Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3122 KiB  
Article
Phytochemicals Recovery from Grape Pomace: Extraction Improvement and Chemometric Study
by Maura Ferri, Vasco Lima, Alessandro Zappi, Ana Luísa Fernando, Dora Melucci and Annalisa Tassoni
Foods 2023, 12(5), 959; https://doi.org/10.3390/foods12050959 - 24 Feb 2023
Cited by 6 | Viewed by 2299
Abstract
In the last 20 years, an increased interest has been shown in the application of different types and combinations of enzymes to obtain phenolic extracts from grape pomace in order to maximize its valorization. Within this framework, the present study aims at improving [...] Read more.
In the last 20 years, an increased interest has been shown in the application of different types and combinations of enzymes to obtain phenolic extracts from grape pomace in order to maximize its valorization. Within this framework, the present study aims at improving the recovery of phenolic compounds from Merlot and Garganega pomace and at contributing to the scientific background of enzyme-assisted extraction. Five commercial cellulolytic enzymes were tested in different conditions. Phenolic compound extraction yields were analyzed via a Design of Experiments (DoE) methodology and a second extraction step with acetone was sequentially added. According to DoE, 2% w/w enzyme/substrate ratio was more effective than 1%, allowing a higher total phenol recovery, while the effect of incubation time (2 or 4 h) variation was more enzyme-dependent. Extracts were characterized via spectrophotometric and HPLC-DAD analyses. The results proved that enzymatic and acetone Merlot and Garganega pomace extracts were complex mixtures of compounds. The use of different cellulolytic enzymes led to different extract compositions, as demonstrated using PCA models. The enzyme effects were observed both in water enzymatic and in the subsequent acetone extracts, probably due to their specific grape cell wall degradation and leading to the recovery of different molecule arrays. Full article
Show Figures

Graphical abstract

17 pages, 1847 KiB  
Review
Protein-Based Fat Replacers: A Focus on Fabrication Methods and Fat-Mimic Mechanisms
by Niloufar Nourmohammadi, Luke Austin and Da Chen
Foods 2023, 12(5), 957; https://doi.org/10.3390/foods12050957 - 23 Feb 2023
Cited by 13 | Viewed by 6972
Abstract
The increasing occurrence of obesity and other non-communicable diseases has shifted the human diet towards reduced calorie intake. This drives the market to develop low-fat/non-fat food products with limited deterioration of textural properties. Thus, developing high-quality fat replacers which can replicate the role [...] Read more.
The increasing occurrence of obesity and other non-communicable diseases has shifted the human diet towards reduced calorie intake. This drives the market to develop low-fat/non-fat food products with limited deterioration of textural properties. Thus, developing high-quality fat replacers which can replicate the role of fat in the food matrix is essential. Among all the established types of fat replacers, protein-based ones have shown a higher compatibility with a wide range of foods with limited contribution to the total calories, including protein isolate/concentrate, microparticles, and microgels. The approach to fabricating fat replacers varies with their types, such as thermal–mechanical treatment, anti-solvent precipitation, enzymatic hydrolysis, complexation, and emulsification. Their detailed process is summarized in the present review with a focus on the latest findings. The fat-mimic mechanisms of fat replacers have received little attention compared to the fabricating methods; attempts are also made to explain the underlying principles of fat replacers from the physicochemical prospect. Finally, a future direction on the development of desirable fat replacers in a more sustainable way was also pointed out. Full article
Show Figures

Graphical abstract

16 pages, 2453 KiB  
Article
Assessment of Polyphenols Bioaccessibility, Stability, and Antioxidant Activity of White Mugwort (Artemisia lactiflora Wall.) during Static In Vitro Gastrointestinal Digestion
by Nacha Udomwasinakun, Shikha Saha, Ana-Isabel Mulet-Cabero, Peter James Wilde and Tantawan Pirak
Foods 2023, 12(5), 949; https://doi.org/10.3390/foods12050949 - 23 Feb 2023
Cited by 6 | Viewed by 2655
Abstract
White mugwort (Artemisia lactiflora Wall.), a traditional Chinese medicine, has been widely consumed in different forms for health care purposes. In this study, the in vitro digestion model of INFOGEST was used to investigate the bioaccessibility, stability, and antioxidant activity of polyphenols [...] Read more.
White mugwort (Artemisia lactiflora Wall.), a traditional Chinese medicine, has been widely consumed in different forms for health care purposes. In this study, the in vitro digestion model of INFOGEST was used to investigate the bioaccessibility, stability, and antioxidant activity of polyphenols from two different forms of white mugwort, including dried powder (P 50, 100, and 150 mg/mL) and fresh extract (FE 5, 15, and 30 mg/mL). During digestion, the bioaccessibility of TPC and antioxidant activity were influenced by the form and ingested concentration of white mugwort. The highest bioaccessibility of the total phenolic content (TPC) and relative antioxidant activity were found at the lowest P and FE concentrations, as calculated relative to the TPC and antioxidant activity of P-MetOH and FE-MetOH based on the dry weight of the sample. Post-digestion, in comparison to P, FE had higher bioaccessibility (FE = 287.7% and P = 130.7%), relative DPPH radical scavenging activity (FE = 104.2% and P = 47.3%), and relative FRAP (FE = 673.5% and P = 66.5%). Nine compounds, 3-caffeoylquinic acid, 5-caffeoylquinic acid, 3,5-di-caffeoylquinic acid, sinapolymalate, isovitexin, kaempferol, morin, rutin, and quercetin, identified in both samples were modified during digestion, yet still provided strong antioxidant activity. These findings suggest that white mugwort extract possesses a higher polyphenol bioaccessibility, showing great potential as a functional ingredient. Full article
Show Figures

Graphical abstract

15 pages, 1361 KiB  
Article
Wild Mushrooms as a Source of Protein: A Case Study from Central Europe, Especially the Czech Republic
by Petr Procházka, Jana Soukupová, Kevin J. Mullen, Karel Tomšík, Jr. and Inna Čábelková
Foods 2023, 12(5), 934; https://doi.org/10.3390/foods12050934 - 22 Feb 2023
Cited by 9 | Viewed by 2959
Abstract
Wild mushroom foraging has a long tradition, especially in the region of Central Europe. Wild mushrooms are a valuable food resource, as they provide nutritional benefits to the European population. They offer a relatively high content of protein and are traditionally used in [...] Read more.
Wild mushroom foraging has a long tradition, especially in the region of Central Europe. Wild mushrooms are a valuable food resource, as they provide nutritional benefits to the European population. They offer a relatively high content of protein and are traditionally used in many European cuisines as a substitute for meat. This is particularly true in times of crisis, such as wars and pandemics. The study presented in this paper shows that wild mushrooms can substitute around 0.2 percent of daily protein intake and contribute around 3% to the agricultural output of the Czech economy, which was selected as a representative for Central Europe. The calculated real price of wild mushrooms indicates their increasing popularity as a source of food protein in Central Europe, while their price seems to be independent of the quantity supplied. Full article
Show Figures

Figure 1

28 pages, 1129 KiB  
Review
Bioactive Compounds as Inhibitors of Inflammation, Oxidative Stress and Metabolic Dysfunctions via Regulation of Cellular Redox Balance and Histone Acetylation State
by Hyunju Kang and Bohkyung Kim
Foods 2023, 12(5), 925; https://doi.org/10.3390/foods12050925 - 22 Feb 2023
Cited by 12 | Viewed by 46579
Abstract
Bioactive compounds (BCs) are known to exhibit antioxidant, anti-inflammatory, and anti-cancer properties by regulating the cellular redox balance and histone acetylation state. BCs can control chronic oxidative states caused by dietary stress, i.e., alcohol, high-fat, or high-glycemic diet, and adjust the redox balance [...] Read more.
Bioactive compounds (BCs) are known to exhibit antioxidant, anti-inflammatory, and anti-cancer properties by regulating the cellular redox balance and histone acetylation state. BCs can control chronic oxidative states caused by dietary stress, i.e., alcohol, high-fat, or high-glycemic diet, and adjust the redox balance to recover physiological conditions. Unique functions of BCs to scavenge reactive oxygen species (ROS) can resolve the redox imbalance due to the excessive generation of ROS. The ability of BCs to regulate the histone acetylation state contributes to the activation of transcription factors involved in immunity and metabolism against dietary stress. The protective properties of BCs are mainly ascribed to the roles of sirtuin 1 (SIRT1) and nuclear factor erythroid 2–related factor 2 (NRF2). As a histone deacetylase (HDAC), SIRT1 modulates the cellular redox balance and histone acetylation state by mediating ROS generation, regulating nicotinamide adenine dinucleotide (NAD+)/NADH ratio, and activating NRF2 in metabolic progression. In this study, the unique functions of BCs against diet-induced inflammation, oxidative stress, and metabolic dysfunction have been considered by focusing on the cellular redox balance and histone acetylation state. This work may provide evidence for the development of effective therapeutic agents from BCs. Full article
Show Figures

Figure 1

19 pages, 3075 KiB  
Article
In Silico Evidence of the Multifunctional Features of Lactiplantibacillus pentosus LPG1, a Natural Fermenting Agent Isolated from Table Olive Biofilms
by Elio López-García, Antonio Benítez-Cabello, Javier Ramiro-García, Victor Ladero and Francisco Noé Arroyo-López
Foods 2023, 12(5), 938; https://doi.org/10.3390/foods12050938 - 22 Feb 2023
Cited by 6 | Viewed by 2006
Abstract
In recent years, there has been a growing interest in obtaining probiotic bacteria from plant origins. This is the case of Lactiplantibacillus pentosus LPG1, a lactic acid bacterial strain isolated from table olive biofilms with proven multifunctional features. In this work, we have [...] Read more.
In recent years, there has been a growing interest in obtaining probiotic bacteria from plant origins. This is the case of Lactiplantibacillus pentosus LPG1, a lactic acid bacterial strain isolated from table olive biofilms with proven multifunctional features. In this work, we have sequenced and closed the complete genome of L. pentosus LPG1 using both Illumina and PacBio technologies. Our intention is to carry out a comprehensive bioinformatics analysis and whole-genome annotation for a further complete evaluation of the safety and functionality of this microorganism. The chromosomic genome had a size of 3,619,252 bp, with a GC (Guanine-Citosine) content of 46.34%. L. pentosus LPG1 also had two plasmids, designated as pl1LPG1 and pl2LPG1, with lengths of 72,578 and 8713 bp (base pair), respectively. Genome annotation revealed that the sequenced genome consisted of 3345 coding genes and 89 non-coding sequences (73 tRNA and 16 rRNA genes). Taxonomy was confirmed by Average Nucleotide Identity analysis, which grouped L. pentosus LPG1 with other sequenced L. pentosus genomes. Moreover, the pan-genome analysis showed that L. pentosus LPG1 was closely related to the L. pentosus strains IG8, IG9, IG11, and IG12, all of which were isolated from table olive biofilms. Resistome analysis reported the absence of antibiotic resistance genes, whilst PathogenFinder tool classified the strain as a non-human pathogen. Finally, in silico analysis of L. pentosus LPG1 showed that many of its previously reported technological and probiotic phenotypes corresponded with the presence of functional genes. In light of these results, we can conclude that L. pentosus LPG1 is a safe microorganism and a potential human probiotic with a plant origin and application as a starter culture for vegetable fermentations. Full article
(This article belongs to the Special Issue New Insight in Microbial Diversity and Genomic in Foods)
Show Figures

Figure 1

18 pages, 2483 KiB  
Article
Effect of Hyaluronic Acid and Kappa-Carrageenan on Milk Properties: Rheology, Protein Stability, Foaming, Water-Holding, and Emulsification Properties
by Suresh G. Sutariya and Prafulla Salunke
Foods 2023, 12(5), 913; https://doi.org/10.3390/foods12050913 - 21 Feb 2023
Cited by 8 | Viewed by 2357
Abstract
Hyaluronic acid (HA) is now widely known for its ability to bind water and impart texture. The combined effects of HA and kappa-carrageenan (KC) have not yet been investigated, though. In this study, we looked at the synergistic effects of HA and KC [...] Read more.
Hyaluronic acid (HA) is now widely known for its ability to bind water and impart texture. The combined effects of HA and kappa-carrageenan (KC) have not yet been investigated, though. In this study, we looked at the synergistic effects of HA and KC (concentrations of 0.1 and 0.25%, and ratios of 85:15, 70:30, and 50:50 for each concentration) on the rheological properties, heat stability, protein phase separation, water-holding capacity, emulsification properties, and foaming properties of skim milk. When HA and KC were combined in various ratios with a skim milk sample, this resulted in lesser protein phase separation and a higher water-holding capacity than when HA and KC were utilized separately. Similarly, for the sample with a 0.1% concentration, the combination of HA + KC blends demonstrated a synergistic impact with greater emulsifying activity and stability. The samples with a concentration of 0.25% did not exhibit this synergistic effect, and the emulsifying activity and stability were mostly due to the HA’s higher emulsifying activity and stability at 0.25% concentration. Similarly, for rheological (apparent viscosity, consistency coefficient K, and flow behavior index n) and foaming properties, the synergistic effect of the HA + KC blend was not readily apparent; rather, these values were mostly due to an increase in the amount of KC in the HA + KC blend ratios. When HC-control and KC-control samples were compared to various HA + KC mix ratios, there was no discernible difference in the heat stability. With the added benefits of protein stability (reduced phase separation), increased water-holding capacity, improved emulsification capabilities, and foaming abilities, the combination of HA + KC would be highly helpful in many texture-modifying applications. Full article
(This article belongs to the Special Issue Food Hydrocolloids: Structure, Properties and Application)
Show Figures

Figure 1

16 pages, 271 KiB  
Article
Opportunities to Strengthen Fish Supply Chain Policy to Improve External Food Environments for Nutrition in the Solomon Islands
by Senoveva Mauli, Anne-Marie Thow, Georgina Mulcahy, Grace Andrew, Anouk Ride and Jillian Tutuo
Foods 2023, 12(4), 900; https://doi.org/10.3390/foods12040900 - 20 Feb 2023
Cited by 5 | Viewed by 2559
Abstract
Malnutrition and food insecurity have significant social and economic impacts in small island developing states, such as the Solomon Islands. Enhancing the domestic supply of fish, the main source of local protein, can contribute to improved nutrition and food security. This research aimed [...] Read more.
Malnutrition and food insecurity have significant social and economic impacts in small island developing states, such as the Solomon Islands. Enhancing the domestic supply of fish, the main source of local protein, can contribute to improved nutrition and food security. This research aimed to improve understanding of the policy interface between the fisheries and health sectors and identify opportunities to strengthen fish supply chain policy to improve domestic (particularly urban) access to fish in the Solomon Islands. The study design drew on theories of policy learning and policy change and analysed policies using a consumption-oriented supply chain approach. Interviews were conducted with 12 key informants in the Solomon Islands, and 15 policy documents were analysed. Analysis of policy documents and interview data indicated that there were strengths as well as opportunities in the existing policy context. In particular, community-based fisheries management approaches and explicit recognition of the links between fisheries and nutrition were key strengths. Challenges included gaps in implementation, variations in capacities across government actors and communities, and limited attention to domestic monitoring and enforcement. Improving the effectiveness of resource management efforts may result in sustainable outcomes for both livelihoods and health, which will accomplish priorities at the national and sub-national levels and support the achievement of the Solomon Islands’ commitments to the Sustainable Development Goals. Full article
(This article belongs to the Section Food Systems)
15 pages, 2182 KiB  
Article
Study of the Technological Properties of Pedrosillano Chickpea Aquafaba and Its Application in the Production of Egg-Free Baked Meringues
by Paula Fuentes Choya, Patricia Combarros-Fuertes, Daniel Abarquero Camino, Erica Renes Bañuelos, Bernardo Prieto Gutiérrez, María Eugenia Tornadijo Rodríguez and José María Fresno Baro
Foods 2023, 12(4), 902; https://doi.org/10.3390/foods12040902 - 20 Feb 2023
Cited by 7 | Viewed by 3453
Abstract
Aquafaba is a by-product derived from legume processing. The aim of this study was to assess the compositional differences and the culinary properties of Pedrosillano chickpea aquafaba prepared with different cooking liquids (water, vegetable broth, meat broth and the covering liquid of canned [...] Read more.
Aquafaba is a by-product derived from legume processing. The aim of this study was to assess the compositional differences and the culinary properties of Pedrosillano chickpea aquafaba prepared with different cooking liquids (water, vegetable broth, meat broth and the covering liquid of canned chickpeas) and to evaluate the sensory characteristics of French-baked meringues made with the different aquafaba samples, using egg white as a control. The content of total solids, protein, fat, ash and carbohydrates of the aquafaba samples were quantified. Foaming and emulsifying capacities, as well as the foam and emulsions stabilities were determined. Instrumental and panel-tester analyses were accomplished to evaluate the sensory characteristics of French-baked meringues. The ingredients added to the cooking liquid and the intensity of the heat treatment affected the aquafaba composition and culinary properties. All types of aquafaba showed good foaming properties and intermediate emulsifying capacities; however, the commercial canned chickpea’s aquafaba was the most similar to egg white. The aquafaba meringues showed less alveoli, greater hardness and fracturability and minimal color changes after baking compared with egg white meringues; the meat and vegetable broth’s aquafaba meringues were the lowest rated by the panel-tester and those prepared with canned aquafaba were the highest scored in the sensory analysis. Full article
Show Figures

Graphical abstract

29 pages, 2275 KiB  
Review
Sample Preparation and Analytical Techniques in the Determination of Trace Elements in Food: A Review
by Leina El Hosry, Nicolas Sok, Rosalie Richa, Layal Al Mashtoub, Philippe Cayot and Elias Bou-Maroun
Foods 2023, 12(4), 895; https://doi.org/10.3390/foods12040895 - 20 Feb 2023
Cited by 34 | Viewed by 15937
Abstract
Every human being needs around 20 essential elements to maintain proper physiological processes. However, trace elements are classified as beneficial, essential, or toxic for living organisms. Some trace elements are considered essential elements for the human body in adequate quantities (dietary reference intakes, [...] Read more.
Every human being needs around 20 essential elements to maintain proper physiological processes. However, trace elements are classified as beneficial, essential, or toxic for living organisms. Some trace elements are considered essential elements for the human body in adequate quantities (dietary reference intakes, DRIs), while others have undetermined biological functions and are considered undesirable substances or contaminants. Pollution with trace elements is becoming a great concern since they can affect biological functions or accumulate in organs, causing adverse effects and illnesses such as cancer. These pollutants are being discarded in our soils, waters, and the food supply chain due to several anthropogenic factors. This review mainly aims to provide a clear overview of the commonly used methods and techniques in the trace element analysis of food from sample preparations, namely, ashing techniques, separation/extraction methods, and analytical techniques. Ashing is the first step in trace element analysis. Dry ashing or wet digestion using strong acids at high pressure in closed vessels are used to eliminate the organic matter. Separation and pre-concentration of elements is usually needed before proceeding with the analytical techniques to eliminate the interferences and ameliorate the detection limits. Full article
(This article belongs to the Special Issue Novel Analytical Techniques for Detecting Trace Elements in Foods)
Show Figures

Graphical abstract

14 pages, 1305 KiB  
Article
Enhancing the Techno-Functionality of Pea Flour by Air Injection-Assisted Extrusion at Different Temperatures and Flour Particle Sizes
by Nasibeh Y. Sinaki, Jitendra Paliwal and Filiz Koksel
Foods 2023, 12(4), 889; https://doi.org/10.3390/foods12040889 - 19 Feb 2023
Cited by 7 | Viewed by 2061
Abstract
Industrial applications of pulses in various food products depend on pulse flour techno-functionality. To manipulate the techno-functional properties of yellow pea flour, the effects of flour particle size (small vs. large), extrusion temperature profile (120, 140 and 160 °C at the die) and [...] Read more.
Industrial applications of pulses in various food products depend on pulse flour techno-functionality. To manipulate the techno-functional properties of yellow pea flour, the effects of flour particle size (small vs. large), extrusion temperature profile (120, 140 and 160 °C at the die) and air injection pressure (0, 150 and 300 kPa) during extrusion cooking were investigated. Extrusion cooking caused the denaturation of proteins and gelatinization of starch in the flour, which induced changes in the techno-functionality of the extruded flour (i.e., increased water solubility, water binding capacity and cold viscosity and decreased emulsion capacity, emulsion stability, and trough and final viscosities). In general, the large particle size flour required less energy input to be extruded and had higher emulsion stability and trough and final viscosities compared to the small particle size flour. Overall, among all of the treatments studied, extrudates produced with air injection at 140 and 160 °C had higher emulsion capacity and emulsion stability, making them relatively better suited food ingredients for emulsified foods (e.g., sausages). The results indicated air injection’s potential as a novel extrusion technique combined with modification of flour particle size distribution and extrusion processing conditions to effectively manipulate product techno-functionality and broaden the applications of pulse flours in the food industry. Full article
Show Figures

Figure 1

12 pages, 1299 KiB  
Article
Mitigation of Salmonella on Food Contact Surfaces by Using Organic Acid Mixtures Containing 2-Hydroxy-4-(methylthio) Butanoic Acid (HMTBa)
by Aiswariya Deliephan, Janak Dhakal, Bhadriraju Subramanyam and Charles G. Aldrich
Foods 2023, 12(4), 874; https://doi.org/10.3390/foods12040874 - 18 Feb 2023
Cited by 4 | Viewed by 2256
Abstract
Contaminated surfaces can transmit pathogens to food in industrial and domestic food-handling environments. Exposure to pathogens on food contact surfaces may take place via the cross-contamination of pathogens during postprocessing activities. Formaldehyde-based commercial sanitizers in recent years are less commonly being used within [...] Read more.
Contaminated surfaces can transmit pathogens to food in industrial and domestic food-handling environments. Exposure to pathogens on food contact surfaces may take place via the cross-contamination of pathogens during postprocessing activities. Formaldehyde-based commercial sanitizers in recent years are less commonly being used within food manufacturing facilities due to consumer perception and labeling concerns. There is interest in investigating clean-label, food-safe components for use on food contact surfaces to mitigate contamination from pathogenic bacteria, including Salmonella. In this study, the antimicrobial effects of two types of organic acid mixtures containing 2-hydroxy-4-(methylthio) butanoic acid (HMTBa), Activate DA™ and Activate US WD-MAX™, against Salmonella when applied onto various food contact surfaces were evaluated. The efficacy of Activate DA (HMTBa + fumaric acid + benzoic acid) at 1% and 2% and Activate US WD-MAX (HMTBa + lactic acid + phosphoric acid) at 0.5% and 1% against Salmonella enterica (serovars Enteritidis, Heidelberg, and Typhimurium) were evaluated on six different material surfaces: plastic (bucket elevator and tote bag), rubber (bucket elevator belt and automobile tire), stainless steel, and concrete. There was a significant difference in the Salmonella log reduction on the material surfaces due to the organic acid treatments when compared to the untreated surfaces. The type of material surface also had an effect on the log reductions obtained. Stainless steel and plastic (tote) had the highest Salmonella log reductions (3–3.5 logs), while plastic (bucket elevator) and rubber (tire) had the lowest log reductions (1–1.7 logs) after treatment with Activate US WD-MAX. For Activate DA, the lowest log reductions (~1.6 logs) were observed for plastic (bucket elevator) and rubber (tire), and the highest reductions were observed for plastic (tote), stainless steel, and concrete (2.8–3.2 logs). Overall, the results suggested that Activate DA at 2% and Activate US WD-MAX at 1% are potentially effective at reducing Salmonella counts on food contact surfaces by 1.6–3.5 logs. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Graphical abstract

17 pages, 1452 KiB  
Review
Fucoidan-Derived Functional Oligosaccharides: Recent Developments, Preparation, and Potential Applications
by Min Wang, Suresh Veeraperumal, Saiyi Zhong and Kit-Leong Cheong
Foods 2023, 12(4), 878; https://doi.org/10.3390/foods12040878 - 18 Feb 2023
Cited by 40 | Viewed by 4354
Abstract
Oligosaccharides derived from natural resources are attracting increasing attention as both food and nutraceutical products because of their beneficial health effects and lack of toxicity. During the past few decades, many studies have focused on the potential health benefits of fucoidan. Recently, new [...] Read more.
Oligosaccharides derived from natural resources are attracting increasing attention as both food and nutraceutical products because of their beneficial health effects and lack of toxicity. During the past few decades, many studies have focused on the potential health benefits of fucoidan. Recently, new interest has emerged in fucoidan, partially hydrolysed into fuco-oligosaccharides (FOSs) or low-molecular weight fucoidan, owing to their superior solubility and biological activities compared with fucoidan. There is considerable interest in their development for use in the functional food, cosmetic, and pharmaceutical industries. Therefore, this review summarises and discusses the preparation of FOSs from fucoidan using mild acid hydrolysis, enzymatic depolymerisation, and radical degradation methods, and discusses the advantages and disadvantages of hydrolysis methods. Several purification steps performed to obtain FOSs (according to the latest reports) are also reviewed. Moreover, the biological activities of FOS that are beneficial to human health are summarised based on evidence from in vitro and in vivo studies, and the possible mechanisms for the prevention or treatment of various diseases are discussed. Full article
(This article belongs to the Special Issue Carbohydrate Chemistry, Nutrition and Utilization)
Show Figures

Figure 1

19 pages, 985 KiB  
Review
Green Solvents: Emerging Alternatives for Carotenoid Extraction from Fruit and Vegetable By-Products
by Adriana Viñas-Ospino, Daniel López-Malo, María José Esteve, Ana Frígola and Jesús Blesa
Foods 2023, 12(4), 863; https://doi.org/10.3390/foods12040863 - 17 Feb 2023
Cited by 23 | Viewed by 4726
Abstract
Carotenoids have important implications for human health and the food industry due to their antioxidant and functional properties. Their extraction is a crucial step for being able to concentrate them and potentially include them in food products. Traditionally, the extraction of carotenoids is [...] Read more.
Carotenoids have important implications for human health and the food industry due to their antioxidant and functional properties. Their extraction is a crucial step for being able to concentrate them and potentially include them in food products. Traditionally, the extraction of carotenoids is performed using organic solvents that have toxicological effects. Developing greener solvents and techniques for extracting high-value compounds is one of the principles of green chemistry and a challenge for the food industry. This review will analyze the use of green solvents, namely, vegetable oils, supercritical fluids, deep eutectic solvents, ionic liquids, and limonene, combined with nonconventional techniques (ultrasound-assisted extraction and microwave), for carotenoid extraction from fruit and vegetable by-products as upcoming alternatives to organic solvents. Recent developments in the isolation of carotenoids from green solvents and their inclusion in food products will also be discussed. The use of green solvents offers significant advantages in extracting carotenoids, both by decreasing the downstream process of solvent elimination, and the fact that the carotenoids can be included directly in food products without posing a risk to human health. Full article
Show Figures

Figure 1

16 pages, 1843 KiB  
Review
Mediterranean Diet: The Role of Phenolic Compounds from Aromatic Plant Foods
by Amélia Delgado, Sandra Gonçalves and Anabela Romano
Foods 2023, 12(4), 840; https://doi.org/10.3390/foods12040840 - 16 Feb 2023
Cited by 25 | Viewed by 3145
Abstract
Today’s global food system aggravates climate change while failing in meeting SDG2 and more. Yet, some sustainable food cultures, such as the Mediterranean Diet (MD), are simultaneously safe, healthy, and rooted in biodiversity. Their wide range of fruits, herbs, and vegetables convey many [...] Read more.
Today’s global food system aggravates climate change while failing in meeting SDG2 and more. Yet, some sustainable food cultures, such as the Mediterranean Diet (MD), are simultaneously safe, healthy, and rooted in biodiversity. Their wide range of fruits, herbs, and vegetables convey many bioactive compounds, often associated with colour, texture, and aroma. Phenolic compounds are largely responsible for such features of MD’s foods. These plant secondary metabolites all share in vitro bioactivities (e.g., antioxidants), and some are evidenced in vivo (e.g., plant sterols lower cholesterol levels in blood). The present work examines the role of polyphenols in the MD, with respect to human and planetary health. Since the commercial interest in polyphenols is increasing, a strategy for the sustainable exploitation of Mediterranean plants is essential in preserving species at risk while valuing local cultivars (e.g., through the geographical indication mechanism). Finally, the linkage of food habits with cultural landscapes, a cornerstone of the MD, should enable awareness-raising about seasonality, endemism, and other natural constraints to ensure the sustainable exploitation of Mediterranean plants. Full article
(This article belongs to the Special Issue Mediterranean Diet: Promoting Health and Sustainability)
Show Figures

Figure 1

23 pages, 699 KiB  
Review
Cereulide and Emetic Bacillus cereus: Characterizations, Impacts and Public Precautions
by Shuo Yang, Yating Wang, Yangtai Liu, Kai Jia, Zhen Zhang and Qingli Dong
Foods 2023, 12(4), 833; https://doi.org/10.3390/foods12040833 - 15 Feb 2023
Cited by 22 | Viewed by 5269
Abstract
Cereulide, which can be produced by Bacillus cereus, is strongly associated with emetic-type food poisoning outbreaks. It is an extremely stable emetic toxin, which is unlikely to be inactivated by food processing. Considering the high toxicity of cereulide, its related hazards raise [...] Read more.
Cereulide, which can be produced by Bacillus cereus, is strongly associated with emetic-type food poisoning outbreaks. It is an extremely stable emetic toxin, which is unlikely to be inactivated by food processing. Considering the high toxicity of cereulide, its related hazards raise public concerns. A better understanding of the impact of B. cereus and cereulide is urgently needed to prevent contamination and toxin production, thereby protecting public health. Over the last decade, a wide range of research has been conducted regarding B. cereus and cereulide. Despite this, summarized information highlighting precautions at the public level involving the food industry, consumers and regulators is lacking. Therefore, the aim of the current review is to summarize the available data describing the characterizations and impacts of emetic B. cereus and cereulide; based on this information, precautions at the public level are proposed. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

15 pages, 354 KiB  
Review
Emulsion-Based Coatings for Preservation of Meat and Related Products
by Shweta Gautam, Lubomír Lapčík, Barbora Lapčíková and Robert Gál
Foods 2023, 12(4), 832; https://doi.org/10.3390/foods12040832 - 15 Feb 2023
Cited by 10 | Viewed by 2620
Abstract
One of the biggest challenges faced by the meat industry is maintaining the freshness of meat while extending its shelf life. Advanced packaging systems and food preservation techniques are highly beneficial in this regard. However, the energy crisis and environmental pollution demand an [...] Read more.
One of the biggest challenges faced by the meat industry is maintaining the freshness of meat while extending its shelf life. Advanced packaging systems and food preservation techniques are highly beneficial in this regard. However, the energy crisis and environmental pollution demand an economically feasible and environmentally sustainable preservation method. Emulsion coatings (ECs) are highly trending in the food packaging industry. Efficiently developed coatings can preserve food, increase nutritional composition, and control antioxidants’ release simultaneously. However, their construction has many challenges, especially for meat. Therefore, the following review focuses on the essential aspects of developing ECs for meat. The study begins by classifying emulsions based on composition and particle size, followed by a discussion on the physical properties, such as ingredient separation, rheology, and thermal characteristics. Furthermore, it discusses the lipid and protein oxidation and antimicrobial characteristics of ECs, which are necessary for other aspects to be relevant. Lastly, the review presents the limitations of the literature while discussing the future trends. ECs fabricated with antimicrobial/antioxidant properties present promising results in increasing the shelf life of meat while preserving its sensory aspects. In general, ECs are highly sustainable and effective packaging systems for meat industries. Full article
(This article belongs to the Special Issue Studies on Food Physical Characterization)
24 pages, 1496 KiB  
Review
The Use of Ozone Technology to Control Microorganism Growth, Enhance Food Safety and Extend Shelf Life: A Promising Food Decontamination Technology
by Wenya Xue, Joshua Macleod and James Blaxland
Foods 2023, 12(4), 814; https://doi.org/10.3390/foods12040814 - 14 Feb 2023
Cited by 21 | Viewed by 6419
Abstract
The need for microorganism control in the food industry has promoted research in food processing technologies. Ozone is considered to be a promising food preserving technique and has gained great interest due to its strong oxidative properties and significant antimicrobial efficiency, and because [...] Read more.
The need for microorganism control in the food industry has promoted research in food processing technologies. Ozone is considered to be a promising food preserving technique and has gained great interest due to its strong oxidative properties and significant antimicrobial efficiency, and because its decomposition leaves no residues in foods. In this ozone technology review, the properties and the oxidation potential of ozone, and the intrinsic and extrinsic factors that affect the microorganism inactivation efficiency of both gaseous and aqueous ozone, are explained, as well as the mechanisms of ozone inactivation of foodborne pathogenic bacteria, fungi, mould, and biofilms. This review focuses on the latest scientific studies on the effects of ozone in controlling microorganism growth, maintaining food appearance and sensorial organoleptic qualities, assuring nutrient contents, enhancing the quality of food, and extending food shelf life, e.g., vegetables, fruits, meat, and grain products. The multifunctionality effects of ozone in food processing, in both gaseous and aqueous form, have promoted its use in the food industries to meet the increased consumer preference for a healthy diet and ready-to-eat products, although ozone may present undesirable effects on physicochemical characteristics on certain food products at high concentrations. The combined uses of ozone and other techniques (hurdle technology) have shown a promotive future in food processing. It can be concluded from this review that the application of ozone technology upon food requires increased research; specifically, the use of treatment conditions such as concentration and humidity for food and surface decontamination. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

19 pages, 2112 KiB  
Article
Volatilomics Analysis of Jasmine Tea during Multiple Rounds of Scenting Processes
by Cheng Zhang, Chengzhe Zhou, Caiyun Tian, Kai Xu, Zhongxiong Lai, Yuling Lin and Yuqiong Guo
Foods 2023, 12(4), 812; https://doi.org/10.3390/foods12040812 - 14 Feb 2023
Cited by 15 | Viewed by 3185
Abstract
Jasmine tea is reprocessed from finished tea by absorbing the floral aroma of jasmine (Jasminum sambac (L.) Aiton); this process is commonly known as “scenting”. Making high-quality jasmine tea with a refreshing aroma requires repeated scenting. To date, the detailed volatile organic [...] Read more.
Jasmine tea is reprocessed from finished tea by absorbing the floral aroma of jasmine (Jasminum sambac (L.) Aiton); this process is commonly known as “scenting”. Making high-quality jasmine tea with a refreshing aroma requires repeated scenting. To date, the detailed volatile organic compounds (VOCs) and the formation of a refreshing aroma as the number of scenting processes increases are largely unknown and therefore need further study. To this end, integrated sensory evaluation, widely targeted volatilomics analysis, multivariate statistical analyses, and odor activity value (OAV) analysis were performed. The results showed that the aroma freshness, concentration, purity, and persistence of jasmine tea gradually intensifies as the number of scenting processes increases, and the last round of scenting process without drying plays a significant role in improving the refreshing aroma. A total of 887 VOCs was detected in jasmine tea samples, and their types and contents increased with the number of scenting processes. In addition, eight VOCs, including ethyl (methylthio)acetate, (Z)-3-hexen-1-ol acetate, (E)-2-hexenal, 2-nonenal, (Z)-3-hexen-1-ol, (6Z)-nonen-1-ol, β-ionone, and benzyl acetate, were identified as key odorants responsible for the refreshing aroma of jasmine tea. This detailed information can expand our understanding of the formation of a refreshing aroma of jasmine tea. Full article
Show Figures

Figure 1

34 pages, 2826 KiB  
Review
Helichrysum italicum: From Extraction, Distillation, and Encapsulation Techniques to Beneficial Health Effects
by Veronika Furlan and Urban Bren
Foods 2023, 12(4), 802; https://doi.org/10.3390/foods12040802 - 13 Feb 2023
Cited by 13 | Viewed by 6184
Abstract
Helichrysum italicum (family Asteraceae), due to its various beneficial health effects, represents an important plant in the traditional medicine of Mediterranean countries. Currently, there is a renewed interest in this medicinal plant, especially in investigations involving the isolation and identification of its bioactive [...] Read more.
Helichrysum italicum (family Asteraceae), due to its various beneficial health effects, represents an important plant in the traditional medicine of Mediterranean countries. Currently, there is a renewed interest in this medicinal plant, especially in investigations involving the isolation and identification of its bioactive compounds from extracts and essential oils, as well as in experimental validation of their pharmacological activities. In this paper, we review the current knowledge on the beneficial health effects of Helichrysum italicum extracts, essential oils, and their major bioactive polyphenolic compounds, ranging from antioxidative, anti-inflammatory, and anticarcinogenic activities to their antiviral, antimicrobial, insecticidal, and antiparasitic effects. This review also provides an overview of the most promising extraction and distillation techniques for obtaining high-quality extracts and essential oils from Helichrysum italicum, as well as methods for determining their antioxidative, antimicrobial, anti-inflammatory, and anticarcinogenic activities. Finally, new ideas for in silico studies of molecular mechanisms of bioactive polyphenols from Helichrysum italicum, together with novel suggestions for their improved bioavailability through diverse encapsulation techniques, are introduced. Full article
(This article belongs to the Special Issue Antimicrobial and Antioxidant Natural Compounds in Foods)
Show Figures

Graphical abstract

18 pages, 2900 KiB  
Article
Functional Properties of Brewer’s Spent Grain Protein Isolate: The Missing Piece in the Plant Protein Portfolio
by Alice Jaeger, Aylin W. Sahin, Laura Nyhan, Emanuele Zannini and Elke K. Arendt
Foods 2023, 12(4), 798; https://doi.org/10.3390/foods12040798 - 13 Feb 2023
Cited by 9 | Viewed by 5083
Abstract
Plant protein sources, as a part of developing sustainable food systems, are currently of interest globally. Brewer’s spent grain (BSG) is the most plentiful by-product of the brewing industry, representing ~85% of the total side streams produced. Although nutritionally dense, there are very [...] Read more.
Plant protein sources, as a part of developing sustainable food systems, are currently of interest globally. Brewer’s spent grain (BSG) is the most plentiful by-product of the brewing industry, representing ~85% of the total side streams produced. Although nutritionally dense, there are very few methods of upcycling these materials. High in protein, BSG can serve as an ideal raw material for protein isolate production. This study details the nutritional and functional characteristics of BSG protein isolate, EverPro, and compares these with the technological performance of the current gold standard plant protein isolates, pea and soy. The compositional characteristics are determined, including amino acid analysis, protein solubility, and protein profile among others. Related physical properties are determined, including foaming characteristics, emulsifying properties, zeta potential, surface hydrophobicity, and rheological properties. Regarding nutrition, EverPro meets or exceeds the requirement of each essential amino acid per g protein, with the exception of lysine, while pea and soy are deficient in methionine and cysteine. EverPro has a similar protein content to the pea and soy isolates, but far exceeds them in terms of protein solubility, with a protein solubility of ~100% compared to 22% and 52% for pea and soy isolates, respectively. This increased solubility, in turn, affects other functional properties; EverPro displays the highest foaming capacity and exhibits low sedimentation activity, while also possessing minimal gelation properties and low emulsion stabilising activity when compared to pea and soy isolates. This study outlines the functional and nutritional properties of EverPro, a brewer’s spent grain protein, in comparison to commercial plant protein isolates, indicating the potential for the inclusion of new, sustainable plant-based protein sources in human nutrition, in particular dairy alternative applications. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

18 pages, 1154 KiB  
Article
Evaluation of Processing Conditions and Hydrocolloid Addition on Functional Properties of Aquafaba
by Kaelyn Crawford, Catrin Tyl and William Kerr
Foods 2023, 12(4), 775; https://doi.org/10.3390/foods12040775 - 10 Feb 2023
Cited by 9 | Viewed by 2990
Abstract
Aquafaba, the cooking water from chickpeas, could replace animal-derived ingredients such as egg whites in systems that require the stabilization of an oil or gas phase. However, little is known about how processing methods and additives affect its functional properties. In this study, [...] Read more.
Aquafaba, the cooking water from chickpeas, could replace animal-derived ingredients such as egg whites in systems that require the stabilization of an oil or gas phase. However, little is known about how processing methods and additives affect its functional properties. In this study, aquafaba was prepared via boiling or pressure-cooking at water-to-seed (WSR) ratios of 5:1, 4:1 and 3:1. The effects of preparation method and pH adjustment on viscosity, protein content, solubility and profile were evaluated. Samples were further analyzed for foaming capacity/stability (FC/FS) and emulsifying activity/stability index (EAI/ESI). Foams were also prepared in combination with xanthan gum or hydroxypropyl methylcellulose (HPMC). Solubility was lowest near pH 4 and not affected by cooking method and protein profile was not affected by method or ratio. Samples with pH 3 had high EAI and FS, but low ESI and FC. WSR did not significantly affect interfacial properties. Xanthan gum had a greater effect than HPMC on viscosity and prevented foam liquid drainage for 24 h. While the preparation method affects aquafaba properties, subsequent pH adjustment is of greater relevance for interfacial properties. Foam volumes can be maximized and foam drainage limited by appropriate choice of hydrocolloids and addition levels. Full article
Show Figures

Figure 1

20 pages, 404 KiB  
Review
Foodborne Diseases in the Edible Insect Industry in Europe—New Challenges and Old Problems
by Remigiusz Gałęcki, Tadeusz Bakuła and Janusz Gołaszewski
Foods 2023, 12(4), 770; https://doi.org/10.3390/foods12040770 - 10 Feb 2023
Cited by 13 | Viewed by 9767
Abstract
Insects play a key role in European agroecosystems. Insects provide important ecosystem services and make a significant contribution to the food chain, sustainable agriculture, the farm-to-fork (F2F) strategy, and the European Green Deal. Edible insects are regarded as a sustainable alternative to livestock, [...] Read more.
Insects play a key role in European agroecosystems. Insects provide important ecosystem services and make a significant contribution to the food chain, sustainable agriculture, the farm-to-fork (F2F) strategy, and the European Green Deal. Edible insects are regarded as a sustainable alternative to livestock, but their microbiological safety for consumers has not yet been fully clarified. The aim of this article is to describe the role of edible insects in the F2F approach, to discuss the latest veterinary guidelines concerning consumption of insect-based foods, and to analyze the biological, chemical, and physical hazards associated with edible insect farming and processing. Five groups of biological risk factors, ten groups of chemical risk factors, and thirteen groups of physical risks factors have been identified and divided into sub-groups. The presented risk maps can facilitate identification of potential threats, such as foodborne pathogens in various insect species and insect-based foods. Ensuring safety of insect-based foods, including effective control of foodborne diseases, will be a significant milestone on the path to maintaining a sustainable food chain in line with the F2F strategy and EU policies. Edible insects constitute a new category of farmed animals and a novel link in the food chain, but their production poses the same problems and challenges that are encountered in conventional livestock rearing and meat production. Full article
(This article belongs to the Special Issue Foodborne Pathogens Management: From Farm and Pond to Fork)
16 pages, 637 KiB  
Article
Hemp Flour Particle Size Affects the Quality and Nutritional Profile of the Enriched Functional Pasta
by Sonia Bonacci, Vita Di Stefano, Fabiola Sciacca, Carla Buzzanca, Nino Virzì, Sergio Argento and Maria Grazia Melilli
Foods 2023, 12(4), 774; https://doi.org/10.3390/foods12040774 - 10 Feb 2023
Cited by 10 | Viewed by 2525
Abstract
The rheological and chemical quality of pasta samples, which were obtained using the durum wheat semolina fortified with the hemp seed solid residue, after oil extraction, sieved at 530 μm (Hemp 1) or 236 μm (Hemp 2) at different percentages of substitution (5%, [...] Read more.
The rheological and chemical quality of pasta samples, which were obtained using the durum wheat semolina fortified with the hemp seed solid residue, after oil extraction, sieved at 530 μm (Hemp 1) or 236 μm (Hemp 2) at different percentages of substitution (5%, 7.5%, and 10%, were evaluated. The total polyphenolic content in hemp flour was quantified in the range of 6.38–6.35 mg GAE/g, and free radical scavenging was included in the range from 3.94–3.75 mmol TEAC/100 g in Hemp 1 and Hemp 2, respectively. The phenolic profiles determined by UHPLC-ESI/QTOF-MS showed that cannabisin C, hydroxycinnamic and protocatechuic acids were the most abundant phenolic compounds in both hemp flours. Among the amino acids, isoleucine, glutamine, tyrosine, proline, and lysine were the most abundant in raw materials and pasta samples. Although the hemp seeds were previously subjected to oil extraction, hemp flours retain about 8% of oil, and the fatty acids present in the largest amount were linoleic acid and α-linolenic acid. Characterization of the minerals showed that the concentration of macro and trace elements increased according to fortification percentage. Sensory evaluation and cooking quality indicated that the best performance in terms of process production and consumer acceptance was obtained using Hemp 2 at 7.5%. Hemp supplementation could be a potential option for producing high-quality, nutritionally rich, low-cost pasta with good color and functionality. Full article
Show Figures

Figure 1

23 pages, 1240 KiB  
Article
Enhancement of Rabbit Meat Functionality by Replacing Traditional Feed Raw Materials with Alternative and More Sustainable Freshwater Cladophora glomerata Macroalgal Biomass in Their Diets
by Monika Nutautaitė, Asta Racevičiūtė-Stupelienė, Saulius Bliznikas and Vilma Vilienė
Foods 2023, 12(4), 744; https://doi.org/10.3390/foods12040744 - 8 Feb 2023
Cited by 7 | Viewed by 3335
Abstract
Today’s challenges in the animal husbandry sector, with customers’ demand for more beneficial products, encourage the development of strategies that not only provide more sustainable production from the field to the table but also ensure final product functionality. Thus, the current research was [...] Read more.
Today’s challenges in the animal husbandry sector, with customers’ demand for more beneficial products, encourage the development of strategies that not only provide more sustainable production from the field to the table but also ensure final product functionality. Thus, the current research was aimed at replacing some traditional feed raw materials in rabbit diets with C. glomerata biomass to improve the functionality of meat. For this purpose, thirty weaned (52-d-old) Californian rabbits were assigned to 3 dietary treatments: standard compound diet (SCD), SCD + 4% C. glomerata (CG4), and SCD + 8% C. glomerata (CG8). At the end of the feeding trial, 122-d-old rabbits were slaughtered, longissimus dorsi (LD) and hind leg (HL) muscles were dissected post-mortem, and moisture, protein, and lipid profiles were determined. Results revealed that CG4 treatment can increase protein (22.17 g/kg), total (192.16 g/kg) and essential (threonine, valine, methionine, lysine, and isoleucine) amino acid levels in rabbit muscles. Both inclusions gradually reduced fat accumulation in muscles (CG8 < CG4 < SCD) but improved the lipid profile’s nutritional value by decreasing saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) and increasing polyunsaturated fatty acids (PUFA). As the dose of C. glomerata increased, the level of lipid oxidation decreased. Biomass supplementation enhanced PUFA/SFA and h/H levels while decreasing thrombogenicity index (TI) and atherogenic index (AI) levels in rabbit muscles, potentially contributing to the prevention of heart disease. Overall, dietary supplementation with C. glomerata biomass may be a more beneficial and sustainable nutritional approach to functionally enhancing rabbit meat. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

20 pages, 1096 KiB  
Article
Effect of Processing and In Vitro Digestion on Bioactive Constituents of Powdered IV Range Carrot (Daucus carota, L.) Wastes
by Claudia Bas-Bellver, Cristina Barrera, Noelia Betoret and Lucía Seguí
Foods 2023, 12(4), 731; https://doi.org/10.3390/foods12040731 - 7 Feb 2023
Cited by 5 | Viewed by 2357
Abstract
Daucus carota L. is an important food crop utilized worldwide and a rich source of bioactive compounds. Carrot processing generates residues which are discarded or underused, for which using them as a source for obtaining new ingredients or products is an opportunity for [...] Read more.
Daucus carota L. is an important food crop utilized worldwide and a rich source of bioactive compounds. Carrot processing generates residues which are discarded or underused, for which using them as a source for obtaining new ingredients or products is an opportunity for the development of healthier and more sustainable diets. In the present study, the impact of different milling and drying procedures and in vitro digestion on the functional properties of carrot waste powders was evaluated. Carrot waste was transformed into powders by disruption (grinding vs. chopping), drying (freeze-drying or air-drying at 60 or 70 °C) and final milling. Powders were characterized in terms of physicochemical properties (water activity, moisture content, total soluble solids and particle size) nutraceuticals (total phenol content, total flavonoid content antioxidant activity by DPPH and ABTS methods, as well as carotenoid content (α-carotene, β-carotene, lutein, lycopene). Antioxidants and carotenoid content during in vitro gastrointestinal digestion were also evaluated; the latter in different matrices (directly, in water, in oil, and in oil-in-water emulsion). Processing allowed to reduce water activity of samples and obtain powders rich in antioxidant compounds and carotenoids. Both disruption and drying had a significant impact on powders’ properties freeze-drying led to finer powders with higher carotenoid content but lower antioxidant values, whereas air-drying implied chopped air-dried powders exhibited higher phenols content and improved antioxidant activity. Simulated in vitro digestion studies revealed that digestion helps release bioactive compounds which are bound to the powder structure. The solubilization of carotenoids in oil was low, but fat co-ingestion notably increased their recovery. According to the results, carrot waste powders containing bioactive compounds could be proposed as functional ingredients to increase the nutritional value of foods, thus contributing to the concepts of more sustainable food systems and sustainable healthy diets. Full article
(This article belongs to the Special Issue Valorisation Opportunities for Specialty Crops and Its Co-products)
Show Figures

Graphical abstract

16 pages, 342 KiB  
Review
Opportunities and Challenges of Understanding Community Assembly in Spontaneous Food Fermentation
by Maanasa Mudoor Sooresh, Benjamin P. Willing and Benjamin C. T. Bourrie
Foods 2023, 12(3), 673; https://doi.org/10.3390/foods12030673 - 3 Feb 2023
Cited by 15 | Viewed by 3353
Abstract
Spontaneous fermentations that do not rely on backslopping or industrial starter cultures were especially important to the early development of society and are still practiced around the world today. While current literature on spontaneous fermentations is observational and descriptive, it is important to [...] Read more.
Spontaneous fermentations that do not rely on backslopping or industrial starter cultures were especially important to the early development of society and are still practiced around the world today. While current literature on spontaneous fermentations is observational and descriptive, it is important to understand the underlying mechanism of microbial community assembly and how this correlates with changes observed in microbial succession, composition, interaction, and metabolite production. Spontaneous food and beverage fermentations are home to autochthonous bacteria and fungi that are naturally inoculated from raw materials, environment, and equipment. This review discusses the factors that play an important role in microbial community assembly, particularly focusing on commonly reported yeasts and bacteria isolated from spontaneously fermenting food and beverages, and how this affects the fermentation dynamics. A wide range of studies have been conducted in spontaneously fermented foods that highlight some of the mechanisms that are involved in microbial interactions, niche adaptation, and lifestyle of these microorganisms. Moreover, we will also highlight how controlled culture experiments provide greater insight into understanding microbial interactions, a modest attempt in decoding the complexity of spontaneous fermentations. Further research using specific in vitro microbial models to understand the role of core microbiota are needed to fill the knowledge gap that currently exists in understanding how the phenotypic and genotypic expression of these microorganisms aid in their successful adaptation and shape fermentation outcomes. Furthermore, there is still a vast opportunity to understand strain level implications on community assembly. Translating these findings will also help in improving other fermentation systems to help gain more control over the fermentation process and maintain consistent and superior product quality. Full article
15 pages, 3513 KiB  
Article
Identification and Molecular Binding Mechanism of Novel α-Glucosidase Inhibitory Peptides from Hot-Pressed Peanut Meal Protein Hydrolysates
by Xinyu Yang, Dan Wang, Yangyong Dai, Luping Zhao, Wentao Wang and Xiuzhen Ding
Foods 2023, 12(3), 663; https://doi.org/10.3390/foods12030663 - 3 Feb 2023
Cited by 11 | Viewed by 2471
Abstract
Hot-pressed peanut meal protein hydrolysates are rich in Arg residue, but there is a lack of research on their α-glucosidase inhibitory activity. In this study, different proteases were used to produce hot-pressed peanut meal protein hydrolysates (PMHs) to evaluate the α-glucosidase inhibitory activity. [...] Read more.
Hot-pressed peanut meal protein hydrolysates are rich in Arg residue, but there is a lack of research on their α-glucosidase inhibitory activity. In this study, different proteases were used to produce hot-pressed peanut meal protein hydrolysates (PMHs) to evaluate the α-glucosidase inhibitory activity. All PMHs showed good α-glucosidase inhibitory activity with the best inhibition effect coming from the dual enzyme system of Alcalase and Neutrase with an IC50 of 5.63 ± 0.19 mg/mL. The fractions with the highest inhibition effect were separated and purified using ultrafiltration and cation exchange chromatography. Four novel α-glucosidase inhibitory peptides (FYNPAAGR, PGVLPVAS, FFVPPSQQ, and FSYNPQAG) were identified by nano-HPLC-MS/MS and molecular docking. Molecular docking showed that peptides could occupy the active pocket of α-glucosidase through hydrogen bonding, hydrophobic interaction, salt bridges, and π-stacking, thus preventing the formation of complexes between α-glucosidase and the substrate. In addition, the α-glucosidase inhibitory activity of PMHs was stable against hot, pH treatment and in vitro gastrointestinal digestion. The study demonstrated that PMHs might be used as a natural anti-diabetic material with the potential to inhibit α-glucosidase. Full article
(This article belongs to the Special Issue Food Bioactive Peptides Improve Human Health)
Show Figures

Figure 1

19 pages, 3077 KiB  
Article
Salmonella Risk Assessment in Poultry Meat from Farm to Consumer in Korea
by Hyemin Oh, Yohan Yoon, Jang-Won Yoon, Se-Wook Oh, Soomin Lee and Heeyoung Lee
Foods 2023, 12(3), 649; https://doi.org/10.3390/foods12030649 - 2 Feb 2023
Cited by 7 | Viewed by 5391
Abstract
This study predicted Salmonella outbreak risk from eating cooked poultry in various methods. The incidence of Salmonella in poultry meat and the environment from farm to home for consumption was investigated. To develop the predictive models, Salmonella growth data were collected at 4–25 [...] Read more.
This study predicted Salmonella outbreak risk from eating cooked poultry in various methods. The incidence of Salmonella in poultry meat and the environment from farm to home for consumption was investigated. To develop the predictive models, Salmonella growth data were collected at 4–25 °C during storage and fitted with the Baranyi model. The effects of cooking on cell counts in poultry meat were investigated. Temperature, duration, and consumption patterns were all searched. A simulation in @Risk was run using these data to estimate the probability of foodborne Salmonella disease. In farm, Salmonella was detected from only fecal samples (8.5%; 56/660). In slaughterhouses, Salmonella was detected from feces 16.0% (38/237) for chicken and 19.5% (82/420) for duck) and from carcasses of each step (scalding, defeathering, and chilling) by cross contamination. In chicken (n = 270) and duck (n = 205), Salmonella was detected in 5 chicken (1.9%) and 16 duck meat samples (7.8%). Salmonella contamination levels were initially estimated to be −3.1 Log CFU/g and −2.5 Log CFU/g, respectively. With R2 values between 0.862 and 0.924, the predictive models were suitable for describing the fate of Salmonella in poultry meat with of 0.862 and 0.924. The Salmonella was not detected when poultry meat cooks completely. However, if poultry meat contaminated with Salmonella were cooked incompletely, Salmonella remained on the food surface. The risk of foodborne Salmonella disease from poultry consumption after cooking was 3.0 × 10−10/person/day and 8.8 × 10−11/person/day in South Korea, indicating a low risk. Full article
Show Figures

Figure 1

21 pages, 1235 KiB  
Article
The Potential Future of Insects in the European Food System: A Systematic Review Based on the Consumer Point of View
by Giorgio Mina, Giovanni Peira and Alessandro Bonadonna
Foods 2023, 12(3), 646; https://doi.org/10.3390/foods12030646 - 2 Feb 2023
Cited by 14 | Viewed by 4082
Abstract
Edible insects recently gained attention as a potential contributor to the future sustainability of the food system. Insect farming has indeed shown to have environmental and nutritional benefits, but edible insects are still an unusual foodstuff in Europe. The purpose of this article [...] Read more.
Edible insects recently gained attention as a potential contributor to the future sustainability of the food system. Insect farming has indeed shown to have environmental and nutritional benefits, but edible insects are still an unusual foodstuff in Europe. The purpose of this article is to analyze the barriers and drivers of insect consumption in Europe and to identify the most promising strategies to convince consumers to include insect-based products in their diets. To answer these research questions, a systematic review of the literature on the consumer’s point of view about insects as food was performed. The results show that the main barrier to the development of this market is related to the psychological rejection of consumers induced by disgust toward entomophagy. To break down these barriers, it is essential to increase the general knowledge about the environmental and nutritional benefits of entomophagy. Furthermore, the limited size of the edible insect market appears to be a structural barrier. Expanding the reach of the market and consumer familiarity with edible insects will increase their acceptability. Finally, some product-related strategies are also highlighted. Furthermore, this article brings new knowledge about the effectiveness of the environmental motive in convincing consumers to try edible insects. Full article
Show Figures

Figure 1

16 pages, 2536 KiB  
Review
Hemp: A Sustainable Plant with High Industrial Value in Food Processing
by Hiroyuki Yano and Wei Fu
Foods 2023, 12(3), 651; https://doi.org/10.3390/foods12030651 - 2 Feb 2023
Cited by 30 | Viewed by 11018
Abstract
In the era of SDGs, useful plants which provide valuable industrial outputs and at the same time pose less impact on the environment should be explored. Hemp seems one of the most relevant gluten-free crop plants to meet such requirements. Its high nutritional [...] Read more.
In the era of SDGs, useful plants which provide valuable industrial outputs and at the same time pose less impact on the environment should be explored. Hemp seems one of the most relevant gluten-free crop plants to meet such requirements. Its high nutritional value is comparable to soy. Moreover, almost the whole body of the hemp plant has a wide array of utility: industrial production of food, fiber, and construction materials. In view of environmental sustainability, hemp requires less pesticides or water in cultivation compared to cotton, a representative fiber plant. This short review investigates hemp’s sustainability as a plant as well as its utility value as a highly nutritional material in the food industry. Recent application research of hemp protein in food processing includes plant milk, emulsifiers, fortification of gluten-free bread, plant-based meat production, as well as membrane formation. These studies have revealed distinctive properties of hemp protein, especially in relation to disulfide (S-S)/sulfhydryl (-SH)-mediated interactions with protein from other sources. While its cultivation area and industrial use were limited for a while over confusion with marijuana, the market for industrial hemp is growing rapidly because it has been highly reevaluated in multiple areas of industry. Conclusively, with its sustainability as a plant as well as its distinctive useful property of the seed protein, hemp has promising value in the development of new foods. Full article
Show Figures

Figure 1

52 pages, 1274 KiB  
Review
In Vitro Assessment Methods for Antidiabetic Peptides from Legumes: A Review
by Alia Rahmi and Jayashree Arcot
Foods 2023, 12(3), 631; https://doi.org/10.3390/foods12030631 - 2 Feb 2023
Cited by 8 | Viewed by 3385
Abstract
Almost 65% of the human protein supply in the world originates from plants, with legumes being one of the highest contributors, comprising between 20 and 40% of the protein supply. Bioactive peptides from various food sources including legumes have been reported to show [...] Read more.
Almost 65% of the human protein supply in the world originates from plants, with legumes being one of the highest contributors, comprising between 20 and 40% of the protein supply. Bioactive peptides from various food sources including legumes have been reported to show efficacy in modulating starch digestion and glucose absorption. This paper will provide a comprehensive review on recent in vitro studies that have been performed on leguminous antidiabetic peptides, focusing on the α-amylase inhibitor, α-glucosidase inhibitor, and dipeptidyl peptidase-IV (DPP-IV) inhibitor. Variations in legume cultivars and methods affect the release of peptides. Different methods have been used, such as in sample preparation, including fermentation (t, T), germination (t), and pre-cooking; in protein extraction, alkaline extraction, isoelectric precipitation, phosphate buffer extraction, and water extraction; in protein hydrolysis enzyme types and combination, enzyme substrate ratio, pH, and time; and in enzyme inhibitory assays, positive control type and concentration, inhibitor or peptide concentration, and the unit of inhibitory activity. The categorization of the relative scale of inhibitory activities among legume samples becomes difficult because of these method differences. Peptide sequences in samples were identified by means of HPLC/MS. Software and online tools were used in bioactivity prediction and computational modelling. The identification of the types and locations of chemical interactions between the inhibitor peptides and enzymes and the type of enzyme inhibition were achieved through computational modelling and enzyme kinetic studies. Full article
(This article belongs to the Special Issue Plant Foods for Human Health: Research Challenges and Opportunities)
Show Figures

Figure 1

16 pages, 1301 KiB  
Article
Supercritical Fluid Extraction of Oils from Cactus Opuntia ficus-indica L. and Opuntia dillenii Seeds
by Ghanya Al-Naqeb, Cinzia Cafarella, Eugenio Aprea, Giovanna Ferrentino, Alessandra Gasparini, Chiara Buzzanca, Giuseppe Micalizzi, Paola Dugo, Luigi Mondello and Francesca Rigano
Foods 2023, 12(3), 618; https://doi.org/10.3390/foods12030618 - 1 Feb 2023
Cited by 5 | Viewed by 3320
Abstract
This study aimed to assess the capability of supercritical fluid extraction (SFE) as an alternative and green technique compared to Soxhlet extraction for the production of oils from Opuntia ficus-indica (OFI) seeds originating from Yemen and Italy and Opuntia dillenii (OD) seeds from [...] Read more.
This study aimed to assess the capability of supercritical fluid extraction (SFE) as an alternative and green technique compared to Soxhlet extraction for the production of oils from Opuntia ficus-indica (OFI) seeds originating from Yemen and Italy and Opuntia dillenii (OD) seeds from Yemen. The following parameters were used for SFE extraction: a pressure of 300 bar, a CO2 flow rate of 1 L/h, and temperatures of 40 and 60 °C. The chemical composition, including the fatty acids and tocopherols (vitamin E) of the oils, was determined using chromatographic methods. The highest yield was achieved with Soxhlet extraction. The oils obtained with the different extraction procedures were all characterized by a high level of unsaturated fatty acids. Linoleic acid (≤62% in all samples) was the most abundant one, followed by oleic and vaccenic acid. Thirty triacylglycerols (TAGs) were identified in both OFI and OD seed oils, with trilinolein being the most abundant (29–35%). Vanillin, 4-hydroxybenzaldehyde, vanillic acid, and hydroxytyrosol were phenols detected in both OFI and OD oils. The highest γ-tocopherol content (177 ± 0.23 mg/100 g) was obtained through the SFE of OFI seeds from Yemen. Overall, the results highlighted the potential of SFE as green technology to obtain oils suitable for functional food and nutraceutical products. Full article
Show Figures

Figure 1

20 pages, 1360 KiB  
Article
Effect of Controlled Oxygen Supply during Crushing on Volatile and Phenol Compounds and Sensory Characteristics in Coratina and Ogliarola Virgin Olive Oils
by Gianluca Veneziani, Diego L. García-González, Sonia Esposto, Davide Nucciarelli, Agnese Taticchi, Abdelaziz Boudebouz and Maurizio Servili
Foods 2023, 12(3), 612; https://doi.org/10.3390/foods12030612 - 1 Feb 2023
Cited by 3 | Viewed by 2134
Abstract
In virgin olive oil industries, the technological choices of the production plant affect the biochemical activities that take place in the olives being processed throughout the entire process, thereby affecting the quality of the final product. The lipoxygenase pool enzymes that operated their [...] Read more.
In virgin olive oil industries, the technological choices of the production plant affect the biochemical activities that take place in the olives being processed throughout the entire process, thereby affecting the quality of the final product. The lipoxygenase pool enzymes that operated their activity during the first phases of the process need the best conditions to work, especially concerning temperature and oxygen availability. In this study, a system was equipped to supply oxygen in the crusher at a controllable concentration in an industrial olive oil mill at pilot plant scale, and four oxygen concentrations and two cultivars, Coratina and Ogliarola, were tested. The best concentration for oxygen supply was 0.2 L/min at the working capacity of 0.64 Ton/h. Further, using this addition of oxygen, it was possible to increase the compound’s concentration, which is responsible for the green, fruity aroma. The effect on volatile compounds was also confirmed by the sensory analyses. However, at the same time, it was possible to maintain the concentration of phenols in a good quality olive oil while also preserving all the antioxidant properties of the product due to the presence of phenols. This study corroborates the importance of controlling oxygen supply in the first step of the process for process management and quality improvement in virgin olive oil production. Full article
Show Figures

Figure 1

17 pages, 2003 KiB  
Article
Microclimate of Grape Bunch and Sunburn of White Grape Berries: Effect on Wine Quality
by Laura Rustioni, Alessio Altomare, Gvantsa Shanshiashvili, Fabio Greco, Riccardo Buccolieri, Ileana Blanco, Gabriele Cola and Daniela Fracassetti
Foods 2023, 12(3), 621; https://doi.org/10.3390/foods12030621 - 1 Feb 2023
Cited by 11 | Viewed by 2854
Abstract
This research aimed to evaluate the composition of wines made with white grapes which are particularly susceptible to sunburn symptoms due to the absence of anthocyanin. Sunburn is a complex physiological dysfunction leading to browning or necrosis of berry tissues. In vintage 2021, [...] Read more.
This research aimed to evaluate the composition of wines made with white grapes which are particularly susceptible to sunburn symptoms due to the absence of anthocyanin. Sunburn is a complex physiological dysfunction leading to browning or necrosis of berry tissues. In vintage 2021, the canopy of ‘Verdeca’ grapevines grown in Salento, South Italy, was differently managed by sun exposing or shading the bunches. Micrometeorological conditions were studied at different levels. Grapes were vinified, comparing the winemaking with and without skin maceration. The vegetative-productive balance of plants was not substantially modified. On the contrary, a significant effect was observed on the quality and quantity of grapes produced: smaller berries with sunburn symptoms were found on unshaded bunches. This influenced the percentage distribution among skin, pulp and seeds, causing a decrease in must yield of up to 30%. The pH was significantly higher in macerated wines made using shaded grapes, due to a lower titratable acidity and to significant impacts on the acid profile. Obviously, maceration produced a higher extraction of phenolics in wines, which reached their maximum in wines made with sunburned grapes. The absorbance at 420 nm, index of yellow color, was also significantly higher in sunburned grapes, indicating greater oxidation. Even though excessive grape sun-exposure could negatively affect the perception of white wines made without maceration (resulting in more oxidative character), the sensory quality of orange/amber wines was not significantly impacted by the presence of sunburned grapes. Thus, this winemaking technique could be particularly interesting to set up a production strategy adapted to viticultural regions strongly affected by climate change. Full article
Show Figures

Graphical abstract

24 pages, 6138 KiB  
Article
Valorisation of Three Underutilised Native Australian Plants: Phenolic and Organic Acid Profiles and In Vitro Antimicrobial Activity
by Maral Seididamyeh, Anh Dao Thi Phan, Dharini Sivakumar, Michael E. Netzel, Ram Mereddy and Yasmina Sultanbawa
Foods 2023, 12(3), 623; https://doi.org/10.3390/foods12030623 - 1 Feb 2023
Cited by 4 | Viewed by 2027
Abstract
Tasmannia lanceolata, Diploglottis bracteata and Syzygium aqueum are understudied native Australian plants. This study aimed to characterise the non-anthocyanin phenolic and organic acid profiles of the aqueous extracts obtained from the leaves of T. lanceolata and fruits of D. bracteata and [...] Read more.
Tasmannia lanceolata, Diploglottis bracteata and Syzygium aqueum are understudied native Australian plants. This study aimed to characterise the non-anthocyanin phenolic and organic acid profiles of the aqueous extracts obtained from the leaves of T. lanceolata and fruits of D. bracteata and S. aqueum by UHPLC-Q-Orbitrap-MS/MS and UHPLC-TQ-MS/MS. A total of 39, 22, and 27 non-anthocyanin polyphenols were tentatively identified in T. lanceolata, D. bracteata, and S. aqueum extracts, respectively. Furthermore, sugars and ascorbic acid contents as well as in vitro antioxidant and antimicrobial activities of the extracts were determined. Response surface methodology was applied to achieve an extract blend with a strong inhibitory effect against Pseudomonas viridiflava, the main cause of soft rot in vegetables, Bacillus subtilis, Rhodotorula diobovata and Alternaria alternata. The identified compounds including organic acids (e.g., quinic, citric and malic acids) and polyphenols (e.g., catechin, procyanidins, and ellagitannins) might contribute to the observed antimicrobial activity. Furthermore, this study provides the most comprehensive phenolic profiles of these three underutilised native Australian plants to date. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

15 pages, 5661 KiB  
Article
An Improved YOLOv5 Model: Application to Mixed Impurities Detection for Walnut Kernels
by Lang Yu, Mengbo Qian, Qiang Chen, Fuxing Sun and Jiaxuan Pan
Foods 2023, 12(3), 624; https://doi.org/10.3390/foods12030624 - 1 Feb 2023
Cited by 11 | Viewed by 2449
Abstract
Impurity detection is an important link in the chain of food processing. Taking walnut kernels as an example, it is difficult to accurately detect impurities mixed in walnut kernels before the packaging process. In order to accurately identify the small impurities mixed in [...] Read more.
Impurity detection is an important link in the chain of food processing. Taking walnut kernels as an example, it is difficult to accurately detect impurities mixed in walnut kernels before the packaging process. In order to accurately identify the small impurities mixed in walnut kernels, this paper established an improved impurities detection model based on the original YOLOv5 network model. Initially, a small target detection layer was added in the neck part, to improve the detection ability for small impurities, such as broken shells. Secondly, the Tansformer-Encoder (Trans-E) module is proposed to replace some convolution blocks in the original network, which can better capture the global information of the image. Then, the Convolutional Block Attention Module (CBAM) was added to improve the sensitivity of the model to channel features, which make it easy to find the prediction region in dense objects. Finally, the GhostNet module is introduced to make the model lighter and improve the model detection rate. During the test stage, sample photos were randomly chosen to test the model’s efficacy using the training and test set, derived from the walnut database that was previously created. The mean average precision can measure the multi-category recognition accuracy of the model. The test results demonstrate that the mean average precision (mAP) of the improved YOLOv5 model reaches 88.9%, which is 6.7% higher than the average accuracy of the original YOLOv5 network, and is also higher than other detection networks. Moreover, the improved YOLOv5 model is significantly better than the original YOLOv5 network in identifying small impurities, and the detection rate is only reduced by 3.9%, which meets the demand of real-time detection of food impurities and provides a technical reference for the detection of small impurities in food. Full article
Show Figures

Figure 1

16 pages, 1587 KiB  
Article
Comparative Genomic Analysis Reveals the Functional Traits and Safety Status of Lactic Acid Bacteria Retrieved from Artisanal Cheeses and Raw Sheep Milk
by Ilias Apostolakos, Spiros Paramithiotis and Marios Mataragas
Foods 2023, 12(3), 599; https://doi.org/10.3390/foods12030599 - 1 Feb 2023
Cited by 8 | Viewed by 2595
Abstract
Lactic acid bacteria (LAB) are valuable for the production of fermented dairy products. We investigated the functional traits of LAB isolated from artisanal cheeses and raw sheep milk, assessed their safety status, and explored the genetic processes underlying the fermentation of carbohydrates. Lactiplantibacillus [...] Read more.
Lactic acid bacteria (LAB) are valuable for the production of fermented dairy products. We investigated the functional traits of LAB isolated from artisanal cheeses and raw sheep milk, assessed their safety status, and explored the genetic processes underlying the fermentation of carbohydrates. Lactiplantibacillus plantarum had the largest and more functional genome compared to all other LAB, while most of its protein-encoding genes had unknown functions. A key finding of our analysis was the overall absence of acquired resistance genes (RGs), virulence genes (VGs), and prophages, denoting that all LAB isolates fulfill safety criteria and can be used as starter or adjunct cultures. In this regard, the identified mobile genetic elements found in LAB, rather than enabling the integration of RGs or VGs, they likely facilitate the uptake of genes involved in beneficial functions and in the adaptation of LAB in dairy matrices. Another important finding of our study was that bacteriocins and CAZymes were abundant in LAB though each species was associated with specific genes, which in turn had different activity spectrums and identified applications. Additionally, all isolates were able to metabolize glucose, lactose, maltose, and sucrose, but Lactiplantibacillus plantarum was strongly associated with the fermentation of rhamnose, mannose, cellobiose, and trehalose whereas Levilactobacillus brevis with the utilization of arabinose and xylose. Altogether these results suggest that to fully exploit the beneficial properties of LAB, a combination of strains as food additives may be necessary. Interestingly, biological processes involved in the metabolism of carbohydrates that are not of direct interest for the dairy industry may yield valuable metabolites or activate pathways associated with beneficial health effects. Our results provide useful information for the development of new probiotic artisanal cheeses and probiotic starter cultures. Full article
(This article belongs to the Special Issue Cheese: Chemistry, Physics and Microbiology)
Show Figures

Figure 1

18 pages, 4697 KiB  
Article
Cassava Starch Films Containing Quinoa Starch Nanocrystals: Physical and Surface Properties
by Lía Ethel Velásquez-Castillo, Mariani Agostinetto Leite, Victor Jesús Aredo Tisnado, Cynthia Ditchfield, Paulo José do Amaral Sobral and Izabel Cristina Freitas Moraes
Foods 2023, 12(3), 576; https://doi.org/10.3390/foods12030576 - 28 Jan 2023
Cited by 12 | Viewed by 2601
Abstract
Quinoa starch nanocrystals (QSNCs), obtained by acid hydrolysis, were used as a reinforcing filler in cassava starch films. The influence of QSNC concentrations (0, 2.5, 5.0, 7.5 and 10%, w/w) on the film’s physical and surface properties was investigated. QSNCs [...] Read more.
Quinoa starch nanocrystals (QSNCs), obtained by acid hydrolysis, were used as a reinforcing filler in cassava starch films. The influence of QSNC concentrations (0, 2.5, 5.0, 7.5 and 10%, w/w) on the film’s physical and surface properties was investigated. QSNCs exhibited conical and parallelepiped shapes. An increase of the QSNC concentration, from 0 to 5%, improved the film’s tensile strength from 6.5 to 16.5 MPa, but at 7.5%, it decreased to 11.85 MPa. Adequate exfoliation of QSNCs in the starch matrix also decreased the water vapor permeability (~17%) up to a 5% concentration. At 5.0% and 7.5% concentrations, the films increased in roughness, water contact angle, and opacity, whereas the brightness decreased. Furthermore, at these concentrations, the film’s hydrophilic nature changed (water contact angle values of >65°). The SNC addition increased the film opacity without causing major changes in color. Other film properties, such as thickness, moisture content and solubility, were not affected by the QSNC concentration. The DSC (differential scanning calorimetry) results indicated that greater QSNC concentrations increased the second glass transition temperature (related to the biopolymer-rich phase) and the melting enthalpy. However, the film’s thermal stability was not altered by the QSNC addition. These findings contribute to overcoming the starch-based films’ limitations through the development of nanocomposite materials for future food packaging applications. Full article
Show Figures

Graphical abstract

15 pages, 1342 KiB  
Article
Stability Kinetics of Anthocyanins of Grumixama Berries (Eugenia brasiliensis Lam.) during Thermal and Light Treatments
by Elivaldo Nunes Modesto Junior, Mayara Galvão Martins, Gustavo Araujo Pereira, Renan Campos Chisté and Rosinelson da Silva Pena
Foods 2023, 12(3), 565; https://doi.org/10.3390/foods12030565 - 28 Jan 2023
Cited by 12 | Viewed by 2236
Abstract
Grumixama (Eugenia brasiliensis Lam.) are red-colored fruits due to the presence of anthocyanins. In this paper, anthocyanin-rich extracts from grumixama were submitted to different temperatures and light irradiations, with the aim of investigating their stabilities. The thermal stability data indicated that a [...] Read more.
Grumixama (Eugenia brasiliensis Lam.) are red-colored fruits due to the presence of anthocyanins. In this paper, anthocyanin-rich extracts from grumixama were submitted to different temperatures and light irradiations, with the aim of investigating their stabilities. The thermal stability data indicated that a temperature range from 60 to 80 °C was critical to the stability of the anthocyanins of the grumixama extracts, with a temperature quotient value (Q10) of 2.8 and activation energy (Ea) of 52.7 kJ/mol. The anthocyanin-rich extracts of grumixama fruits showed the highest stability during exposure to incandescent irradiation (50 W), followed by fluorescent radiation (10 W). The t1/2 and k were 59.6 h and 0.012 h−1 for incandescent light, and 45.6 h and 0.015 h−1 for fluorescent light. In turn, UV irradiation (25 W) quickly degraded the anthocyanins (t1/2 = 0.18 h and k = 3.74 h−1). Therefore, grumixama fruits, and their derived products, should be handled carefully to avoid high temperature (>50 °C) and UV light exposure in order to protect the anthocyanins from degradation. Furthermore, grumixama fruits showed high contents of anthocyanins that can be explored as natural dyes; for example, by food, pharmaceutical and cosmetic industries. In addition, the results of this study may contribute to the setting of processing conditions and storage conditions for grumixama-derived fruit products. Full article
(This article belongs to the Special Issue Fruits and Fruit-Based Products as a Source of Bioactive Compounds)
Show Figures

Graphical abstract

16 pages, 912 KiB  
Article
Quality of Tenebrio molitor Powders: Effects of Four Processes on Microbiological Quality and Physicochemical Factors
by Xin Yan, Sophie Laurent, Isabelle Hue, Sylvie Cabon, Joelle Grua-Priol, Vanessa Jury, Michel Federighi and Geraldine Boué
Foods 2023, 12(3), 572; https://doi.org/10.3390/foods12030572 - 28 Jan 2023
Cited by 7 | Viewed by 3221
Abstract
Tenebrio molitor, the first edible insect approved as a novel food in the EU, is a promising candidate for alternative protein sources, implementing circular and sustainable production systems. This study aims to determine the microbiological quality and physicochemical properties of mealworm powders [...] Read more.
Tenebrio molitor, the first edible insect approved as a novel food in the EU, is a promising candidate for alternative protein sources, implementing circular and sustainable production systems. This study aims to determine the microbiological quality and physicochemical properties of mealworm powders obtained by four different processing pathways. Contents of dry matter, protein, fat, ash, water activity (aw) and a range of microbial counts were measured and analyzed by one-way ANOVA with Tukey’s test. Results showed small differences in the proximate composition of the powder samples (protein 55.62–57.90% and fat 23.63–28.21% of dry matter, DM), except for the one that underwent a defatting step (protein 70.04% and fat 16.84%), p < 0.05. A level of water activity of less than 0.2 was reached for all pathways. Fresh mealworm samples had high total aerobic counts (8.4 log CFU/g) but were free of foodborne pathogens. Heat treatments applied during transformation were sufficient to kill vegetative cells (reduction of 2.8–5.1 log CFU/g) rather than bacterial endospores (reduction of 0.3–1.8 log CFU/g). Results were confirmed by predictive microbiology. This study validated the efficacy of a boiling step as critical control points (CCPs) of insect powder processing, providing primary data for the implementation of HACCP plans. Full article
Show Figures

Figure 1

16 pages, 1425 KiB  
Article
Comparison of the Rheological Behavior of Fortified Rye–Wheat Dough with Buckwheat, Beetroot and Flax Fiber Powders and Their Effect on the Final Product
by Greta Adamczyk, Zuzanna Posadzka, Teresa Witczak and Mariusz Witczak
Foods 2023, 12(3), 559; https://doi.org/10.3390/foods12030559 - 27 Jan 2023
Cited by 5 | Viewed by 2035
Abstract
This study was focused on the replacement of the part of the flour (10% w/w) in rye–wheat bread with three different botanical origin powders with a high dietary fiber content (buckwheat hulls, beetroot and flax powder). The dough was based [...] Read more.
This study was focused on the replacement of the part of the flour (10% w/w) in rye–wheat bread with three different botanical origin powders with a high dietary fiber content (buckwheat hulls, beetroot and flax powder). The dough was based on rye–wheat flour without and with the addition of fiber powders with different botanical origins and was tested, and the quality of the finished baked products made from those doughs were assessed. In order to characterize the flour mixtures, their basic parameters were determined, and their pasting characteristic was performed. The dough parameters were described by the Burger rheological model and also the creep and recovery test. On the other hand, in bread, the basic parameters of baking, crumb and crust color parameters were determined, and an analysis of the crumb texture was carried out. Additionally, a sensory analysis of the finished products was carried out. The applied fiber additives influenced the pasting characteristics of the tested rye–wheat flour and were influenced by the dough rheological properties. It was found that used fiber powders changed the quality parameters of the final products. Despite this, using fiber at the amount of 10% as a flour substitute allowed us to obtain bread of a similar quality to the control sample. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

23 pages, 1005 KiB  
Review
Natural Killers: Opportunities and Challenges for the Use of Bacteriophages in Microbial Food Safety from the One Health Perspective
by Maria Lavilla, Pilar Domingo-Calap, Sandra Sevilla-Navarro and Amaia Lasagabaster
Foods 2023, 12(3), 552; https://doi.org/10.3390/foods12030552 - 26 Jan 2023
Cited by 11 | Viewed by 4889
Abstract
Ingestion of food or water contaminated with pathogenic bacteria may cause serious diseases. The One Health approach may help to ensure food safety by anticipating, preventing, detecting, and controlling diseases that spread between animals, humans, and the environment. This concept pays special attention [...] Read more.
Ingestion of food or water contaminated with pathogenic bacteria may cause serious diseases. The One Health approach may help to ensure food safety by anticipating, preventing, detecting, and controlling diseases that spread between animals, humans, and the environment. This concept pays special attention to the increasing spread and dissemination of antibiotic-resistant bacteria, which are considered one of the most important environment-related human and animal health hazards. In this context, the development of innovative, versatile, and effective alternatives to control bacterial infections in order to assure comprehensive food microbial safety is becoming an urgent issue. Bacteriophages (phages), viruses of bacteria, have gained significance in the last years due to the request for new effective antimicrobials for the treatment of bacterial diseases, along with many other applications, including biotechnology and food safety. This manuscript reviews the application of phages in order to prevent food- and water-borne diseases from a One Health perspective. Regarding the necessary decrease in the use of antibiotics, results taken from the literature indicate that phages are also promising tools to help to address this issue. To assist future phage-based real applications, the pending issues and main challenges to be addressed shortly by future studies are also taken into account. Full article
(This article belongs to the Special Issue Advance and Future Challenges to Microbial Food Safety)
Show Figures

Graphical abstract

18 pages, 439 KiB  
Article
Aflatoxins in Maize from Serbia and Croatia: Implications of Climate Change
by Jelka Pleadin, Jovana Kos, Bojana Radić, Ana Vulić, Nina Kudumija, Radmila Radović, Elizabet Janić Hajnal, Anamarija Mandić and Mislav Anić
Foods 2023, 12(3), 548; https://doi.org/10.3390/foods12030548 - 26 Jan 2023
Cited by 13 | Viewed by 2688
Abstract
Aflatoxins (AFs) represent the most important mycotoxin group, whose presence in food and feed poses significant global health and economic issues. The occurrence of AFs in maize is a burning problem worldwide, mainly attributed to droughts. In recent years, Serbia and Croatia faced [...] Read more.
Aflatoxins (AFs) represent the most important mycotoxin group, whose presence in food and feed poses significant global health and economic issues. The occurrence of AFs in maize is a burning problem worldwide, mainly attributed to droughts. In recent years, Serbia and Croatia faced climate changes followed by a warming trend. Therefore, the main aim of this study was to estimate the influence of weather on AFs occurrence in maize from Serbia and Croatia in the 2018–2021 period. The results indicate that hot and dry weather witnessed in the year 2021 resulted in the highest prevalence of AFs in maize samples in both Serbia (84%) and Croatia (40%). In maize harvested in 2018–2020, AFs occurred in less than, or around, 10% of Serbian and 20% of Croatian samples. In order to conduct a comprehensive study on the implications of climate change for the occurrence of AFs in maize grown in these two countries, the results of available studies performed in the last thirteen years were searched for and discussed. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

16 pages, 3109 KiB  
Article
Introduction of Curdlan Optimizes the Comprehensive Properties of Methyl Cellulose Films
by Liang Zhang, Liang Xu, Jin-Ke Ma, Yun-Yue Ye, Ying Chen and Jian-Ya Qian
Foods 2023, 12(3), 547; https://doi.org/10.3390/foods12030547 - 26 Jan 2023
Cited by 9 | Viewed by 1904
Abstract
The good oxygen barrier and hydrophobic properties of curdlan (CL) film might be suitable complements for MC film, and its similar glucose unit and thermal-gel character might endow the methyl cellulose (MC)/CL blended system with compatibility and good comprehensive properties. Thus, MC/CL blended [...] Read more.
The good oxygen barrier and hydrophobic properties of curdlan (CL) film might be suitable complements for MC film, and its similar glucose unit and thermal-gel character might endow the methyl cellulose (MC)/CL blended system with compatibility and good comprehensive properties. Thus, MC/CL blended films were developed. The effects of MC/CL blend ratios on the microstructures and physical properties of the blends were characterized by using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), oxygen and water vapor permeability testing, dynamic mechanical analysis (DMA), light transmittance testing, tensile testing, hydrophilic property testing, and water solubility testing. The introduction of CL affected the molecular aggregation and crystallization of the MC molecules, suggesting MC–CL molecular interactions. The cross-sectional roughness of the MC/CL film increased with an increase in CL content, while the surface of the MC/CL 5:5 film was smoother than those of the MC/CL 7:3 and 3:7 films. Only one glass transition temperature, which was between that of the MC and CL films, was observed for the MC/CL 7:3 and MC/CL 5:5 films, indicating the good compatibility of the MC and CL molecules at these two blend ratios. The hydrophobicity and water insolubility increased with the CL content, which was due to the combined effects of more hydrophobic cavities in the CL triple-helix and increased surface roughness. Increased oxygen barrier properties with increasing CL content might be a combined effect of the increased hydrogen bonds and hydrophilic ektexines of the CL triple-helix. The elongations of the blended films were higher than those of the MC film, which might be related to its increased water content. The MC/CL 7:3 and MC/CL 5:5 films retained the good light transmittance and tensile strength of the MC film, which corresponded well to their good compatibility and might be due to the effects of the MC–CL molecular interactions and the relative smooth morphologies. MC/CL 5:5 showed improved water vapor barrier properties, which might be due to its smooth surface morphologies. This research offers new MC based films with improved properties and good compatibility, providing great potential for use as edible coatings, capsules, and packaging materials. Full article
(This article belongs to the Special Issue Edible Film Based on Polysaccharides, Proteins and Lipids)
Show Figures

Figure 1

24 pages, 2595 KiB  
Article
‘Superfoods’: Reliability of the Information for Consumers Available on the Web
by Ángel Cobos and Olga Díaz
Foods 2023, 12(3), 546; https://doi.org/10.3390/foods12030546 - 26 Jan 2023
Cited by 8 | Viewed by 6066
Abstract
The term ‘superfoods’, used frequently with marketing purposes, is usually associated with foodstuffs with beneficial health properties. ‘Superfoods’ appears in many information sources, including digital media. The information they provide is easily accessible for consumers through Internet search engines. The objective of this [...] Read more.
The term ‘superfoods’, used frequently with marketing purposes, is usually associated with foodstuffs with beneficial health properties. ‘Superfoods’ appears in many information sources, including digital media. The information they provide is easily accessible for consumers through Internet search engines. The objective of this work is to investigate the data that web pages offer to consumers and their accuracy according to current scientific knowledge. The two main search engines were utilized for English language websites search, introducing the term ‘superfoods’. In total, 124 search results were found. After applying the selection criteria, 45 web pages were studied. A total of 136 foods were considered as ‘superfoods’ by sites; 10 of them (kale, spinach, salmon, blueberries, avocado, chia, walnuts, beans, fermented milks and garlic) were mentioned on at least 15 sites. Nutritional and healthy properties displayed on sites were compared to scientific information. In conclusion, websites present the information in a very simplified manner and it is generally not wrong. However, they should offer to consumers comprehensible information without raising false expectations regarding health benefits. In any case, ‘superfoods’ consumption can have salutary effects as part of a balanced diet. Full article
Show Figures

Figure 1

17 pages, 1117 KiB  
Article
Effects of the Aging Period and Method on the Physicochemical, Microbiological and Rheological Characteristics of Two Cuts of Charolais Beef
by Marika Di Paolo, Rosa Luisa Ambrosio, Claudia Lambiase, Valeria Vuoso, Angela Salzano, Giovanna Bifulco, Carmela Maria Assunta Barone and Raffaele Marrone
Foods 2023, 12(3), 531; https://doi.org/10.3390/foods12030531 - 25 Jan 2023
Cited by 6 | Viewed by 2785
Abstract
Wet-aging (WA) and dry-aging (DA) methods are usually used in the beef industry to satisfy the consumers’ tastes; however, these methods are not suitable for all anatomical cuts. In this study, WA and DA were applied to improve the quality of two cuts [...] Read more.
Wet-aging (WA) and dry-aging (DA) methods are usually used in the beef industry to satisfy the consumers’ tastes; however, these methods are not suitable for all anatomical cuts. In this study, WA and DA were applied to improve the quality of two cuts of Charolais beef (Longissimus dorsi and Semitendinosus). For 60 days (i.e., 2 days, 15 days, 30 days and 60 days of sampling), a physicochemical, rheological, and microbiological analysis were performed at WA (vacuum packed; temperature of 4 ± 1 °C) and at DA (air velocity of 0.5 m/s; temperature of 1 ± 1 °C; relative humidity of 78 ± 10%) conditions. The results showed that the aging method influenced the aging loss (higher in the DA), cooking loss (higher in the WA), malondialdehyde concentration (higher in the DA) and fatty acid profile (few changes). No differences in the drip loss and color were observed, which decreased after 30 days of aging. The WBSF and TPA test values changed with increasing an aging time showing that the aging improved the tenderness of meat regardless of the aging method. Moreover, the aging method does not influence the microbiological profile. In conclusion, both WA and DA enhanced the quality of the different beef cuts, suggesting that an optimal method-time and aging combination could be pursued to reach the consumers’ preferences. Full article
Show Figures

Figure 1

20 pages, 6652 KiB  
Article
Detection Method for Tomato Leaf Mildew Based on Hyperspectral Fusion Terahertz Technology
by Xiaodong Zhang, Yafei Wang, Zhankun Zhou, Yixue Zhang and Xinzhong Wang
Foods 2023, 12(3), 535; https://doi.org/10.3390/foods12030535 - 25 Jan 2023
Cited by 10 | Viewed by 2147
Abstract
Leaf mildew is a common disease of tomato leaves. Its detection is an important means to reduce yield loss from the disease and improve tomato quality. In this study, a new method was developed for the multi-source detection of tomato leaf mildew by [...] Read more.
Leaf mildew is a common disease of tomato leaves. Its detection is an important means to reduce yield loss from the disease and improve tomato quality. In this study, a new method was developed for the multi-source detection of tomato leaf mildew by THz hyperspectral imaging through combining internal and external leaf features. First, multi-source information obtained from tomato leaves of different disease grades was extracted by near-infrared hyperspectral imaging and THz time-domain spectroscopy, while the influence of low-frequency noise was removed by the Savitzky Golay (SG) smoothing algorithm. A genetic algorithm (GA) was used to optimize the selection of the characteristic near-infrared hyperspectral band. Principal component analysis (PCA) was employed to optimize the THz characteristic absorption spectra and power spectrum dimensions. Recognition models were developed for different grades of tomato leaf mildew infestation by incorporating near-infrared hyperspectral imaging, THz absorbance, and power spectra using the backpropagation neural network (BPNN), and the models had recognition rates of 95%, 96.67%, and 95%, respectively. Based on the near-infrared hyperspectral features, THz time-domain spectrum features, and classification model, the probability density of the posterior distribution of tomato leaf health parameter variables was recalculated by a Bayesian network model. Finally, a fusion diagnosis and health evaluation model of tomato leaf mildew with hyperspectral fusion THz was established, and the recognition rate of tomato leaf mildew samples reached 97.12%, which improved the recognition accuracy by 0.45% when compared with the single detection method, thereby achieving the accurate detection of facility diseases. Full article
Show Figures

Figure 1

18 pages, 3136 KiB  
Article
Valorization of Rice Husk (Oryza sativa L.) as a Source of In Vitro Antiglycative and Antioxidant Agents
by Ilaria Frosi, Daniela Vallelonga, Raffaella Colombo, Chiara Milanese and Adele Papetti
Foods 2023, 12(3), 529; https://doi.org/10.3390/foods12030529 - 25 Jan 2023
Cited by 5 | Viewed by 2628
Abstract
Rice husk is a good source of polyphenols, but it has not been efficiently utilized in food applications yet. Therefore, the aim of this work is to investigate, by in vitro assays, the polyphenolic extract (RHE) capacity of this waste to counteract the [...] Read more.
Rice husk is a good source of polyphenols, but it has not been efficiently utilized in food applications yet. Therefore, the aim of this work is to investigate, by in vitro assays, the polyphenolic extract (RHE) capacity of this waste to counteract the protein glycation at different stages of the reaction, correlating this activity with the antiradical properties. A microwave-assisted extraction using hydro-alcoholic solvents was applied to recover husk polyphenols. Extraction parameters were optimized by the design of the experiment. The extract with the highest polyphenolic recovery was obtained at 500 W and 90 °C, using 1:35 g of dry material/mL solvent, 80% ethanol, and a 5 min extraction time. Results highlight the ability of RHE to inhibit the formation of fructosamine in the early stage of glycation with a dose-dependent activity. Furthermore, in the middle stage of the reaction, the highest RHE tested concentration (2.5 mg/mL) almost completely inhibit the monitored advanced glycation end products (AGEs), as well as showing a good trapping ability against α-dicarbonyl intermediates. A strong positive correlation with antioxidant activity is also found. The obtained results are supported by the presence of ten polyphenols detected by RP-HPLC-DAD-ESI-MSn, mainly hydroxycinnamic acids and flavonoids, already reported in the literature as antiglycative and antioxidant agents. Full article
Show Figures

Figure 1

22 pages, 2829 KiB  
Article
How Cooking Time Affects In Vitro Starch and Protein Digestibility of Whole Cooked Lentil Seeds versus Isolated Cotyledon Cells
by Dorine Duijsens, Sarah H. E. Verkempinck, Audrey De Coster, Katharina Pälchen, Marc Hendrickx and Tara Grauwet
Foods 2023, 12(3), 525; https://doi.org/10.3390/foods12030525 - 24 Jan 2023
Cited by 7 | Viewed by 3490
Abstract
Lentils are sustainable sources of bioencapsulated macronutrients, meaning physical barriers hinder the permeation of digestive enzymes into cotyledon cells, slowing down macronutrient digestion. While lentils are typically consumed as cooked seeds, insights into the effect of cooking time on microstructural and related digestive [...] Read more.
Lentils are sustainable sources of bioencapsulated macronutrients, meaning physical barriers hinder the permeation of digestive enzymes into cotyledon cells, slowing down macronutrient digestion. While lentils are typically consumed as cooked seeds, insights into the effect of cooking time on microstructural and related digestive properties are lacking. Therefore, the effect of cooking time (15, 30, or 60 min) on in vitro amylolysis and proteolysis kinetics of lentil seeds (CL) and an important microstructural fraction, i.e., cotyledon cells isolated thereof (ICC), were studied. For ICC, cooking time had no significant effect on amylolysis kinetics, while small but significant differences in proteolysis were observed (p < 0.05). In contrast, cooking time importantly affected the microstructure obtained upon the mechanical disintegration of whole lentils, resulting in significantly different digestion kinetics. Upon long cooking times (60 min), digestion kinetics approached those of ICC since mechanical disintegration yielded a high fraction of individual cotyledon cells (67 g/100 g dry matter). However, cooked lentils with a short cooking time (15 min) showed significantly slower amylolysis with a lower final extent (~30%), due to the presence of more cell clusters upon disintegration. In conclusion, cooking time can be used to obtain distinct microstructures and digestive functionalities with perspectives for household and industrial preparation. Full article
Show Figures

Graphical abstract

Back to TopTop