Editorial Board Members’ Collection Series: Biomaterials Design

A topical collection in Designs (ISSN 2411-9660). This collection belongs to the section "Bioengineering Design".

Viewed by 25752
Printed Edition Available!
A printed edition of this Special Issue is available here.

Editors


E-Mail Website
Collection Editor
Department of Physical Electronics, Masaryk University, Brno, Czech Republic
Interests: electrochemistry; PVD; CVD; biomaterials; coatings; calcium phosphate; oxides; bioglass; bone implants; corrosion
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Collection Editor
Institut de Thermique, Mécanique et Matériaux (ITheMM), Université de Reims Champagne-Ardenne (URCA), Reims, France
Interests: electrochemical deposition; electrophoretic deposition; biomaterials; prosthetic coatings; calcium phosphates; bioactive glasses; bone substitutes; electron microscopy; X-ray microanalysis
Special Issues, Collections and Topics in MDPI journals

Topical Collection Information

Dear Colleagues,

The global clinical demand for biomaterials is constantly increasing due to the aging of the population. Academic and industrial research is expected to improve the properties and extend the lifespan of biomaterials used to repair or replace tissue functions. Inside the body, implanted materials need specific biological, physical, chemical, and mechanical properties to interact appropriately with the physiological environment. Biomaterials can be made of metals, polymers, bioglasses, ceramics, or a composite of these materials. They must be biocompatible, i.e., accepted by the human body without any adverse effect. For some specific applications, they can be bioactive, inducing a physiological response that supports the function and performance of the biomaterial. The biomedical applications of biomaterials include, but are not limited to, joint replacements, bone implants, intraocular lenses, artificial ligaments and tendons, dental implants, blood vessel prostheses, heart valves, skin repair, cochlear replacements, drug delivery systems, stents, nerve conduits, surgical sutures, pins and screws for fracture stabilization, and surgical mesh.

The objective of this collection is to present the latest achievements in the field and the next challenges for future investigations of the design and applications of biomaterials.

Dr. Richard Drevet
Prof. Dr. Hicham Benhayoune
Collection Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Designs is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biomaterials
  • implant
  • health
  • functionalization of biomaterials
  • human body
  • biocompatibility
  • bioactivity
  • restoration of tissue functions
  • biomedical
  • tissue repair

Published Papers (15 papers)

2024

Jump to: 2023, 2022

19 pages, 5276 KiB  
Review
Control of the Properties of the Voronoi Tessellation Technique and Biomimetic Patterns: A Review
by Ana Karilú Arvizu Alonso, Eddie Nahúm Armendáriz Mireles, Carlos Adrián Calles Arriaga and Enrique Rocha Rangel
Designs 2024, 8(5), 93; https://doi.org/10.3390/designs8050093 - 14 Sep 2024
Viewed by 235
Abstract
The cellular behavior of Voronoi tessellation has generated interest due to its applicability in various fields and its notable structural properties. Controlling factors such as the gradient of the cells, the position of seed points, and the thickness of the arms allows for [...] Read more.
The cellular behavior of Voronoi tessellation has generated interest due to its applicability in various fields and its notable structural properties. Controlling factors such as the gradient of the cells, the position of seed points, and the thickness of the arms allows for adjusting rigidity and flexibility according to specific needs. This article analyzes the state of the art of this technique, exploring its modification for applications in engineering and design, complemented with information on natural structural properties. This comprehensive analysis provides a complete overview of Voronoi tessellation and its potential in engineering and design, categorizing methodologies according to selected processing methods and highlighting techniques for altering structural behavior. Additionally, it emphasizes the integration of biomimetic approaches, connecting nature with technology to foster continuous innovation. Finally, this article addresses encountered limitations, offering future perspectives for the cellular technique and highlights the complexity of reproducibility due to reserved or generalized steps, despite the significant diversity in implemented techniques. Full article
Show Figures

Figure 1

18 pages, 3376 KiB  
Review
Seeking Endurance: Designing Smart Dental Composites for Tooth Restoration
by Tasneem Alluhaidan, Masoumah Qaw, Isadora Martini Garcia, Carolina Montoya, Santiago Orrego and Mary Anne Melo
Designs 2024, 8(5), 92; https://doi.org/10.3390/designs8050092 - 13 Sep 2024
Viewed by 353
Abstract
Smart dental materials refer to materials used in dentistry with additional functionality to enhance treatment outcomes, which may improve oral health. Smart materials for dental restorations can react to stimuli such as a specific temperature, a different pH, or mechanical stress, repair small [...] Read more.
Smart dental materials refer to materials used in dentistry with additional functionality to enhance treatment outcomes, which may improve oral health. Smart materials for dental restorations can react to stimuli such as a specific temperature, a different pH, or mechanical stress, repair small cracks or damage by themselves, and interact beneficially with biological surroundings. For example, they might release ions and promote tooth remineralization or have antibacterial properties to prevent bacterial growth. Others can have enhanced mechanical properties like strength and wear resistance to ensure these materials can withstand daily masticatory forces. This review presents our current comprehension of smart dental materials designed for tooth restoration. We focused on what these materials need to be effective, like durability, biocompatibility, and aesthetic requests, besides identifying new ideas for their design. A detailed analysis of the current challenges in formulating these materials, such as the balance between enough ions released with proper physicochemical properties and achieving the desired biological response, was discussed. We also discussed how these cutting-edge technologies are leveraged to overcome existing limitations, creating more dental materials with potential clinical translation. The review also discusses the practical challenges in implementation and the prospects for these materials in dentistry. Full article
Show Figures

Figure 1

4 pages, 635 KiB  
Editorial
Biomaterials Design for Human Body Repair
by Richard Drevet and Hicham Benhayoune
Designs 2024, 8(4), 65; https://doi.org/10.3390/designs8040065 - 27 Jun 2024
Cited by 1 | Viewed by 980
Abstract
The global clinical demand for biomaterials is constantly increasing due to the aging population [...] Full article
Show Figures

Figure 1

19 pages, 5276 KiB  
Article
Design and Implementation of a Low-Power Device for Non-Invasive Blood Glucose
by Luis Miguel Pires and José Martins
Designs 2024, 8(4), 63; https://doi.org/10.3390/designs8040063 - 24 Jun 2024
Viewed by 964
Abstract
Glucose is a simple sugar molecule. The chemical formula of this sugar molecule is C6H12O6. This means that the glucose molecule contains six carbon atoms (C), twelve hydrogen atoms (H), and six oxygen atoms (O). In human [...] Read more.
Glucose is a simple sugar molecule. The chemical formula of this sugar molecule is C6H12O6. This means that the glucose molecule contains six carbon atoms (C), twelve hydrogen atoms (H), and six oxygen atoms (O). In human blood, the molecule glucose circulates as blood sugar. Normally, after eating or drinking, our bodies break down the sugars in food and use them to obtain energy for our cells. To execute this process, our pancreas produces insulin. Insulin “pulls” sugar from the blood and puts it into the cells for use. If someone has diabetes, their pancreas cannot produce enough insulin. As a result, the level of glucose in their blood rises. This can lead to many potential complications, including blindness, disease, nerve damage, amputation, stroke, heart attack, damage to blood vessels, etc. In this study, a non-invasive and therefore easily usable method for monitoring blood glucose was developed. With the experiment carried out, it was possible to measure glucose levels continuously, thus eliminating the disadvantages of invasive systems. Near-IR sensors (optical sensors) were used to estimate the concentration of glucose in blood; these sensors have a wavelength of 940 nm. The sensor was placed on a small black parallelepiped-shaped box on the tip of the finger and the output of the optical sensor was then connected to a microcontroller at the analogue input. Another sensor used, but only to provide more medical information, was the heartbeat sensor, inserted into an armband (along with the microprocessor). After processing and linear regression analysis, the glucose level was predicted, and data were sent via the Bluetooth network to a developed APP. The results of the implemented device were compared with available invasive methods (commercial products). The hardware consisted of a microcontroller, a near-IR optical sensor, a heartbeat sensor, and a Bluetooth module. Another objective of this experiment using low-cost and low-power hardware was to not carry out complex processing of data from the sensors. Our practical laboratory experiment resulted in an error of 2.86 per cent when compared to a commercial product, with a hardware cost of EUR 8 and a consumption of 50 mA. Full article
Show Figures

Figure 1

11 pages, 3181 KiB  
Article
Biomechanics of a Novel 3D Mandibular Osteotomy Design
by Carlos Aurelio Andreucci, Elza M. M. Fonseca and Renato N. Jorge
Designs 2024, 8(3), 57; https://doi.org/10.3390/designs8030057 - 13 Jun 2024
Cited by 1 | Viewed by 910
Abstract
Elective mandibular surgical osteotomies are commonly used to correct craniofacial discrepancies. Since the modifications proposed by Obwegeser, Dal Pont, and Hunsuck, no effective variations have been proposed to improve the biomechanical results of these mandibular osteotomies. With technological developments and the use of [...] Read more.
Elective mandibular surgical osteotomies are commonly used to correct craniofacial discrepancies. Since the modifications proposed by Obwegeser, Dal Pont, and Hunsuck, no effective variations have been proposed to improve the biomechanical results of these mandibular osteotomies. With technological developments and the use of three-dimensional images from CT scans of patients, much has been done to plan and predict outcomes with greater precision and control. To date, 3D imaging and additive manufacturing technologies have not been used to their full potential to create innovative mandibular osteotomies. The use of 3D digital images obtained from CT scans as DICOM files, which were then converted to STL files, proved to be an efficient method of developing an innovative mandibular ramus beveled osteotomy technique. The new mandibular osteotomy is designed to reduce the likelihood of vasculo-nervous damage to the mandible, reduce the time and ease of surgery, and reduce post-operative complications. The proposed osteotomy does not affect traditional osteotomies. Anatomical structures such as the inferior alveolar nerve and intraoral surgical access were preserved and maintained, respectively. The results obtained from the digital images were validated on an additively manufactured 3D synthetic bone model. Full article
Show Figures

Figure 1

11 pages, 4009 KiB  
Article
Introduction of Hybrid Additive Manufacturing for Producing Multi-Material Artificial Organs for Education and In Vitro Testing
by Konstantinos Chatzipapas, Anastasia Nika and Agathoklis A. Krimpenis
Designs 2024, 8(3), 51; https://doi.org/10.3390/designs8030051 - 28 May 2024
Cited by 1 | Viewed by 1143
Abstract
The evolution of 3D printing has ushered in accessibility and cost-effectiveness, spanning various industries including biomedical engineering, education, and microfluidics. In biomedical engineering, it encompasses bioprinting tissues, producing prosthetics, porous metal orthopedic implants, and facilitating educational models. Hybrid Additive Manufacturing approaches and, more [...] Read more.
The evolution of 3D printing has ushered in accessibility and cost-effectiveness, spanning various industries including biomedical engineering, education, and microfluidics. In biomedical engineering, it encompasses bioprinting tissues, producing prosthetics, porous metal orthopedic implants, and facilitating educational models. Hybrid Additive Manufacturing approaches and, more specifically, the integration of Fused Deposition Modeling (FDM) with bio-inkjet printing offers the advantages of improved accuracy, structural support, and controlled geometry, yet challenges persist in cell survival, interaction, and nutrient delivery within printed structures. The goal of this study was to develop and present a low-cost way to produce physical phantoms of human organs that could be used for research and training, bridging the gap between the use of highly detailed computational phantoms and real-life clinical applications. To this purpose, this study utilized anonymized clinical Computed Tomography (CT) data to create a liver physical model using the Creality Ender-3 printer. Polylactic Acid (PLA), Polyvinyl Alcohol (PVA), and light-bodied silicone (Polysiloxane) materials were employed for printing the liver including its veins and arteries. In brief, PLA was used to create a mold of a liver to be filled with biocompatible light-bodied silicone. Molds of the veins and arteries were printed using PVA and then inserted in the liver model to create empty channel. In addition, the PVA was then washed out by the final product using warm water. Despite minor imperfections due to the printer’s limitations, the final product imitates the computational model accurately enough. Precision adjustments in the design phase compensated for this variation. The proposed novel low-cost 3D printing methodology successfully produced an anatomically accurate liver physical model, presenting promising applications in medical education, research, and surgical planning. Notably, its implications extend to medical training, personalized medicine, and organ transplantation. The technology’s potential includes injection training for medical professionals, personalized anthropomorphic phantoms for radiation therapy, and the future prospect of creating functional living organs for organ transplantation, albeit requiring significant interdisciplinary collaboration and financial investment. This technique, while showcasing immense potential in biomedical applications, requires further advancements and interdisciplinary cooperation for its optimal utilization in revolutionizing medical science and benefiting patient healthcare. Full article
Show Figures

Figure 1

22 pages, 8775 KiB  
Article
Analysis of the Accuracy of CAD Modeling in Engineering and Medical Industries Based on Measurement Data Using Reverse Engineering Methods
by Paweł Turek, Wojciech Bezłada, Klaudia Cierpisz, Karol Dubiel, Adrian Frydrych and Jacek Misiura
Designs 2024, 8(3), 50; https://doi.org/10.3390/designs8030050 - 24 May 2024
Cited by 2 | Viewed by 1009
Abstract
The reverse engineering (RE) process is often necessary in today’s engineering and medical industries. Expertise in measurement technology, data processing, and CAD modeling is required to ensure accurate reconstruction of an object’s geometry. However, errors are generated at every stage of geometric reconstruction, [...] Read more.
The reverse engineering (RE) process is often necessary in today’s engineering and medical industries. Expertise in measurement technology, data processing, and CAD modeling is required to ensure accurate reconstruction of an object’s geometry. However, errors are generated at every stage of geometric reconstruction, affecting the dimensional and geometric accuracy of the final 3D-CAD model. In this article, the geometry of reconstructed models was measured using contact and optical methods. The measurement data representing 2D profiles, 3D point clouds, and 2D images acquired in the reconstruction process were saved to a stereolithography (STL) model. The reconstructed models were then subjected to a CAD modeling process, and the accuracy of the parametric modeling was evaluated by comparing the 3D-CAD model to the 3D-STL model. Based on the results, the model used for clamping and positioning parts to perform the machining process and the connecting rod provided the most accurate mapping errors. These models represented deviations within ±0.02 mm and ±0.05 mm. The accuracy of CAD modeling for the turbine blade model and the pelvis part was comparable, presenting deviations within ±0.1 mm. However, the helical gear and the femur models showed the highest deviations of about ±0.2 mm. The procedures presented in the article specify the methods and resolution of the measurement systems and suggest CAD modeling strategies to minimize reconstruction errors. These results can be used as a starting point for further tests to optimize CAD modeling procedures based on the obtained measurement data. Full article
Show Figures

Figure 1

13 pages, 3225 KiB  
Article
Finite Element Analysis of Patient-Specific Cranial Implants under Different Design Parameters for Material Selection
by Manuel Mejía Rodríguez, Octavio Andrés González-Estrada and Diego Fernando Villegas-Bermúdez
Designs 2024, 8(2), 31; https://doi.org/10.3390/designs8020031 - 27 Mar 2024
Cited by 3 | Viewed by 3042
Abstract
This work presents the study of the thickness vs. stiffness relationship for different materials (PMMA and PEEK) in patient-specific cranial implants, as a criterion for the selection of biomaterials from a mechanical perspective. The geometry of the implant is constructed from the reconstruction [...] Read more.
This work presents the study of the thickness vs. stiffness relationship for different materials (PMMA and PEEK) in patient-specific cranial implants, as a criterion for the selection of biomaterials from a mechanical perspective. The geometry of the implant is constructed from the reconstruction of the cranial lesion using image segmentation obtained from computed axial tomography. Different design parameters such as thickness and perforations are considered to obtain displacement distributions under critical loading conditions using finite element analysis. The models consider quasi-static loads with linear elastic materials. The null hypothesis underlying this research asserts that both biomaterials exhibit the minimum mechanical characteristics necessary to withstand direct impact trauma at the implant center, effectively averting critical deformations higher than 2 mm. In this way, the use of PMMA cranioplasties is justified in most cases where a PEEK implant cannot be accessed. Full article
Show Figures

Figure 1

18 pages, 23874 KiB  
Article
The Biomechanical Analysis of Tibial Implants Using Meshless Methods: Stress and Bone Tissue Remodeling Analysis
by Ana Pais, Catarina Moreira and Jorge Belinha
Designs 2024, 8(2), 28; https://doi.org/10.3390/designs8020028 - 20 Mar 2024
Cited by 3 | Viewed by 1504
Abstract
Total knee arthroplasty (TKA) stands out as one of the most widely employed surgical procedures, establishing itself as the preferred method for addressing advanced osteoarthritis of the knee. However, current knee prostheses require refined design solutions. This research work focuses on a computational [...] Read more.
Total knee arthroplasty (TKA) stands out as one of the most widely employed surgical procedures, establishing itself as the preferred method for addressing advanced osteoarthritis of the knee. However, current knee prostheses require refined design solutions. This research work focuses on a computational analysis of both the mechanical behavior of a knee joint implant and the bone remodeling process in the tibia following implantation. This research study delves into how specific design parameters, particularly the stem geometry, impact the prosthesis’s performance. Utilizing a computed tomography scan of a tibia, various TKA configurations were simulated to conduct analyses employing advanced discretization techniques, such as the finite element method (FEM) and the radial point interpolation method (RPIM). The findings reveal that the introduction of the implant leads to a marginal increase in the stress values within the tibia, accompanied by a reduction in the displacement field values. The insertion of the longest tested implant increased the maximum stress from 5.0705 MPa to 6.1584 MPa, leading to a displacement reduction from 0.016 mm to 0.0142 mm. Finally, by combining the FEM with a bone remodeling algorithm, the bone remodeling process of the tibia due to an implant insertion was simulated. Full article
Show Figures

Figure 1

18 pages, 4295 KiB  
Article
Attention-Based DenseNet for Lung Cancer Classification Using CT Scan and Histopathological Images
by Jia Uddin
Designs 2024, 8(2), 27; https://doi.org/10.3390/designs8020027 - 18 Mar 2024
Cited by 1 | Viewed by 1977
Abstract
Lung cancer is identified by the uncontrolled proliferation of cells in lung tissues. The timely detection of malignant cells in the lungs, crucial for processes such as oxygen provision and carbon dioxide elimination in the human body, is imperative. The application of deep [...] Read more.
Lung cancer is identified by the uncontrolled proliferation of cells in lung tissues. The timely detection of malignant cells in the lungs, crucial for processes such as oxygen provision and carbon dioxide elimination in the human body, is imperative. The application of deep learning for discerning lymph node involvement in CT scans and histopathological images has garnered widespread attention due to its potential impact on patient diagnosis and treatment. This paper suggests employing DenseNet for lung cancer detection, leveraging its ability to transmit learned features backward through each layer continuously. This characteristic not only reduces model parameters but also enhances the learning of local features, facilitating a better comprehension of the structural complexity and uneven distribution in CT scans and histopathological cancer images. Furthermore, DenseNet accompanied by an attention mechanism (ATT-DenseNet) allows the model to focus on specific parts of an image, giving more weight to relevant regions. Compared to existing algorithms, the ATT-DenseNet demonstrates a remarkable enhancement in accuracy, precision, recall, and the F1-Score. It achieves an average improvement of 20% in accuracy, 19.66% in precision, 24.33% in recall, and 22.33% in the F1-Score across these metrics. The motivation behind the research is to leverage deep learning technologies to enhance the precision and reliability of lung cancer diagnostics, thus addressing the gap in early detection and treatment. This pursuit is driven by the potential of deep learning models, like DenseNet, to provide significant improvements in analyzing complex medical images for better clinical outcomes. Full article
Show Figures

Figure 1

22 pages, 3387 KiB  
Article
Investigating the Performance of Gammatone Filters and Their Applicability to Design Cochlear Implant Processing System
by Rumana Islam and Mohammed Tarique
Designs 2024, 8(1), 16; https://doi.org/10.3390/designs8010016 - 2 Feb 2024
Cited by 1 | Viewed by 1959
Abstract
Commercially available cochlear implants are designed to aid profoundly deaf people in understanding speech and environmental sounds. A typical cochlear implant uses a bank of bandpass filters to decompose an audio signal into a set of dynamic signals. These filters’ critical center frequencies [...] Read more.
Commercially available cochlear implants are designed to aid profoundly deaf people in understanding speech and environmental sounds. A typical cochlear implant uses a bank of bandpass filters to decompose an audio signal into a set of dynamic signals. These filters’ critical center frequencies f0 imitate the human cochlea’s vibration patterns caused by audio signals. Gammatone filters (GTFs), with two unique characteristics: (a) an appropriate “pseudo resonant” frequency transfer function, mimicking the human cochlea, and (b) realizing efficient hardware implementation, could demonstrate them as unique candidates for cochlear implant design. Although GTFs have recently attracted considerable attention from researchers, a comprehensive exposition of GTFs is still absent in the literature. This paper starts by enumerating the impulse response of GTFs. Then, the magnitude spectrum, |H(f)|, and bandwidth, more specifically, the equivalent rectangular bandwidth (ERB) of GTFs, are derived. The simulation results suggested that optimally chosen filter parameters, e.g., critical center frequencies,f0; temporal decay parameter, b; and order of the filter, n, can minimize the interference of the filter bank frequencies and very likely model the filter bandwidth (ERB), independent of f0b. Finally, these optimized filters are applied to delineate a filter bank for a cochlear implant design based on the Clarion processor model. Full article
Show Figures

Figure 1

2023

Jump to: 2024, 2022

18 pages, 4747 KiB  
Article
3D Printed Voronoi Structures Inspired by Paracentrotus lividus Shells
by Alexandros Efstathiadis, Ioanna Symeonidou, Konstantinos Tsongas, Emmanouil K. Tzimtzimis and Dimitrios Tzetzis
Designs 2023, 7(5), 113; https://doi.org/10.3390/designs7050113 - 29 Sep 2023
Cited by 4 | Viewed by 1642
Abstract
The present paper investigates the mechanical behavior of a biomimetic Voronoi structure, inspired by the microstructure of the shell of the sea urchin Paracentrotus lividus, with its characteristic topological attributes constituting the technical evaluation stage of a novel biomimetic design strategy. A [...] Read more.
The present paper investigates the mechanical behavior of a biomimetic Voronoi structure, inspired by the microstructure of the shell of the sea urchin Paracentrotus lividus, with its characteristic topological attributes constituting the technical evaluation stage of a novel biomimetic design strategy. A parametric design algorithm was used as a basis to generate design permutations with gradually increasing rod thickness, node count, and model smoothness, geometric parameters that define a Voronoi structure and increase its relative density as they are enhanced. Physical PLA specimens were manufactured with a fused filament fabrication (FFF) printer and subjected to quasi-static loading. Finite element analysis (FEA) was conducted in order to verify the experimental results. A minor discrepancy between the relative density of the designed and printed models was calculated. The tests revealed that the compressive behavior of the structure consists of an elastic region followed by a smooth plateau region and, finally, by the densification zone. The yield strength, compressive modulus, and plateau stress of the structure are improved as the specific geometric parameters are enhanced. The same trend is observed in the energy absorption capabilities of the structure while a reverse one characterizes the densification strain of the specimens. A second-degree polynomial relation is also identified between the modulus, plateau stress, and energy capacity when plotted against the relative density of the specimens. Distinct Voronoi morphologies can be acquired with similar mechanical characteristics, depending on the design requirements and application. Potential applications include lightweight structural materials and protective gear and accessories. Full article
Show Figures

Figure 1

18 pages, 23636 KiB  
Article
About the Mechanical Strength of Calcium Phosphate Cement Scaffolds
by Elisa Bertrand, Sergej Zankovic, Johannes Vinke, Hagen Schmal and Michael Seidenstuecker
Designs 2023, 7(4), 87; https://doi.org/10.3390/designs7040087 - 3 Jul 2023
Cited by 2 | Viewed by 1637
Abstract
For the treatment of bone defects, biodegradable, compressive biomaterials are needed as replacements that degrade as the bone regenerates. The problem with existing materials has either been their insufficient mechanical strength or the excessive differences in their elastic modulus, leading to stress shielding [...] Read more.
For the treatment of bone defects, biodegradable, compressive biomaterials are needed as replacements that degrade as the bone regenerates. The problem with existing materials has either been their insufficient mechanical strength or the excessive differences in their elastic modulus, leading to stress shielding and eventual failure. In this study, the compressive strength of CPC ceramics (with a layer thickness of more than 12 layers) was compared with sintered β-TCP ceramics. It was assumed that as the number of layers increased, the mechanical strength of 3D-printed scaffolds would increase toward the value of sintered ceramics. In addition, the influence of the needle inner diameter on the mechanical strength was investigated. Circular scaffolds with 20, 25, 30, and 45 layers were 3D printed using a 3D bioplotter, solidified in a water-saturated atmosphere for 3 days, and then tested for compressive strength together with a β-TCP sintered ceramic using a Zwick universal testing machine. The 3D-printed scaffolds had a compressive strength of 41.56 ± 7.12 MPa, which was significantly higher than that of the sintered ceramic (24.16 ± 4.44 MPa). The 3D-printed scaffolds with round geometry reached or exceeded the upper limit of the compressive strength of cancellous bone toward substantia compacta. In addition, CPC scaffolds exhibited more bone-like compressibility than the comparable β-TCP sintered ceramic, demonstrating that the mechanical properties of CPC scaffolds are more similar to bone than sintered β-TCP ceramics. Full article
Show Figures

Figure 1

11 pages, 3452 KiB  
Article
Bio-lubricant Properties Analysis of Drilling an Innovative Design of Bioactive Kinetic Screw into Bone
by Carlos Aurelio Andreucci, Elza M. M. Fonseca and Renato N. Jorge
Designs 2023, 7(1), 21; https://doi.org/10.3390/designs7010021 - 1 Feb 2023
Cited by 10 | Viewed by 2255
Abstract
Biotribology is applied to study the friction, wear, and lubrication of biological systems or natural phenomena under relative motion in the human body. It is a multidisciplinary field and tribological processes impact all aspects of our daily life. Tribological processes may occur after [...] Read more.
Biotribology is applied to study the friction, wear, and lubrication of biological systems or natural phenomena under relative motion in the human body. It is a multidisciplinary field and tribological processes impact all aspects of our daily life. Tribological processes may occur after the implantation of an artificial device in the human body with a wide variety of sliding and frictional interfaces. Blood is a natural bio-lubricant experiencing laminar flow at the lower screw velocities associated with drilling implants into bone, being a viscoelastic fluid with viscous and fluid characteristics. The viscosity comes from the blood plasma, while the elastic properties are from the deformation of red blood cells. In this study, drilling parameters according to material properties obtained by Finite Element Analysis are given. The influence of blood on the resulting friction between the surfaces is demonstrated and correlated with mechanical and biological consequences, identifying an innovative approach to obtaining a new lubricant parameter for bone drilling analysis. The lubrication parameter (HN) found within the limitations of conditions used in this study is 10.7 × 10−7 for both cortical bone (D1) and spongy bone (D4). A thermal-structural analysis of the densities of the soft bone (D4) and hard bone (D1) shows differences in only the equivalent stress values due to the differences in respective Young moduli. The natural occurrences of blood as a lubricant in bone-screw perforations are poorly investigated in the literature and its effects are fundamental in osseointegration. This work aims to elucidate the relevance of the study of blood as a lubricant in drilling and screwing implants into bone at lower speeds. Full article
Show Figures

Graphical abstract

2022

Jump to: 2024, 2023

24 pages, 10501 KiB  
Review
Bio-Based Adhesives for Orthopedic Applications: Sources, Preparation, Characterization, Challenges, and Future Perspectives
by Nuzul Ficky Nuswantoro, Muhammad Adly Rahandi Lubis, Dian Juliadmi, Efri Mardawati, Petar Antov, Lubos Kristak and Lee Seng Hua
Designs 2022, 6(5), 96; https://doi.org/10.3390/designs6050096 - 14 Oct 2022
Cited by 7 | Viewed by 3116
Abstract
Bone fracture healing involves complex physiological processes that require biological events that are well coordinated. In recent decades, the process of fracture healing has been upheld through various treatments, including bone implants and bio-adhesive utilization. Bio-adhesion can be interpreted as the process in [...] Read more.
Bone fracture healing involves complex physiological processes that require biological events that are well coordinated. In recent decades, the process of fracture healing has been upheld through various treatments, including bone implants and bio-adhesive utilization. Bio-adhesion can be interpreted as the process in which synthetic or natural materials adhere to body surfaces. Bio-based adhesives have superiority in many value-added applications because of their biocompatibility, biodegradability, and large molecular weight. The increased variety and utilization of bio-based materials with strong adhesion characteristics provide new possibilities in the field of orthopedics in terms of using bio-based adhesives with excellent resorbability, biocompatibility, ease of use, and low immunoreactivity. The aim of this review is to provide comprehensive information and evaluation of the various types of bio-based adhesives used clinically with a specific focus on their application in orthopedics. The main properties of bio-based adhesives, their benefits, and challenges compared with the traditional bio-based materials in orthopedics, as well as the future perspectives in the field, have also been outlined and discussed. Full article
Show Figures

Figure 1

Back to TopTop