.M. Removal of emerging contaminants from wastewater using reverse osmosis for its subsequent reuse: Pilot plant. J. Water Process Eng. 2019, 29, 100800. [Google Scholar] [CrossRef]
- Macías-García, A.; García-Sanz-Calcedo, J.; Carrasco-Amador, J.P.; Segura-Cruz, R. Adsorption of paracetamol in hospital wastewater through activated carbon filters. Sustainability 2019, 11, 2672. [Google Scholar] [CrossRef] [Green Version]
- Ricciardi, P.; Cillari, G.; Carnevale Miino, M.; Collivignarelli, M.C. Valorization of agro-industry residues in the building and environmental sector: A review. Waste Manag. Res. 2020, 1–27. [Google Scholar] [CrossRef]
- EC. Circular Economy: Implementation of the Circular Economy Action Plan. Available online: http://ec.europa.eu/environment/circular-economy/index_en.htm (accessed on 20 April 2019).
- Ragazzi, M.; Fedrizzi, S.; Rada, E.C.; Ionescu, G.; Ciudin, R.; Cioca, L.I. Experiencing urban mining in an Italian municipality towards a circular economy vision. Energy Procedia 2017, 119, 192–200. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Canato, M.; Abbà, A.; Carnevale Miino, M. Biosolids: What are the different types of reuse? J. Clean. Prod. 2019, 117844. [Google Scholar] [CrossRef] [Green Version]
- Collivignarelli, M.C.; Abbà, A.; Frattarola, A.; Carnevale Miino, M.; Padovani, S.; Katsoyiannis, I.; Torretta, V. Legislation for the reuse of biosolids on agricultural land in Europe: Overview. Sustainability 2020, 11, 6015. [Google Scholar] [CrossRef] [Green Version]
- Villarín, M.C.; Merel, S. Paradigm shifts and current challenges in wastewater management. J. Hazard. Mater. 2020, 390, 122139. [Google Scholar] [CrossRef] [PubMed]
- Kiselev, A.V.; Magaril, E.R.; Rada, E.C. Energy and sustainability assessment of municipal wastewater treatment under circular economy paradigm. Wit. Trans. Ecol. Environ. 2019, 237, 109–120. [Google Scholar]
- Dominguez, S.; Laso, J.; Margallo, M.; Aldaco, R.; Rivero, M.J.; Irabien, Á.; Ortiz, I. LCA of greywater management within a water circular economy restorative thinking framework. Sci. Total Environ. 2018, 621, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Boano, F.; Caruso, A.; Costamagna, E.; Ridolfi, L.; Fiore, S.; Demichelis, F.; Galvão, A.; Pisoeiro, J.; Rizzo, A.; Masi, F. A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. Sci. Total Environ. 2020, 711, 134731. [Google Scholar] [CrossRef] [PubMed]
- Hlavínek, P.; Negm, M.A.; Zelenakova, M. Management of water quality and quantity. In Water Reuse in Urban Areas; Springer International Publishing: Cham, Switzerland, 2020; Chapter 8; pp. 195–217. [Google Scholar]
- Noutsopoulos, C.; Andreadakis, A.; Kouris, N.; Charchousi, D.; Mendrinou, P.; Galani, A.; Mantziaras, I.; Koumaki, E. Greywater characterization and loadings—Physicochemical treatment to promote onsite reuse. J. Env. Manag. 2018, 216, 337–346. [Google Scholar] [CrossRef]
- Oteng-Peprah, M.; Acheampong, M.A.; DeVries, N.K. Greywater characteristics, treatment systems, reuse strategies and user perception—A review. Water Air Soil Pollut. 2018, 229, 255. [Google Scholar] [CrossRef] [Green Version]
- Oron, G.; Adel, M.; Agmon, V.; Friedler, E.; Halperin, R.; Leshem, E.; Weinberg, D. Greywater use in Israel and worldwide: Standards and prospects. Water Res. 2014, 58, 92–101. [Google Scholar] [CrossRef]
- Albalawneh, A.; Chang, T.-K.; Alshawabkeh, H. Greywater treatment by granular filtration system using volcanic tuff and gravel media. Water Sci. Technol. 2017, 75, 2331–2341. [Google Scholar] [CrossRef]
- Ungvári, C.; Izbéki-Szabolcsik, A.; Bodnár, I. Analysis of greywater samples treated by filtration. Műszaki Tudományos Közlemények 2018, 9, 247–250. [Google Scholar]
- Huelgas-Orbecido, A.; Funamizu, N. Membrane system for gray water. In Resource-Oriented Agro-Sanitation Systems; Springer Japan: Tokyo, Japan, 2019; pp. 185–193. [Google Scholar]
- Sushmitha, M.B.; Chanakya, H.N.; Khuntia, H.K. Efficient grey water treatment and reuse options for India—A Review. In Waste Water Recycling and Management; Springer Singapore: Singapore, 2019; pp. 143–149. [Google Scholar]
- Rojas-Z, U.; Fajardo-O, C.; Moreno-Andrade, I.; Monroy, O. Greywater treatment in an aerobic SBR: Sludge structure and kinetics. Water Sci. Technol. 2017, 76, 1535–1544. [Google Scholar] [CrossRef]
- Kumar Khuntia, H.; Hameed, S.; Janardhana, N.; Chanakya, H. Greywater treatment in aerobic bio-reactor with macropore mesh filters. J. Water Process Eng. 2019, 28, 269–276. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S.M.; Al-Sulaiman, A.M. Anaerobic/aerobic integration via UASB/enhanced aeration for greywater treatment and unrestricted reuse. Water Pract. Technol. 2019, 14, 837–850. [Google Scholar] [CrossRef]
- Butkovskyi, A.; Sevenou, L.; Meulepas, R.J.W.; Hernandez Leal, L.; Zeeman, G.; Rijnaarts, H.H.M. Micropollutant removal from black water and grey water sludge in a UASB-GAC reactor. Water Sci. Technol. 2018, 77, 1137–1148. [Google Scholar] [CrossRef] [PubMed]
- Arden, S.; Ma, X. Constructed wetlands for greywater recycle and reuse: A review. Sci. Total Environ. 2018, 630, 587–599. [Google Scholar] [CrossRef] [PubMed]
- Ramprasad, C.; Smith, C.S.; Memon, F.A.; Philip, L. Removal of chemical and microbial contaminants from greywater using a novel constructed wetland: GROW. Ecol. Eng. 2017, 106, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Ann, T.; Lee, S.-M. Use of biochar to enhance constructed wetland performance in wastewater reclamation. Environ. Eng. Res. 2016, 21, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Salazar, R.; Mora-Aparicio, C.; Alfaro-Chinchilla, C.; Sasa-Marín, J.; Scholz, C.; Rodríguez-Corrales, J.Á. Biogardens as constructed wetlands in tropical climate: A case study in the Central Pacific Coast of Costa Rica. Sci. Total Environ. 2019, 658, 1023–1028. [Google Scholar] [CrossRef]
- Kivaisi, A.K. The potential for constructed wetlands for wastewater treatment and reuse in developing countries: A review. Ecol. Eng. 2001, 16, 545–560. [Google Scholar] [CrossRef]
- Nema, A.; Yadav, K.D.; Christian, R.A. Sustainability and performance analysis of constructed wetland for treatment of greywater in batch process. Int. J. Phytoremediat. 2019, 1–9. [Google Scholar] [CrossRef]
- EPA. Wastewater Technology Fact Sheet—Wetlands: Subsurface Flow; EPA: Washington, DC, USA, 2000.
- Laaffat, J.; Aziz, F.; Ouazzani, N.; Mandi, L. Biotechnological approach of greywater treatment and reuse for landscape irrigation in small communities. Saudi J. Biol. Sci. 2019, 26, 83–90. [Google Scholar] [CrossRef]
- Ramprasad, C.; Philip, L. Surfactants and personal care products removal in pilot scale horizontal and vertical flow constructed wetlands while treating greywater. Chem. Eng. J. 2016, 284, 458–468. [Google Scholar] [CrossRef]
- Ramprasad, C.; Philip, L. Greywater treatment using horizontal, vertical and hybrid flow constructed wetlands. Curr. Sci. 2018, 114, 155–165. [Google Scholar] [CrossRef]
- Qomariyah, S.; Ramelan, A.; Sobriyah; Setyono, P. Use of macrophyte plants, sand & gravel materials in constructed wetlands for greywater treatment. IOP Conf. Ser. Mater. Sci. Eng. 2017, 176, 012018. [Google Scholar]
- Memon, M.; Jatoi, H.B.; Narejo, A.M.; Mahar, R.B.; Ansari, A.K.; Bhanger, M.I. Use of aquatic plants for treatment of greywater. Pak. J. Bot. 2017, 49, 375–381. [Google Scholar]
- Mburu, N.; Rousseau, D.P.L.; van Bruggen, J.J.A.; Lens, P.N.L. Use of the macrophyte Cyperus papyrus in wastewater treatment. In The Role of Natural and Constructed Wetlands in Nutrient Cycling and Retention on the Landscape; Springer International Publishing: Cham, Switzerland, 2015; pp. 293–314. [Google Scholar]
- Masotti, L.; Verlicchi, P. Water purification of small communities. In Natural Techniques and Engineering Techniques; Hoepli Editor: Milan, Italy, 2005. (In Italian) [Google Scholar]
- EPA. Free Water Surface Wetlands for Wastewater Treatment: A Technology Assessment; EPA: Phoenix, Arizona, 1999.
- APHA. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; APHA: Washington, DC, USA, 2012. [Google Scholar]
- Molleda, P.; Blanco, I.; Ansola, G.; de Luis, E. Removal of wastewater pathogen indicators in a constructed wetland in Leon, Spain. Ecol. Eng. 2008, 33, 252–257. [Google Scholar] [CrossRef]
- Sleytr, K.; Tietz, A.; Langergraber, G.; Haberl, R. Investigation of bacterial removal during the filtration process in constructed wetlands. Sci. Total Environ. 2007, 380, 173–180. [Google Scholar] [CrossRef]
- EPA. Subsurface Flow Constructed Wetlands for Wastewater Treatment A Technology Assessment; EPA: Phoenix, Arizona, 1993.
- Glass, C.; Silverstein, J. Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation. Water Res. 1998, 32, 831–839. [Google Scholar] [CrossRef]
- Antoniou, P.; Hamilton, J.; Koopman, B.; Jain, R.; Holloway, B.; Lyberatos, G.; Svoronos, S.A. Effect of temperature and ph on the effective maximum specific growth rate of nitrifying bacteria. Water Res. 1990, 24, 97–101. [Google Scholar] [CrossRef]
- Akratos, C.S.; Tsihrintzis, V.A. Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecol. Eng. 2007, 29, 173–191. [Google Scholar] [CrossRef]
- Ottosen, L.; Risgaard-Petersen, N.; Nielsen, L. Direct and indirect measurements of nitrification and denitrification in the rhizosphere of aquatic macrophytes. Aquat. Microb. Ecol. 1999, 19, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Xu, Y.; Peng, L.; Liu, G.; Wan, X.; Hua, Y.; Zhu, D.; Hamilton, D.P. Diversity of anammox bacteria and abundance of functional genes for nitrogen cycling in the rhizosphere of submerged macrophytes in a freshwater lake in summer. J. Soils Sediments 2019, 19, 3648–3656. [Google Scholar] [CrossRef]
- WHO. A Compendium of Standards for Wastewater Reuse in the Eastern Mediterranean Region; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- EC. Minimum Quality Requirements for Water Reuse in Agricultural Irrigation and Aquifer Recharge—Towards a Water Reuse Regulatory Instrument at EU Level; EC: Luxembourg, 2017. [Google Scholar]
- Sorlini, S.; Collivignarelli, M.C.; Canato, M. Effectiveness in chlorite removal by two activated carbons under different working conditions: A laboratory study. J. Water Supply Res. Technol. 2015, 64, 450–461. [Google Scholar] [CrossRef]
Influent GW Concentration 1 | Effluent Concentration | ||||
---|---|---|---|---|---|
Unit 1 Carex oshimensis | Unit 2 Cyperus papyrus | Unit 3 Phragmites australis | |||
pH [–] | Mean | 7.5 | 7.5 | 7.6 | 7.6 |
C.I. | 0.8 | 0.7 | 0.7 | 0.7 | |
Maximum value | 8.5 | 8.4 | 8.5 | 8.5 | |
Minimum value | 6.8 | 6.9 | 6.9 | 6.9 | |
Electrical conductivity [μS cm−1] | Mean | 481.3 | 809.3 | 823.0 | 733.7 |
C.I. | 59.3 | 146.6 | 250.9 | 165.4 | |
Maximum value | 516 | 952 | 1079 | 891 | |
Minimum value | 421 | 699 | 690 | 602 | |
Turbidity [NTU] | Mean | 121 | 30.8 | 41.3 | 36.2 |
C.I. | 59.4 | 6.6 | 7.5 | 12.7 | |
Maximum value | 227 | 41.1 | 49.4 | 57.8 | |
Minimum value | 64 | 22 | 29 | 21 | |
COD [mg L−1] | Mean | 1745.3 | 177.1 | 171.1 | 181.4 |
C.I. | 430.6 | 123.8 | 113.1 | 111.9 | |
Maximum value | 2200 | 359 | 330 | 335 | |
Minimum value | 1281 | 66 | 60 | 64 | |
BOD5 [mg L−1] | Mean | 720 | 65 | 70 | 107.5 |
C.I. | 153.7 | 5.7 | 17 | 70.3 | |
Maximum value | 1000 | 70 | 95 | 215 | |
Minimum value | 550 | 60 | 55 | 70 | |
TN [mg L−1] | Mean | 19.2 | 5.8 | 8.8 | 6.5 |
C.I. | 5 | 1.4 | 2.1 | 1 | |
Maximum value | 24 | 8 | 12.2 | 7.6 | |
Minimum value | 11.6 | 4 | 6.4 | 5.3 | |
TP [mg L−1] | Mean | 2.4 | 0.9 | 1 | 1 |
C.I. | 1.3 | 0.6 | 0.4 | 0.3 | |
Maximum value | 5 | 2.1 | 1.6 | 1.4 | |
Minimum value | 1.1 | 0.5 | 0.5 | 0.5 |
Parameter | Phase P1 [HRT = 1 day] | Phase P2 [HRT = 3 days] | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Influent GW Concentration | Effluent Concentration | Removal Yields Phase P1 [% ± C.I.] 1 | Influent GW Concentration | Effluent Concentration | Removal Yields Phase P2 [% ± C.I.] 1 | |||||||||
Mean Value [± C.I.] | Maximum Value | Minimum Value | Mean Value [± C.I.] | Maximum Value | Minimum Value | Mean Value [± C.I.] | Maximum Value | Minimum Value | Mean Value [± C.I.] | Maximum Value | Minimum Value | |||
pH [-] | 8.3 [± 0.5] | 8.8 | 7.5 | 8.0 [± 0.5] | 8.7 | 7.2 | [-] | 8.3 [± 0.3] | 8.9 | 7.7 | 8.0 [± 0.3] | 8.5 | 7.3 | [-] |
Electrical conductivity [μS/cm] | 1824.6 [± 683.9] | 3580 | 531 | 1293.8 [± 191] | 1884 | 783 | [-] | 401.9 [± 52.7] | 561 | 356 | 1071.3 [± 140.8] | 1377 | 890 | [-] |
Turbidity [NTU] | 468.6 [± 157.7] | 773 | 99 | 11.9 [± 5.1] | 32 | 3 | 95.7 [± 2.8] | 66.2 [± 26.3] | 127 | 31 | 5.2 [± 3.1] | 12 | 2.1 | 92 [± 3.9] |
TSS [mg L−1] | 27 [± 9.3] | 44 | 4 | 1.5 [± 1.5] | 5 | 0 | 96.3 [± 3.8] | 49.7 [± 17.1] | 80 | 20 | 8 [± 3.7] | 16 | 0 | 84.6 [± 7.2] |
COD [mg L−1] | 1327.7 [± 275.8] | 1794 | 469 | 122.6 [± 32.8] | 221 | 66 | 89.5 [± 3.9] | 1119 [± 350.8] | 1900 | 494 | 119 [± 26] | 172 | 62 | 88.8 [± 1.4] |
BOD5 [mg L−1] | 522.2 [± 94.4] | 686 | 280 | 55 [± 9.6] | 74 | 26 | 88.1 [± 3.7] | 255.7 [± 33.9] | 340 | 210 | 20.6 [± 5.5] | 30 | 10 | 92 [± 2] |
TN [mg L−1] | 33.6 [± 8.2] | 47.2 | 16.7 | 7.2 [± 2.6] | 10.8 | 2.8 | 77.6 [± 8.7] | 11 [± 2.9] | 17 | 7.9 | 6.1 [± 1.1] | 8 | 4.7 | 42.5 [± 11.1] |
N-NO2− [mg L−1] | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 0.3 [± 0.3] | 0.7 | 0.1 | 0.1 [± 0.1] | 0.4 | 0.1 | increase |
N-NO3− [mg L−1] | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 0.9 [± 0.5] | 1.3 | 0.1 | 3.8 [± 1.7] | 4.9 | 1.3 | increase |
TKN[mg L−1] | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 10.3 [± 4.9] | 15.5 | 3.6 | 1.9 [± 1.4] | 3.1 | 0 | 66.2 [± 14.5] |
TP [mg L−1] | 5.8 [± 2.7] | 13 | 2.2 | 2.1 [± 0.4] | 3 | 0.8 | 50.7 [± 19.5] | 2.3 [± 0.6] | 3.1 | 1.6 | 1 [± 0.2] | 1.4 | 0.8 | 54.6 [± 7.8] |
Escherichia coli [UFC 100−1 mL−1] | 3.3 × 104 [± 1 × 104] | 5.0 × 104 | 1.8 × 102 | 17.2 [± 13.5] | 60 | 1 | 2.8 log [± 0.8 log] | 2.4 × 105 [± 1.7 × 105] | 4 × 105 | 1.1 × 105 | 937 [± 361] | 1.3 × 103 | 7 × 102 | 2.4 log [± 0.2 log] |
Parameters | Pilot-Scale HFCW Effluent [Phase PA] | Pilot-Scale HFCW Effluent [Phase PB] | WHO Recommendations [69] | EU Recommendations [70] | |||||
---|---|---|---|---|---|---|---|---|---|
Irrigation of Ornamental Fruit Trees and Fodder Crops | Irrigation of Vegetables Likely to be Eaten Uncooked | Toilet Flushing | Class A 1 | Class B 2 | Class C 3 | Class D 4 | |||
pH [-] | 8.0 ± 0.5 | 8 ± 0.3 | n.p. | n.p. | n.p. | n.p. | n.p. | n.p. | n.p. |
Conductivity [μS cm−1] | 1293.8 ± 191 | 1071 ± 141 | n.p. | n.p. | n.p. | n.p. | n.p. | n.p. | n.p. |
Turbidity [NTU] | 11.9 ± 5.1 | 5.2 ± 3.1 | n.p. | n.p. | n.p. | 5 | n.p. | n.p. | n.p. |
TSS [mg L−1] | 1.5 ± 1.5 | 8 ± 3.7 | 140 | 20 | 10 | 10 | 35 | 35 | 35 |
COD [mg L−1] | 122.6 ± 32.8 | 119 ± 26 | n.p. | n.p. | n.p. | n.p. | n.p. | n.p. | n.p. |
BOD5 [mg L−1] | 55 ± 9.6 | 20.6 ± 5.5 | 240 | 20 | 10 | 10 | 25 | 25 | 25 |
TN [mg L−1] | 7.2 ± 2.6 | 6.1 ± 1.1 | n.p. | n.p. | n.p. | n.p. | n.p. | n.p. | n.p. |
N-NO2− [mg L−1] | n.a. | 0.1 ± 0.1 | n.p. | n.p. | n.p. | n.p. | n.p. | n.p. | n.p. |
N-NO3− [mg L−1] | n.a. | 3.8 ± 1.7 | n.p. | n.p. | n.p. | n.p. | n.p. | n.p. | n.p. |
TKN [mg L−1] | n.a. | 1.9 ± 1.4 | n.p. | n.p. | n.p. | n.p. | n.p. | n.p. | n.p. |
TP [mg L−1] | 2.1 ± 0.4 | 1 ± 0.3 | n.p. | n.p. | n.p. | n.p. | n.p. | n.p. | n.p. |
Escherichia coli [UFC 100−1 mL−1] | 17.2 ± 13.5 | 937 ± 237 | 1000 5 | 200 5 | 10 5 | 10 | 100 | 1000 | 1000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collivignarelli, M.C.; Carnevale Miino, M.; Gomez, F.H.; Torretta, V.; Rada, E.C.; Sorlini, S. Horizontal Flow Constructed Wetland for Greywater Treatment and Reuse: An Experimental Case. Int. J. Environ. Res. Public Health 2020, 17, 2317. https://doi.org/10.3390/ijerph17072317
Collivignarelli MC, Carnevale Miino M, Gomez FH, Torretta V, Rada EC, Sorlini S. Horizontal Flow Constructed Wetland for Greywater Treatment and Reuse: An Experimental Case. International Journal of Environmental Research and Public Health. 2020; 17(7):2317. https://doi.org/10.3390/ijerph17072317
Chicago/Turabian StyleCollivignarelli, Maria Cristina, Marco Carnevale Miino, Franco Hernan Gomez, Vincenzo Torretta, Elena Cristina Rada, and Sabrina Sorlini. 2020. "Horizontal Flow Constructed Wetland for Greywater Treatment and Reuse: An Experimental Case" International Journal of Environmental Research and Public Health 17, no. 7: 2317. https://doi.org/10.3390/ijerph17072317
APA StyleCollivignarelli, M. C., Carnevale Miino, M., Gomez, F. H., Torretta, V., Rada, E. C., & Sorlini, S. (2020). Horizontal Flow Constructed Wetland for Greywater Treatment and Reuse: An Experimental Case. International Journal of Environmental Research and Public Health, 17(7), 2317. https://doi.org/10.3390/ijerph17072317