Therapeutic and Clinical Potential of Adipose-Derived Stem Cell Secretome for Skin Regeneration
Abstract
1. Introduction
2. Adipose-Derived Stem Cell Characterization
3. Stem Cell Therapy and Stem Cell-Free Therapy Approaches
Isolation and Preparation Methods for MSC-Derived Products: Challenges and Perspectives
4. Adipose-Derived Stem Cell Secretome in Skin Regeneration
4.1. Chronic Wounds
4.1.1. AT-MSC Secretome in Diabetic Chronic Wound Healing
4.1.2. AT-MSC Secretome in Non-Diabetic Chronic Wound Healing
| AT-MSCs in Diabetes Chronic Wound Healing | |||
| Paracrine Factors | Model | Therapeutic Effect | References |
| Exosomes | mice normal wound healing model and a diabetic wound healing model. | Reduced inflammation. Promotion of angiogenesis, collagen deposition. Increased cellular proliferation and migration. Wound healing acceleration. | [24] |
| Exosomes | Rat skin fibroblasts and diabetic wound rat model | Enhanced the proliferation and migration of fibroblasts. Reduction of excessive myofibroblast differentiation and collagen deposition. Promotion of scarless healing of diabetic wounds in vivo. | [28] |
| Exosomes | HUVEC diabetes mellitus model in vitro and mouse normal wound healing model | Reduced oxidative stress and improved mitochondrial function in vitro. Increased proliferation and migration in vitro. Promotion of angiogenesis in vitro by increased ANG2, FILK1, and VEGF expression. Promotion of angiogenesis and improved wound healing in vivo. | [88] |
| Exosomes from miR-132-overexpressing cells | HUVEC diabetes mellitus model in vitro and diabetic wound mouse model | Improved skin flap survival and accelerated diabetic wound healing by attenuating local inflammation, promoting angiogenesis, and inducing M2 macrophage polarization via the NF-κB signaling pathway. | [89] |
| Exosomes | Diabetic wound mouse model | Increased wound healing by promoting contraction and re-epithelialization. Increased basal keratinocyte and dermal cell proliferation. Promotion of angiogenesis. Increased expression of VEGF, KGF, Col-I, and α-SMA. Production of collagen via TGF-β1/Smad3 signaling pathway | [90] |
| Exosomes | Diabetic rat skin fibroblasts transfected with miR-128-1-5p mimics and inhibitors and diabetic wound model in vivo | Increased cellular proliferation and migration. Suppressed TGF-β1 and α-SMA expression. Promotion of wound healing and attenuation of fibrosis and scar formation via the miR-128-1-5p/TGF-β1/Smad signaling pathway. | [91] |
| Exosomes from linc00511-overexpressing cells | Endothelial progenitor cells and rat diabetic foot ulcer model | Increased proliferation, migration, and angiogenesis. Diabetic foot ulcer healing improvement by suppressing PAQR3-induced Twist1 ubiquitin degradation to improve angiogenesis. | [92] |
| Exosomes from mmu_circ_0001052 overexpressing cells | HUVEC diabetes mellitus model and mouse diabetic foot ulcer model | Increased proliferation, migration, and angiogenesis. Improved wound healing by inflammation reduction and enhancement of granulation tissue formation. Mechanism via the miR-106a-5p/FGF4/p38MAPK pathway. Decreased apoptosis. | [93] |
| Conditioned medium (non-preconditioned DFX or preconditioned with DFX) | Diabetic wound/diabetic polyneuropathy mice model | Improved thermal and mechanical sensitivity. Restored intraepidermal nerve fiber density. Reduced neuron and Schwann cell apoptosis. Improved angiogenesis. Reduced chronic inflammation of peripheral nerves. Enhanced wound healing by wound closure, re-epithelization, and angiogenesis improvement. | [94] |
| Extracellular vesicles | Schwann cells and the diabetic peripheral neuropathy rat model | Enhanced proliferation of Schwan cells. Inhibited apoptosis. Promoted angiogenesis in vivo. Proposed mechanism via exosomal miR-130a-3p. | [98] |
| Exosomes | human immortalized keratinocyte cell line and diabetic wound mouse model | Induced autophagy (upregulation of NAMPT, CD46, VAMP7, VAMP3, EIF2S1). Enhanced epidermal cell proliferation and migration. Accelerated wound healing. | [100] |
| AT-MSCs in Non-Diabetic Chronic Wound Healing | |||
| Paracrine Factors | Model | Therapeutic Effect | References |
| Exosomes | Mouse wound model | Promoted scarless wound healing through modulation of keratinocyte plasticity and keratinocyte–fibroblast interactions. Reduced fibrosis via the 14-3-3 zeta-YES-Hippo signaling pathway. | [12] |
| Exosomes | Human dermal fibroblasts, and in vivo wound healing mouse and porcine models | Increased proliferation and migration in vitro. Increased gene expression of collagen, α-SMA, FGF2, and elastin. Improved collagen deposition, wound closure, and re-epithelization when exosomes were combined with hyaluronic acid in vivo. Improved infiltration and differentiation of myoblast-induced extracellular matrix remodeling in vivo. | [23] |
| Conditioned medium | Mouse wound model | Wound closure and angiogenesis promotion. Efficacy limited when compared to the use of AT-MSCs as stem cell therapy. | [26] |
| Paracrine FactorsModel Therapeutic Effect Limitations Conditioned medium/Secretome from 3D tissue-mimetic hydrogel culture | In vitro keratinocyte and fibroblast wound-healing models | Enhanced secretion of proteins, antioxidants, and extracellular vesicles; increased proliferation, metabolism, and migration of keratinocytes and fibroblasts; improved regenerative response compared to 2D culture. | [73] |
| Exosomes | Schwann cells and sciatic nerve injury model | Decreased autophagy in vitro through miR-26b–mediated downregulation of Kpna2. Promoted myelin sheath regeneration in vivo. | [95] |
| Secretome from 3D electrospun scaffold culture | In vitro corneal fibroblast model and ex vivo rabbit corneal wound model | Increased levels of HGF and ICAM-1; accelerated fibroblast proliferation and migration; enhanced epithelialization and reduced scarring; decreased α-SMA expression, indicating inhibition of fibrosis. | [101] |
| Exosomes | Human skin fibroblast (HSF) and wound healing mouse model | Inhibited proliferation and migration, decreased expression of Col1, Col3, α-SMA, IL-17RA, and p-Smad2/p-Smad3 and increased the levels of SIP1 in vitro. Attenuated the excessive deposition of collagen, the trans-differentiation of fibroblasts to myofibroblasts, and the formation of hypertrophic scar by in vitro and in vivo experiments. | [102] |
| Exosomes | In vitro (keratinocytes, fibroblasts) | Promoted keratinocyte proliferation, collagen deposition, M2 macrophage polarization, anti-inflammatory effects, accelerated wound closure, enhanced collagen deposition, stimulated angiogenesis, promoted re-epithelialization via IL-33/Wnt/β-catenin pathway. | [103] |
| Exosomes | In vitro (HuT 78 human skin T cells) In vivo (C57 mouse full-thickness skin wound) | Attenuated T-cell activation (CD25), inhibited IL-2 and IL-17A expression, restored Akt/PI3K signaling, reduced apoptosis, reduced DETC recruitment, decreased IL-17A levels, limited early wound inflammation, promoted controlled healing. | [104] |
| HGH-overexpressing AT-MSCs (HGH-AT-MSCs) | In vitro (human dermal fibroblasts, HDF-a) In vivo (rat burn wound model) | Promoted fibroblast proliferation, migration, and invasion, reduced apoptosis, enhanced G0/G1 cell cycle progression and ERK-dependent signaling, accelerated wound closure, enhanced re-epithelialization, increased collagen deposition, reduced inflammation (TNF-α, IL-1β, IL-6), improved antioxidant status (increased SOD, CAT, decreased MDA). | [105] |
| Engineered AT-MSC exosomes (eXo 3) | In vitro: primary human fibroblasts and keratinocytes; In vivo: rodent excisional wound model | Increased collagen production, reduced pro-inflammatory cytokines (IL-6, IL-8, MCP-1), enhanced fibroblast and keratinocyte migration, promoted proliferation and ECM deposition, accelerated wound closure; stable after lyophilization; dual mechanism: regeneration + anti-inflammation. | [106] |
| Conditioned medium | In vitro: human keratinocytes | Stimulated basal keratinocyte proliferation and migration, enhanced S-phase DNA synthesis; reduced apoptosis, increased regenerative markers (DLL1, Jagged2, TGase3, loricrin); supported re-epithelialization. | [107] |
| Conditioned medium and extracellular vesicles | Radiation-induced skin injury model in vitro (human dermal fibroblasts) | Enhanced extracellular matrix deposition. Increased expression of COL1A1, COL1A2, and COL3A1. Decreased IL-6 cytokine. Promoted proliferation in the extracellular vesicles group. | [109] |
| Exosomes from spheroids of adipose stem cells | Endothelial cells Fibroblasts osteoblasts | Improved wound healing. Exosomes from spheroids of adipose stem cells are characterized by upregulation of NANOG and SOX2, as well as miR126 and miR146a. | [110] |
4.2. Skin Aging
4.3. Alopecia
4.4. Immune-Related Skin Diseases
5. A Preconditioning Approach to Modulate the Cellular Secretome
5.1. Low-Frequency Electromagnetic Fields
5.2. Hypoxia
6. Overview of Available Clinical Studies
7. Limitations of the Reviewed Studies
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McGrath, J.A.; Uitto, J. Structure and Function of the Skin. In Rook’s Textbook of Dermatology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2024; pp. 1–50. [Google Scholar] [CrossRef]
- Menon, G.K. Skin Basics; Structure and Function. In Lipids and Skin Health; Pappas, A., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 9–23. [Google Scholar] [CrossRef]
- Abhishek, S.; Anjali, T.; Lekshmi, S. Ecoskinomics: Exploring the Ecological Factors Shaping Skin Health. In Proceedings of the 2023 Innovations in Power and Advanced Computing Technologies (i-PACT), Kuala Lumpur, Malaysia, 8–10 December 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Charitakis, A.; Assi, S.; Yousaf, S.; Khan, I. Overcoming Skin Damage from Pollution via Novel Skincare Strategies. Curr. Pharm. Des. 2022, 28, 1250–1257. [Google Scholar] [CrossRef]
- Mieczkowski, M.; Mrozikiewicz-Rakowska, B.; Kowara, M.; Kleibert, M.; Czupryniak, L. The Problem of Wound Healing in Diabetes—From Molecular Pathways to the Design of an Animal Model. Int. J. Mol. Sci. 2022, 23, 7930. [Google Scholar] [CrossRef]
- Raja, J.M.; Maturana, M.A.; Kayali, S.; Khouzam, A.; Efeovbokhan, N. Diabetic foot ulcer: A comprehensive review of pathophysiology and management modalities. World J. Clin. Cases 2023, 11, 1684–1693. [Google Scholar] [CrossRef]
- Trzyna, A.; Banaś-Ząbczyk, A. Adipose-Derived Stem Cells Secretome and Its Potential Application in “Stem Cell-Free Therapy”. Biomolecules 2021, 11, 878. [Google Scholar] [CrossRef] [PubMed]
- Hoang, D.M.; Pham, P.T.; Bach, T.Q.; Ngo, A.T.L.; Nguyen, Q.T.; Phan, T.T.K.; Nguyen, G.H.; Le, P.T.T.; Hoang, V.T.; Forsyth, N.R.; et al. Stem cell-based therapy for human diseases. Signal Transduct. Target Ther. 2022, 7, 272. [Google Scholar] [CrossRef] [PubMed]
- Trigo, C.M.; Rodrigues, J.S.; Camões, S.P.; Solá, S.; Miranda, J.P. Mesenchymal stem cell secretome for regenerative medicine: Where do we stand? J. Adv. Res. 2025, 70, 103–124. [Google Scholar] [CrossRef]
- Gaur, M.; Dobke, M.; Lunyak, V.V. Mesenchymal Stem Cells from Adipose Tissue in Clinical Applications for Dermatological Indications and Skin Aging. Int. J. Mol. Sci. 2017, 18, 208. [Google Scholar] [CrossRef]
- Foo, J.B.; Looi, Q.H.; Chong, P.P.; Hassan, N.H.; Yeo, G.E.C.; Ng, C.Y.; Koh, B.; How, C.W.; Lee, S.H.; Law, J.X. Comparing the Therapeutic Potential of Stem Cells and their Secretory Products in Regenerative Medicine. Stem Cells Int. 2021, 2021, 2616807. [Google Scholar] [CrossRef]
- Fu, Y.; Xie, J.; Zhang, X.; Xie, G.; Zhang, X.-M.; Han, Y.; Xu, M.; Zhang, J.; Zhang, J. Human adipose-derived mesenchymal stem cell-derived exosomes induce epithelial remodeling and anti-scar healing revealed by single-cell RNA sequencing. J. Nanobiotechnol. 2025, 23, 506. [Google Scholar] [CrossRef]
- Chou, Y.; Alfarafisa, N.M.; Ikezawa, M.; Khairani, A.F. Progress in the Development of Stem Cell-Derived Cell-Free Therapies for Skin Aging. Clin. Cosmet. Investig. Dermatol. 2023, 16, 3383–3406. [Google Scholar] [CrossRef] [PubMed]
- De Francesco, F.; Ogawa, R. From Time to Timer in Wound Healing Through the Regeneration. Adv. Exp. Med. Biol. 2024, 1470, 1–18. [Google Scholar]
- Peña, O.A.; Martin, P. Cellular and molecular mechanisms of skin wound healing. Nat. Rev. Mol. Cell. Biol. 2024, 25, 599–616. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Choi, S. Deciphering the molecular mechanisms of stem cell dynamics in hair follicle regeneration. Exp. Mol. Med. 2024, 56, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Ghasemishahrestani, Z.; Khumalo, N.P.; Ipp, H.; Bayat, A. Cutaneous Immune Memory: A Double-Edged Sword in Skin Repair and Fibrosis. J. Investig. Dermatol. 2025. In press. [Google Scholar] [CrossRef]
- Konieczny, P.; Naik, S. Healing without scarring. Science 2021, 372, 346–347. [Google Scholar] [CrossRef]
- Shin, S.H.; Lee, Y.H.; Rho, N.-K.; Park, K.Y. Skin aging from mechanisms to interventions: Focusing on dermal aging. Front. Physiol. 2023, 14, 1195272. [Google Scholar] [CrossRef]
- Dutra Alves, N.S.; Reigado, G.R.; Santos, M.; Caldeira, I.D.S.; Hernandes, H.d.S.; Freitas-Marchi, B.L.; Zhivov, E.; Chambergo, F.S.; Nunes, V.A. Advances in regenerative medicine-based approaches for skin regeneration and rejuvenation. Front. Bioeng. Biotechnol. 2025, 13, 1527854. [Google Scholar] [CrossRef] [PubMed]
- López, E.; Cabrera, R.; Lecaros, C. Targeted therapy for immune mediated skin diseases. What should a dermatologist know? An. Bras. Dermatol. 2024, 99, 546–567. [Google Scholar] [CrossRef]
- Sun, T.; Zhou, C.; Lu, F.; Dong, Z.; Gao, J.; Li, B. Adipose-derived stem cells in immune-related skin disease: A review of current research and underlying mechanisms. Stem Cell Res. Ther. 2024, 15, 37. [Google Scholar] [CrossRef]
- Lee, J.H.; Won, Y.J.; Kim, H.; Choi, M.; Lee, E.; Ryoou, B.; Lee, S.-G.; Cho, B.S. Adipose Tissue-Derived Mesenchymal Stem Cell-Derived Exosomes Promote Wound Healing and Tissue Regeneration. Int. J. Mol. Sci. 2023, 24, 10434. [Google Scholar] [CrossRef]
- Song, Y.; You, Y.; Xu, X.; Lu, J.; Huang, X.; Zhang, J.; Zhu, L.; Hu, J.; Wu, X.; Xu, X.; et al. Adipose-Derived Mesenchymal Stem Cell-Derived Exosomes Biopotentiated Extracellular Matrix Hydrogels Accelerate Diabetic Wound Healing and Skin Regeneration. Adv. Sci. 2023, 10, 2304023. [Google Scholar] [CrossRef]
- Shahin, H.; Belcastro, L.; Das, J.; Perdiki Grigoriadi, M.; Saager, R.B.; Steinvall, I.; Sjöberg, F.; Olofsson, P.; Elmasry, M.; El-Serafi, A.T. MicroRNA-155 mediates multiple gene regulations pertinent to the role of human adipose-derived mesenchymal stem cells in skin regeneration. Front. Bioeng. Biotechnol. 2024, 12, 1328504. [Google Scholar] [CrossRef] [PubMed]
- Zomer, H.D.; de Souza Lima, V.J.; Bion, M.C.; Brito, K.N.L.; Rode, M.; Stimamiglio, M.A.; Jeremias, T.d.S.; Trentin, A.G. Evaluation of secretomes derived from human dermal and adipose tissue mesenchymal stem/stromal cells for skin wound healing: Not as effective as cells. Stem Cell Res. Ther. 2024, 15, 15. [Google Scholar] [CrossRef]
- Svolacchia, F.; Svolacchia, L.; Falabella, P.; Scieuzo, C.; Salvia, R.; Giglio, F.; Catalano, A.; Saturnino, C.; Di Lascio, P.; Guarro, G.; et al. Exosomes and Signaling Nanovesicles from the Nanofiltration of Preconditioned Adipose Tissue with Skin-B® in Tissue Regeneration and Antiaging: A Clinical Study and Case Report. Medicina 2024, 60, 670. [Google Scholar] [CrossRef]
- Song, P.; Liang, Q.; Ge, X.; Zhou, D.; Yuan, M.; Chu, W.; Xu, J. Adipose-Derived Stem Cell Exosomes Promote Scar-Free Healing of Diabetic Wounds via miR-204-5p/TGF-β1/Smad Pathway. Stem Cells Int. 2025, 2025, 6344844. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro-Machado, E.; Getova, V.E.; Harmsen, M.C.; Burgess, J.K.; Smink, A.M. Towards standardization of human adipose-derived stromal cells secretomes. Stem Cell Rev. Rep. 2023, 19, 2131–2140. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhang, L.; Ma, X.; Song, W. The tiny giants of regeneration: MSC-derived extracellular vesicles as next-generation therapeutics. Front. Cell Dev. Biol. 2025, 13, 1612589. [Google Scholar] [CrossRef] [PubMed]
- Bourin, P.; Bunnell, B.A.; Casteilla, L.; Dominici, M.; Katz, A.J.; March, K.L.; Redl, H.; Rubin, J.P.; Yoshimura, K.; Gimble, J.M. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics (IFATS) and Science and the International Society for Cellular Therapy (ISCT). Cytotherapy 2013, 15, 641–648. [Google Scholar]
- Davies, L.C.; Biard, L.; García-Olmo, D.; Gilkeson, G.; Gnecchi, M.; Kurtzberg, J.; Kogler, G.; Blanc, K.L.; Lowdell, M.W.; Pers, Y.-M.; et al. Defining minimal criteria for peer-reviewed reporting of mesenchymal stromal cell clinical trials for autoimmune diseases. Cytotherapy 2025, 27, 1326–1337. [Google Scholar] [CrossRef]
- Fraser, J.K.; Wulur, I.; Alfonso, Z.; Zhu, M.; Wheeler, E.S. Differences in stem and progenitor cell yield in different subcutaneous adipose tissue depots. Cytotherapy 2007, 9, 459–467. [Google Scholar] [CrossRef]
- Palumbo, P.; Lombardi, F.; Siragusa, G.; Cifone, M.G.; Cinque, B.; Giuliani, M. Methods of Isolation, Characterization and Expansion of Human Adipose-Derived Stem Cells (ASCs): An Overview. Int. J. Mol. Sci. 2018, 19, 1897. [Google Scholar] [CrossRef] [PubMed]
- Maslennikov, S.; Avramenko, Y.; Tumanskiy, V.; Golovakha, M. Comparative characteristics of the stem cells’ number in the stromal vascular fraction of infrapatellar fat pad and subcutaneous fat tissue. J. ISAKOS 2024, 9, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, W.; Rubin, J.P.; Marra, K.G. Adipose-derived stem cells: Implications in tissue regeneration. World J. Stem Cells 2014, 6, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Zuk, P.A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J.W.; Katz, A.J.; Benhaim, P.; Lorenz, H.P.; Hedrick, M.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 2001, 7, 211–228. [Google Scholar] [CrossRef]
- Palumbo, P.; Miconi, G.; Cinque, B.; La Torre, C.; Lombardi, F.; Zoccali, G.; Orsini, G.; Leocata, P.; Giuliani, M.; Cifone, M.G. In vitro evaluation of different methods of handling human liposuction aspirate and their effect on adipocytes and adipose derived stem cells. J. Cell Physiol. 2015, 230, 1974–1981. [Google Scholar] [CrossRef]
- Raposio, E.; Simonacci, F.; Perrotta, R.E. Adipose-derived stem cells: Comparison between two methods of isolation for clinical applications. Ann. Med. Surg. 2017, 20, 87–91. [Google Scholar] [CrossRef]
- Li, S.-H.; Liao, X.; Zhou, T.-E.; Xiao, L.-L.; Chen, Y.-W.; Wu, F.; Wang, J.-R.; Cheng, B.; Song, J.-X.; Liu, H.-W. Evaluation of 2 Purification Methods for Isolation of Human Adipose-Derived Stem Cells Based on Red Blood Cell Lysis With Ammonium Chloride and Hypotonic Sodium Chloride Solution. Ann. Plast. Surg. 2017, 78, 83–90. [Google Scholar] [CrossRef]
- Jin, H.J.; Bae, Y.K.; Kim, M.; Kwon, S.-J.; Jeon, H.B.; Choi, S.J.; Kim, S.W.; Yang, Y.S.; Oh, W.; Chang, J.W. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int. J. Mol. Sci. 2013, 14, 17986–18001. [Google Scholar] [CrossRef]
- Ragelle, H.; Naba, A.; Larson, B.L.; Zhou, F.; Prijić, M.; Whittaker, C.A.; Del Rosario, A.; Langer, R.; Hynes, R.O.; Anderson, D.G. Comprehensive proteomic characterization of stem cell-derived extracellular matrices. Biomaterials 2017, 128, 147–159. [Google Scholar] [CrossRef]
- Bi, H.; Li, H.; Zhang, C.; Mao, Y.; Nie, F.; Xing, Y.; Sha, W.; Wang, X.; Irwin, D.M.; Tan, H. Stromal vascular fraction promotes migration of fibroblasts and angiogenesis through regulation of extracellular matrix in the skin wound healing process. Stem Cell Res. Ther. 2019, 10, 302. [Google Scholar] [CrossRef]
- Maguire, G. The Safe and Efficacious Use of Secretome From Fibroblasts and Adipose-derived (but not Bone Marrow-derived) Mesenchymal Stem Cells for Skin Therapeutics. J. Clin. Aesthet. Dermatol. 2019, 12, E57–E69. [Google Scholar] [PubMed]
- Meldolesi, J. Exosomes and Ectosomes in Intercellular Communication. Curr. Biol. 2018, 28, R435–R444. [Google Scholar] [CrossRef] [PubMed]
- Doyle, L.M.; Wang, M.Z. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019, 8, 727. [Google Scholar] [CrossRef] [PubMed]
- Thomaidou, A.C.; Goulielmaki, M.; Tsintarakis, A.; Zoumpourlis, P.; Toya, M.; Christodoulou, I.; Zoumpourlis, V. miRNA-Guided Regulation of Mesenchymal Stem Cells Derived from the Umbilical Cord: Paving the Way for Stem-Cell Based Regeneration and Therapy. Int. J. Mol. Sci. 2023, 24, 9189. [Google Scholar] [CrossRef]
- Kilroy, G.E.; Foster, S.J.; Wu, X.; Ruiz, J.; Sherwood, S.; Heifetz, A.; Ludlow, J.W.; Stricker, D.M.; Potiny, S.; Green, P.; et al. Cytokine profile of human adipose-derived stem cells: Expression of angiogenic, hematopoietic, and pro-inflammatory factors. J. Cell. Physiol. 2007, 212, 702–709. [Google Scholar] [CrossRef]
- Park, S.-R.; Kim, J.-W.; Jun, H.-S.; Roh, J.Y.; Lee, H.-Y.; Hong, I.-S. Stem Cell Secretome and Its Effect on Cellular Mechanisms Relevant to Wound Healing. Mol. Ther. 2018, 26, 606–617. [Google Scholar] [CrossRef]
- Kim, H.-K.; Lee, S.-G.; Lee, S.-W.; Oh, B.J.; Kim, J.H.; Kim, J.A.; Lee, G.; Jang, J.-D.; Joe, Y.A. A Subset of Paracrine Factors as Efficient Biomarkers for Predicting Vascular Regenerative Efficacy of Mesenchymal Stromal/Stem Cells. Stem Cells 2019, 37, 77–88. [Google Scholar] [CrossRef]
- Niada, S.; Giannasi, C.; Magagnotti, C.; Andolfo, A.; Brini, A.T. Proteomic analysis of extracellular vesicles and conditioned medium from human adipose-derived stem/stromal cells and dermal fibroblasts. J. Proteom. 2021, 232, 104069. [Google Scholar] [CrossRef]
- Ajit, A.; Ambika Gopalankutty, I. Adipose-derived stem cell secretome as a cell-free product for cutaneous wound healing. 3 Biotech. 2021, 11, 413. [Google Scholar] [CrossRef]
- Tan, M.I.; Alfarafisa, N.M.; Septiani, P.; Barlian, A.; Firmansyah, M.; Faizal, A.; Melani, L.; Nugrahapraja, H. Potential Cell-Based and Cell-Free Therapy for Patients with COVID-19. Cells 2022, 11, 2319. [Google Scholar] [CrossRef]
- Deszcz, I. Stem Cell-Based Therapy and Cell-Free Therapy as an Alternative Approach for Cardiac Regeneration. Stem Cells Int. 2023, 2023, 2729377. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.-Q.; Jiang, J.-L.; Zhang, J.-T.; Niu, H.; Fu, X.-Q.; Zeng, L.-L. Current status and future prospects of stem cell therapy in Alzheimer’s disease. Neural Regen. Res. 2019, 15, 242–250. [Google Scholar]
- Spees, J.L.; Lee, R.H.; Gregory, C.A. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res. Ther. 2016, 7, 125. [Google Scholar] [CrossRef] [PubMed]
- De Luca, M.; Aiuti, A.; Cossu, G.; Parmar, M.; Pellegrini, G.; Robey, P.G. Advances in stem cell research and therapeutic development. Nat. Cell Biol. 2019, 21, 801–811. [Google Scholar] [CrossRef]
- Parekkadan, B.; Milwid, J.M. Mesenchymal stem cells as therapeutics. Annu. Rev. Biomed. Eng. 2010, 12, 87–117. [Google Scholar] [CrossRef] [PubMed]
- Sreenivas, A.; Jha, D.K.; Sreenivas, A.; Jha, D.K. Cell-Free Therapies: Revolutionizing the Approach to Cellular Treatments; IntechOpen: London, UK, 2025. [Google Scholar] [CrossRef]
- Nguyen, P.K.; Neofytou, E.; Rhee, J.-W.; Wu, J.C. Potential Strategies to Address the Major Clinical Barriers Facing Stem Cell Regenerative Therapy for Cardiovascular Disease: A Review. JAMA Cardiol. 2016, 1, 953–962. [Google Scholar] [CrossRef]
- Yang, Y.-H.K.; Ogando, C.R.; Wang See, C.; Chang, T.-Y.; Barabino, G.A. Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res. Ther. 2018, 9, 131. [Google Scholar] [CrossRef]
- Al-Azab, M.; Safi, M.; Idiiatullina, E.; Al-Shaebi, F.; Zaky, M.Y. Aging of mesenchymal stem cell: Machinery, markers, and strategies of fighting. Cell Mol. Biol. Lett. 2022, 27, 69. [Google Scholar] [CrossRef]
- Raik, S.; Kumar, A.; Bhattacharyya, S. Insights into cell-free therapeutic approach: Role of stem cell “soup-ernatant”. Biotechnol. Appl. Biochem. 2018, 65, 104–118. [Google Scholar] [CrossRef]
- Yin, J.Q.; Zhu, J.; Ankrum, J.A. Manufacturing of primed mesenchymal stromal cells for therapy. Nat. Biomed. Eng. 2019, 3, 90–104. [Google Scholar] [CrossRef]
- Kumar, P.; Kandoi, S.; Misra, R.; Verma, R.S. The mesenchymal stem cell secretome: A new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev. 2019, 46, 1–9. [Google Scholar] [CrossRef]
- Karanu, F.; Ott, L.; Webster, D.A.; Stehno-Bittel, L. Improved harmonization of critical characterization assays across cell therapies. Regen. Med. 2020, 15, 1661–1678. [Google Scholar] [CrossRef]
- Ma, Z.-J.; Yang, J.-J.; Lu, Y.-B.; Liu, Z.-Y.; Wang, X.-X. Mesenchymal stem cell-derived exosomes: Toward cell-free therapeutic strategies in regenerative medicine. World J. Stem Cells 2020, 12, 814–840. [Google Scholar] [CrossRef]
- Xia, J.; Minamino, S.; Kuwabara, K.; Arai, S. Stem cell secretome as a new booster for regenerative medicine. Biosci. Trends 2019, 13, 299–307. [Google Scholar] [CrossRef]
- Hu, C.; Zhao, L.; Zhang, L.; Bao, Q.; Li, L. Mesenchymal stem cell-based cell-free strategies: Safe and effective treatments for liver injury. Stem Cell Res. Ther. 2020, 11, 377. [Google Scholar] [CrossRef]
- Maron-Gutierrez, T.; Rocco, P.R.M. Cell-Free Therapies: Novel Approaches for COVID-19. Front. Immunol. 2020, 11, 583017. [Google Scholar] [CrossRef] [PubMed]
- Flamant, S.; Loinard, C.; Tamarat, R. MSC beneficial effects and limitations, and MSC-derived extracellular vesicles as a new cell-free therapy for tissue regeneration in irradiated condition. Environ. Adv. 2023, 13, 100408. [Google Scholar] [CrossRef]
- Singh, N.; Choonara, Y.E.; Kumar, P. Method standardization of secretome production, collection, and characterization: New insights and challenges. Regen. Ther. 2025, 29, 466–473. [Google Scholar] [CrossRef]
- Hodge, J.G.; Decker, H.E.; Robinson, J.L.; Mellott, A.J. Tissue-mimetic culture enhances mesenchymal stem cell secretome capacity to improve regenerative activity of keratinocytes and fibroblasts in vitro. Wound Repair Regen. 2023, 31, 367–383. [Google Scholar] [CrossRef] [PubMed]
- Hodge, J.; Medina-Lopez, A.; Neal, C.; Decker, H.; Robinson, J.; Mellott, A.J. Comparison of 3D culture systems on mesenchymal stem cell longevity, regenerative potential, and secretome production. Regen. Med. 2025, 20, 455–474. [Google Scholar] [CrossRef]
- Al-Shaibani, M.B.H. Three-dimensional cell culture (3DCC) improves secretion of signaling molecules of mesenchymal stem cells (MSCs). Biotechnol. Lett. 2022, 44, 143–155. [Google Scholar] [CrossRef]
- Giannasi, C.; Niada, S.; Della Morte, E.; Casati, S.; Orioli, M.; Gualerzi, A.; Brini, A.T. Towards Secretome Standardization: Identifying Key Ingredients of MSC-Derived Therapeutic Cocktail. Stem Cells Int. 2021, 2021, 3086122. [Google Scholar] [CrossRef]
- Prantl, L.; Eigenberger, A.; Brix, E.; Kempa, S.; Baringer, M.; Felthaus, O. Adipose Tissue-Derived Stem Cell Yield Depends on Isolation Protocol and Cell Counting Method. Cells 2021, 10, 1113. [Google Scholar] [CrossRef]
- Prantl, L.; Eigenberger, A.; Klein, S.; Limm, K.; Oefner, P.J.; Schratzenstaller, T.; Felthaus, O. Shear Force Processing of Lipoaspirates for Stem Cell Enrichment Does Not Affect Secretome of Human Cells Detected by Mass Spectrometry In Vitro. Plast. Reconstr. Surg. 2020, 146, 749e–758e. [Google Scholar] [CrossRef]
- Pagani, A.; Duscher, D.; Geis, S.; Klein, S.; Knoedler, L.; Panayi, A.C.; Oliinyk, D.; Felthaus, O.; Prantl, L. The Triple Adipose-Derived Stem Cell Exosome Technology as a Potential Tool for Treating Triple-Negative Breast Cancer. Cells 2024, 13, 614. [Google Scholar] [CrossRef]
- Giannasi, C.; Niada, S.; Magagnotti, C.; Ragni, E.; Andolfo, A.; Brini, A.T. Comparison of two ASC-derived therapeutics in an in vitro OA model: Secretome versus extracellular vesicles. Stem Cell Res. Ther. 2020, 11, 521. [Google Scholar] [CrossRef]
- Marei, H.E. Stem cell therapy: A revolutionary cure or a pandora’s box. Stem Cell Res. Ther. 2025, 16, 255. [Google Scholar] [CrossRef]
- Sun, H.; Pulakat, L.; Anderson, D.W. Challenges and New Therapeutic Approaches in the Management of Chronic Wounds. Curr. Drug Targets 2020, 21, 1264–1275. [Google Scholar] [CrossRef]
- Jain, M.; Bhogar, K.; Baral, P.; Gaind, R. Evaluation of risk factors associated with hard-to-heal wound infection in a tertiary care hospital. J. Wound Care 2024, 33, 180–188. [Google Scholar] [CrossRef]
- Wang, X.; Yuan, C.-X.; Xu, B.; Yu, Z. Diabetic foot ulcers: Classification, risk factors and management. World J. Diabetes 2022, 13, 1049–1065. [Google Scholar] [CrossRef]
- Condello, M.; Pellegrini, E.; Caraglia, M.; Meschini, S. Targeting Autophagy to Overcome Human Diseases. Int. J. Mol. Sci. 2019, 20, 725. [Google Scholar] [CrossRef]
- Kavitha, K.V.; Tiwari, S.; Purandare, V.B.; Khedkar, S.; Bhosale, S.S.; Unnikrishnan, A.G. Choice of wound care in diabetic foot ulcer: A practical approach. World J. Diabetes 2014, 5, 546–556. [Google Scholar] [CrossRef]
- Ramirez-Acuña, J.M.; Cardenas-Cadena, S.A.; Marquez-Salas, P.A.; Garza-Veloz, I.; Perez-Favila, A.; Cid-Baez, M.A.; Flores-Morales, V.; Martinez-Fierro, M.L. Diabetic Foot Ulcers: Current Advances in Antimicrobial Therapies and Emerging Treatments. Antibiotics 2019, 8, 193. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, X.; Shen, K.; Luo, L.; Zhao, M.; Xu, C.; Jia, Y.; Xiao, D.; Li, Y.; Gao, X.; et al. Exosomes Derived from Adipose Mesenchymal Stem Cells Promote Diabetic Chronic Wound Healing through SIRT3/SOD2. Cells 2022, 11, 2568. [Google Scholar] [CrossRef]
- Ge, L.; Wang, K.; Lin, H.; Tao, E.; Xia, W.; Wang, F.; Mao, C.; Feng, Y. Engineered exosomes derived from miR-132-overexpresssing adipose stem cells promoted diabetic wound healing and skin reconstruction. Front. Bioeng. Biotechnol. 2023, 11, 1129538. [Google Scholar] [CrossRef]
- Hsu, H.-H.; Wang, A.Y.L.; Loh, C.Y.Y.; Pai, A.A.; Kao, H.-K. Therapeutic Potential of Exosomes Derived from Diabetic Adipose Stem Cells in Cutaneous Wound Healing of db/db Mice. Pharmaceutics 2022, 14, 1206. [Google Scholar] [CrossRef]
- Liang, Q.; Zhou, D.; Ge, X.; Song, P.; Chu, W.; Xu, J.; Shen, Y. Exosomes from adipose-derived mesenchymal stem cell improve diabetic wound healing and inhibit fibrosis via miR-128-1-5p/TGF-β1/Smad axis. Mol. Cell. Endocrinol. 2024, 588, 112213. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Shu, C.; Li, X.; Ye, C.; Zhang, W.-C. Exosomes from linc00511-overexpressing ADSCs accelerates angiogenesis in diabetic foot ulcers healing by suppressing PAQR3-induced Twist1 degradation. Diabetes Res. Clin. Pract. 2021, 180, 109032. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.-H.; Pan, N.-F.; Lin, S.-S.; Qiu, Z.-Y.; Liang, P.; Wang, J.; Zhang, Z.; Pan, Y.-C. Exosomes from mmu_circ_0001052-modified adipose-derived stem cells promote angiogenesis of DFU via miR-106a-5p and FGF4/p38MAPK pathway. Stem Cell Res. Ther. 2022, 13, 336. [Google Scholar] [CrossRef]
- De Gregorio, C.; Contador, D.; Díaz, D.; Cárcamo, C.; Santapau, D.; Lobos-Gonzalez, L.; Acosta, C.; Campero, M.; Carpio, D.; Gabriele, C.; et al. Human adipose-derived mesenchymal stem cell-conditioned medium ameliorates polyneuropathy and foot ulceration in diabetic BKS db/db mice. Stem Cell Res. Ther. 2020, 11, 168. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.; Yu, B.; Liu, C.; Lin, Y.; Xie, Z.; Hu, Y.; Lin, H. Exosomes produced by adipose-derived stem cells inhibit schwann cells autophagy and promote the regeneration of the myelin sheath. Int. J. Biochem. Cell Biol. 2021, 132, 105921. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, G.; Liu, X.; Chen, K.; Wang, Y.; Qin, J.; Yang, F. Delivery of miR-130a-3p Through Adipose-Derived Stem Cell-Secreted EVs Protects Against Diabetic Peripheral Neuropathy via DNMT1/NRF2/HIF1α/ACTA1 Axis. Mol. Neurobiol. 2023, 60, 3678–3694. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, C.; Dai, L.; Zhang, Y.; Wang, Y.; Hao, Y.; Ji, S.; Xu, Z.; Han, N.; Chen, H.; et al. Bafilomycin A1 Accelerates Chronic Refractory Wound Healing in db/db Mice. BioMed Res. Int. 2020, 2020, 6265701. [Google Scholar] [CrossRef]
- Ren, H.; Zhao, F.; Zhang, Q.; Huang, X.; Wang, Z. Autophagy and skin wound healing. Burn. Trauma 2022, 10, tkac003. [Google Scholar] [CrossRef]
- Mijaljica, D.; Spada, F.; Klionsky, D.J.; Harrison, I.P. Autophagy is the key to making chronic wounds acute in skin wound healing. Autophagy 2023, 19, 2578–2584. [Google Scholar] [CrossRef]
- Ren, H.; Su, P.; Zhao, F.; Zhang, Q.; Huang, X.; He, C.; Wu, Q.; Wang, Z.; Ma, J.; Wang, Z. Adipose mesenchymal stem cell-derived exosomes promote skin wound healing in diabetic mice by regulating epidermal autophagy. Burn. Trauma 2024, 12, tkae001. [Google Scholar] [CrossRef]
- Carter, K.; Lee, H.J.; Na, K.-S.; Fernandes-Cunha, G.M.; Blanco, I.J.; Djalilian, A.; Myung, D. Characterizing the impact of 2D and 3D culture conditions on the therapeutic effects of human mesenchymal stem cell secretome on corneal wound healing in vitro and ex vivo. Acta Biomater. 2019, 99, 247–257. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Shi, J.; Liu, K.; Wang, X.; Jia, Y.; He, T.; Shen, K.; Wang, Y.; Liu, J.; et al. Exosomes derived from human adipose mesenchymal stem cells attenuate hypertrophic scar fibrosis by miR-192-5p/IL-17RA/Smad axis. Stem Cell Res. Ther. 2021, 12, 221. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, H.; Bai, R.; Li, Q.; Ren, B.; Lin, P.; Li, C.; Chen, M.; Xu, X. Exosomes from adipose-derived stem cells accelerate wound healing by increasing the release of IL-33 from macrophages. Stem Cell Res. Ther. 2025, 16, 80. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Wang, Y.; Bai, R.; Li, Q.; Ren, B.; Jin, J.; Chen, M.; Xu, X. Exosomes From Adipose-Derived Stem Cells Inhibit Skin T-Cell Activation and Alleviate Wound Inflammation. Aesthet. Surg. J. 2025, 45, 723–734. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Han, M.; Song, G.; Gao, C. Human growth hormone-overexpressing adipose-derived stem cells enhance fibroblast activity and accelerate burn wound healing via ERK pathway therapeutic potential of ADSCs in burn wound repair. Regen. Ther. 2025, 30, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Gurney, J.P.; Ludlow, J.W.; Van Kanegan, M.J.; Smith, R.L. Modulation of ASC-derived extracellular vesicles containing cargo that specifically enhances wound healing. Front. Pharmacol. 2025, 16, 1635151. [Google Scholar] [CrossRef] [PubMed]
- Ademi, H.; Michalak-Micka, K.; Moehrlen, U.; Biedermann, T.; Klar, A.S. Effects of an Adipose Mesenchymal Stem Cell-Derived Conditioned medium and TGF-β1 on Human Keratinocytes In Vitro. Int. J. Mol. Sci. 2023, 24, 14726. [Google Scholar] [CrossRef]
- Zomer, H.D.; Varela, G.K.d.S.; Delben, P.B.; Heck, D.; Jeremias, T.d.S.; Trentin, A.G. In vitro comparative study of human mesenchymal stromal cells from dermis and adipose tissue for application in skin wound healing. J. Tissue Eng. Regen. Med. 2019, 13, 729–741. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Shibuya, Y.; Imai, Y.; Oshima, J.; Sasaki, M.; Sasaki, K.; Aihara, Y.; Khanh, V.C.; Sekido, M. Therapeutic Potential of Adipose-Derived Stem Cell-Conditioned Medium and Extracellular Vesicles in an In Vitro Radiation-Induced Skin Injury Model. Int. J. Mol. Sci. 2023, 24, 17214. [Google Scholar] [CrossRef]
- Urrata, V.; Toia, F.; Cammarata, E.; Franza, M.; Montesano, L.; Cordova, A.; Di Stefano, A.B. Characterization of the Secretome from Spheroids of Adipose-Derived Stem Cells (SASCs) and Its Potential for Tissue Regeneration. Biomedicines 2024, 12, 1842. [Google Scholar] [CrossRef]
- Tobin, D.J. Introduction to skin aging. J. Tissue Viability 2017, 26, 37–46. [Google Scholar] [CrossRef]
- Damayanti, R.H.; Rusdiana, T.; Wathoni, N. Mesenchymal Stem Cell Secretome for Dermatology Application: A Review. CCID 2021, 14, 1401–1412. [Google Scholar] [CrossRef]
- Wang, T.; Guo, S.; Liu, X.; Xv, N.; Zhang, S. Protective effects of adipose-derived stem cells secretome on human dermal fibroblasts from ageing damages. Int. J. Clin. Exp. Pathol. 2015, 8, 15739–15748. [Google Scholar]
- Kwon, T.-R.; Oh, C.T.; Choi, E.J.; Kim, S.R.; Jang, Y.-J.; Ko, E.J.; Yoo, K.H.; Kim, B.J. Conditioned medium from human bone marrow-derived mesenchymal stem cells promotes skin moisturization and effacement of wrinkles in UVB-irradiated SKH-1 hairless mice. Photodermatol. Photoimmunol. Photomed. 2016, 32, 120–128. [Google Scholar] [CrossRef]
- Sohn, S.J.; Yu, J.M.; Lee, E.Y.; Nam, Y.J.; Kim, J.; Kang, S.; Kim, D.H.; Kim, A.; Kang, S. Anti-aging Properties of Conditioned Media of Epidermal Progenitor Cells Derived from Mesenchymal Stem Cells. Dermatol. Ther. 2018, 8, 229–244. [Google Scholar] [CrossRef]
- Guo, S.; Wang, T.; Zhang, S.; Chen, P.; Cao, Z.; Lian, W.; Guo, J.; Kang, Y. Adipose-derived stem cell-conditioned medium protects fibroblasts at different senescent degrees from UVB irradiation damages. Mol. Cell Biochem. 2020, 463, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.-W.; Kang, M.-C.; Lee, K.-S. TGF-β1-treated ADSCs-CM promotes expression of type I collagen and MMP-1, migration of human skin fibroblasts, and wound healing in vitro and in vivo. Int. J. Mol. Med. 2010, 26, 901–906. [Google Scholar]
- Xu, X.; Wang, H.-Y.; Zhang, Y.; Liu, Y.; Li, Y.-Q.; Tao, K.; Wu, C.-T.; Jin, J.; Liu, X.-Y. Adipose-derived stem cells cooperate with fractional carbon dioxide laser in antagonizing photoaging: A potential role of Wnt and β-catenin signaling. Cell Biosci. 2014, 4, 24. [Google Scholar] [CrossRef] [PubMed]
- Putri, W.E.; Endaryanto, A.; Tinduh, D.; Rantam, F.; Notobroto, H.B.; Prakoeswa, C.R.S. Effect of secretome of adipose stem cell (ASC) in photoaging skin. Bali Med. J. 2022, 11, 1212–1217. [Google Scholar] [CrossRef]
- Kim, H.J.; Jung, M.S.; Hur, Y.K.; Jung, A.H. A study on clinical effectiveness of cosmetics containing human stem cell conditioned media. Biomed. Dermatol. 2020, 4, 9. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, Y.-S.; Lee, S.; An, S. The effect of three-dimensional cultured adipose tissue-derived mesenchymal stem cell–conditioned medium and the antiaging effect of cosmetic products containing the medium. Biomed. Dermatol. 2019, 4, 1. [Google Scholar] [CrossRef]
- Seetharam, K.A. Alopecia areata: An update. Indian J. Dermatol. Venereol. Leprol. 2013, 79, 563–575. [Google Scholar] [CrossRef]
- Bran, E.L.; Pérez, L.P.; Esteban, P.T.; Morales, M.L.G. Hair growth stimulated by allogenic adipose-derived stem cells supplemented with ATP in a mouse model of dihydrotestosterone-induced androgenetic alopecia. Stem Cell Res. Ther. 2025, 16, 292. [Google Scholar] [CrossRef]
- Piraccini, B.M.; Alessandrini, A. Androgenetic alopecia. G Ital. Dermatol. Venereol. 2014, 149, 15–24. [Google Scholar]
- Tang, X.; Cao, C.; Liang, Y.; Han, L.; Tu, B.; Yu, M.; Wan, M. Adipose-Derived Stem Cell Exosomes Antagonize the Inhibitory Effect of Dihydrotestosterone on Hair Follicle Growth by Activating Wnt/β-Catenin Pathway. Stem Cells Int. 2023, 2023, 5548112. [Google Scholar] [CrossRef]
- Fu, Y.; Han, Y.-T.; Xie, J.-L.; Liu, R.-Q.; Zhao, B.; Zhang, X.-L.; Zhang, J.; Zhang, J. Mesenchymal stem cell exosomes enhance the development of hair follicle to ameliorate androgenetic alopecia. World J. Stem Cells 2025, 17, 102088. [Google Scholar] [CrossRef]
- Li, Y.; Wang, G.; Wang, Q.; Zhang, Y.; Cui, L.; Huang, X. Exosomes Secreted from Adipose-Derived Stem Cells Are a Potential Treatment Agent for Immune-Mediated Alopecia. J. Immunol. Res. 2022, 2022, 7471246. [Google Scholar] [CrossRef]
- Park, B.-S.; Kim, W.-S.; Choi, J.-S.; Kim, H.-K.; Won, J.-H.; Ohkubo, F.; Fukuoka, H. Hair growth stimulated by conditioned medium of adipose-derived stem cells is enhanced by hypoxia: Evidence of increased growth factor secretion. Biomed. Res. 2010, 31, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Choi, N.; Kim, W.-S.; Oh, S.H.; Sung, J.-H. HB-EGF Improves the Hair Regenerative Potential of Adipose-Derived Stem Cells via ROS Generation and Hck Phosphorylation. Int. J. Mol. Sci. 2019, 21, 122. [Google Scholar] [CrossRef] [PubMed]
- Fukuoka, H.; Suga, H. Hair Regeneration Treatment Using Adipose-Derived Stem Cell Conditioned Medium: Follow-up With Trichograms. Eplasty 2015, 15, e10. [Google Scholar]
- Yano, F.; Takeda, T.; Kurokawa, T.; Tsubaki, T.; Chijimatsu, R.; Inoue, K.; Tsuji, S.; Tanaka, S.; Saito, T. Effects of conditioned medium obtained from human adipose-derived stem cells on skin inflammation. Regen. Ther. 2022, 20, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.R.; Lee, S.Y.; You, G.E.; Kim, H.O.; Park, C.W.; Chung, B.Y. Adipose-Derived Stem Cell Exosomes Alleviate Psoriasis Serum Exosomes-Induced Inflammation by Regulating Autophagy and Redox Status in Keratinocytes. Clin. Cosmet. Investig. Dermatol. 2023, 16, 3699–3711. [Google Scholar] [CrossRef]
- Mahmood, A.; Somani, N.; Patel, D.; Mishra, R.; Srivastsva, A. Stem cell secretome-mediated alleviation of scalp psoriasis: A case report. Arch. Stem Cell Ther. 2024, 5, 1–4. [Google Scholar] [CrossRef]
- Seetharaman, R.; Mahmood, A.; Kshatriya, P.; Patel, D.; Srivastava, A. Mesenchymal Stem Cell Conditioned Media Ameliorate Psoriasis Vulgaris: A Case Study. Case Rep. Dermatol. Med. 2019, 2019, 8309103. [Google Scholar] [CrossRef]
- Shin, K.-O.; Ha, D.H.; Kim, J.O.; Crumrine, D.A.; Meyer, J.M.; Wakefield, J.S.; Lee, Y.; Kim, B.; Kim, S.; Kim, H.; et al. Exosomes from Human Adipose Tissue-Derived Mesenchymal Stem Cells Promote Epidermal Barrier Repair by Inducing de Novo Synthesis of Ceramides in Atopic Dermatitis. Cells 2020, 9, 680. [Google Scholar] [CrossRef]
- Pang, Q.Q.; Noh, B.W.; Park, H.S.; Kim, Y.S.; Kim, J.-H.; Cho, E.J. Improvement Effect of Membrane-Free Stem Cell Extract on Atopic Dermatitis in NC/Nga Mice. Appl. Sci. 2023, 13, 4542. [Google Scholar] [CrossRef]
- Cho, B.S.; Kim, J.O.; Ha, D.H.; Yi, Y.W. Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis. Stem Cell Res. Ther. 2018, 9, 187. [Google Scholar] [CrossRef]
- Roh, Y.J.; Choi, Y.H.; Shin, S.H.; Lee, M.-K.; Won, Y.J.; Lee, J.H.; Cho, B.S.; Park, K.Y.; Seo, S.J. Adipose tissue-derived exosomes alleviate particulate matter-induced inflammatory response and skin barrier damage in atopic dermatitis-like triple-cell model. PLoS ONE 2024, 19, e0292050. [Google Scholar] [CrossRef]
- Moeinabadi-Bidgoli, K.; Mazloomnejad, R.; Beheshti Maal, A.; Asadzadeh Aghdaei, H.; Kazem Arki, M.; Hossein-Khannazer, N.; Vosough, M. Genetic modification and preconditioning strategies to enhance functionality of mesenchymal stromal cells: A clinical perspective. Expert Opin. Biol. Ther. 2023, 23, 461–478. [Google Scholar] [CrossRef]
- Pinheiro-Machado, E.; Koster, C.C.; Smink, A.M. Modulating adipose-derived stromal cells’ secretomes by culture conditions: Effects on angiogenesis, collagen deposition, and immunomodulation. Biosci. Rep. 2025, 45, 325–342. [Google Scholar] [CrossRef]
- Sendera, A.; Pikuła, B.; Banaś-Ząbczyk, A. Preconditioning of Mesenchymal Stem Cells with Electromagnetic Fields and Its Impact on Biological Responses and “Fate”-Potential Use in Therapeutic Applications. Front. Biosci. 2023, 28, 285. [Google Scholar] [CrossRef]
- Petit, I.; Levy, A.; Estrach, S.; Féral, C.C.; Trentin, A.G.; Dingli, F.; Loew, D.; Qu, J.; Zhou, H.; Théry, C.; et al. Fibroblast growth factor-2 bound to specific dermal fibroblast-derived extracellular vesicles is protected from degradation. Sci. Rep. 2022, 12, 22131. [Google Scholar] [CrossRef] [PubMed]
- Syromiatnikova, V.Y.; Kvon, A.I.; Starostina, I.G.; Gomzikova, M.O. Strategies to enhance the efficacy of FGF2-based therapies for skin wound healing. Arch. Dermatol. Res. 2024, 316, 405. [Google Scholar] [CrossRef] [PubMed]
- Tepper, O.M.; Callaghan, M.J.; Chang, E.I.; Galiano, R.D.; Bhatt, K.A.; Baharestani, S.; Gan, J.; Simon, B.; Hopper, R.A.; Levine, J.P.; et al. Electromagnetic fields increase in vitro and in vivo angiogenesis through endothelial release of FGF-2. FASEB J. 2004, 18, 1231–1233. [Google Scholar] [CrossRef] [PubMed]
- Trzyna, A.; Pikuła, B.; Ludwin, A.; Kocan, B.; Banaś-Ząbczyk, A. The influence of an electromagnetic field on adipose-derived stem/stromal cells’ growth factor secretion: Modulation of FGF-2 production by in vitro exposure. Arch. Biol. Sci. 2020, 72, 339–347. [Google Scholar] [CrossRef]
- Callaghan, M.J.; Chang, E.I.; Seiser, N.; Aarabi, S.; Ghali, S.; Kinnucan, E.R.; Simon, B.J.; Gurtner, G.C. Pulsed electromagnetic fields accelerate normal and diabetic wound healing by increasing endogenous FGF-2 release. Plast. Reconstr. Surg. 2008, 121, 130–141. [Google Scholar] [CrossRef]
- Marędziak, M.; Marycz, K.; Lewandowski, D.; Siudzińska, A.; Śmieszek, A. Static magnetic field enhances synthesis and secretion of membrane-derived microvesicles (MVs) rich in VEGF and BMP-2 in equine adipose-derived stromal cells (EqASCs)-a new approach in veterinary regenerative medicine. In Vitro Cell Dev. Biol. Anim. 2015, 51, 230–240. [Google Scholar] [CrossRef]
- Seo, H.; Choi, H.J.; Kim, O.-H.; Park, J.H.; Hong, H.E.; Kim, S.-J. The secretome obtained under hypoxic preconditioning from human adipose-derived stem cells exerts promoted anti-apoptotic potentials through upregulated autophagic process. Mol. Biol. Rep. 2022, 49, 8859–8870. [Google Scholar] [CrossRef] [PubMed]
- Hermann, M.; Peddi, A.; Gerhards, A.; Schmid, R.; Schmitz, D.; Arkudas, A.; Weisbach, V.; Horch, R.E.; Kengelbach-Weigand, A. Secretome of Adipose-Derived Stem Cells Cultured in Platelet Lysate Improves Migration and Viability of Keratinocytes. Int. J. Mol. Sci. 2023, 24, 3522. [Google Scholar] [CrossRef] [PubMed]
- Silveira, B.M.; Ribeiro, T.O.; Freitas, R.S.; Carreira, A.C.O.; Gonçalves, M.S.; Sogayar, M.; Meyer, R.; Birbrair, A.; Fortuna, V. Secretome from human adipose-derived mesenchymal stem cells promotes blood vessel formation and pericyte coverage in experimental skin repair. PLoS ONE 2022, 17, e0277863. [Google Scholar] [CrossRef] [PubMed]
- Kalinina, N.; Kharlampieva, D.; Loguinova, M.; Butenko, I.; Pobeguts, O.; Efimenko, A.; Ageeva, L.; Sharonov, G.; Ischenko, D.; Alekseev, D.; et al. Characterization of secretomes provides evidence for adipose-derived mesenchymal stromal cells subtypes. Stem Cell Res. Ther. 2015, 6, 221. [Google Scholar] [CrossRef]
- Barone, L.; Palano, M.T.; Gallazzi, M.; Cucchiara, M.; Rossi, F.; Borgese, M.; Raspanti, M.; Zecca, P.A.; Mortara, L.; Papait, R.; et al. Adipose mesenchymal stem cell-derived soluble factors, produced under hypoxic condition, efficiently support in vivo angiogenesis. Cell Death Discov. 2023, 9, 174. [Google Scholar] [CrossRef]
- Pinheiro-Machado, E.; de Haan, B.J.; Engelse, M.A.; Smink, A.M. Secretome Analysis of Human and Rat Pancreatic Islets Co-Cultured with Adipose-Derived Stromal Cells Reveals a Signature with Enhanced Regenerative Capacities. Cells 2025, 14, 302. [Google Scholar] [CrossRef]
- Pinheiro-Machado, E.; Faas, M.M.; de Haan, B.J.; Moers, C.; Smink, A.M. Culturing Conditions Dictate the Composition and Pathways Enrichment of Human and Rat Perirenal Adipose-Derived Stromal Cells’ Secretomes. Stem Cell Rev. Rep. 2024, 20, 1869–1888. [Google Scholar] [CrossRef]
- Frommer, M.L.; Langridge, B.J.; Beedie, A.; Jasionowska, S.; Awad, L.; Denton, C.P.; Abraham, D.J.; Abu-Hanna, J.; Butler, P.E.M. Exploring Anti-Fibrotic Effects of Adipose-Derived Stem Cells: Transcriptome Analysis upon Fibrotic, Inflammatory, and Hypoxic Conditioning. Cells 2024, 13, 693. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhao, J.; Li, J.; Meng, M.; Zhu, M. Insights into the role of adipose-derived stem cells and secretome: Potential biology and clinical applications in hypertrophic scarring. Stem Cell Res. Ther. 2024, 15, 137. [Google Scholar] [CrossRef]
- Home|ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ (accessed on 30 July 2025).
- Legiawati, L.; Sitohang, I.B.S.; Yusharyahya, S.N.; Sirait, S.P.; Novianto, E.; Liem, I.K.; Kurniawati, T.; Putri, I.S.; Rahmadika, F.D.; Hakiki, N.P.; et al. Hair regeneration in androgenetic alopecia using secretome of adipose-derived stem cells (ADSC) and minoxidil: A comparative study of three groups. Arch. Dermatol. Res. 2025, 317, 486. [Google Scholar] [CrossRef]
- Legiawati, L.; Suseno, L.S.; Sitohang, I.B.S.; Yusharyahya, S.N.; Pawitan, J.A.; Liem, I.K.; Kurniawati, T.; Ardelia, A.; Paramastri, K. Combination of adipose-derived stem cell conditioned media and minoxidil for hair regrowth in male androgenetic alopecia: A randomized, double-blind clinical trial. Stem Cell Res. Ther. 2023, 14, 210. [Google Scholar] [CrossRef]
- Stefanis, A.J.; Arenberger, P.; Arenbergerova, M.; Rigopoulos, D. Efficacy of Platelet-Rich Plasma versus Mesotherapy with Recombinant Growth Factors and Stem Cell-Conditioned Media in Androgenetic Alopecia: A Retrospective Study. Ski. Appendage Disord. 2024, 10, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Yusharyahya, S.N.; Japranata, V.V.; Sitohang, I.B.S.; Legiawati, L.; Novianto, E.; Suseno, L.S.; Rachmani, K. A Comparative Study on Adipose-Derived Mesenchymal Stem Cells Secretome Delivery Using Microneedling and Fractional CO2 Laser for Facial Skin Rejuvenation. Clin. Cosmet. Investig. Dermatol. 2023, 16, 387. [Google Scholar] [CrossRef] [PubMed]

| Paracrine Factors | Model | Therapeutic Effect | References |
|---|---|---|---|
| Exosomes | Clinical use (case report/clinical study) | A significant improvement in skin parameters was observed following the application of this method. | [27] |
| Conditioned medium | Human dermal fibroblasts in vitro | Promoted ECM remodeling and collagen synthesis; photoprotection. | [116] |
| TGF-ß1-treated conditioned medium | Human skin fibroblasts in vitro | Increased expression of I collagen and MMP-1. Proliferation and migration promotion. | [117] |
| Conditioned medium | Human dermal fibroblasts in vitro | Increased proliferation and the expression of skin regeneration-related proteins through activation of the Wnt/β-catenin signaling pathway. | [118] |
| AT-MSC secretome | Photoaging rat model in vivo | Increased epidermal and dermal layer thickness and dermal collagen density. Increased MMP-1 and TIMP-1 expression. | [119] |
| Conditioned medium | Clinical use (human skin—cosmetic application) | Reduced wrinkle visibility, improved hydration. | [120] |
| Conditioned medium | Clinical use (human skin—cosmetic application) | Increased collagen production, skin repair, and dermal density. | [121] |
| Paracrine Factors | Model | Therapeutic Effect | References |
|---|---|---|---|
| Exosomes | Human hair follicles, alopecia mice in vivo | Hair growth improvement. | [125] |
| Exosomes | Alopecia mice in vivo | Increased cell proliferation and migration. Hair growth improvement. Inhibited GSK-3β. Activated Wnt/β-catenin pathway. | [126] |
| Exosomes | Dermal papilla cells, alopecia mice in vivo | Increased proliferation and migration and reduced apoptosis of dermal papilla cells. Hair growth improvement. | [127] |
| Conditioned medium | Alopecia mice in vivo | Promoted hair growth by inducing the anagen phase. Enhanced proliferation of hair follicle cells and keratinocytes. | [128] |
| Conditioned medium | Alopecia mice in vivo | Stimulated in vivo hair growth; increased expression of growth factors | [129] |
| Conditioned medium | Clinical use | Increased hair number, improved hair regeneration. | [130] |
| Paracrine Factors | Model | Therapeutic Effect | References |
|---|---|---|---|
| Conditioned medium | human dermal fibroblast and human epidermal keratinocyte inflammatory model in vitro | Decreased MMP3 and COX2 gene expression. Enhanced proliferation of cells. | [131] |
| Conditioned medium | inflammation mouse model in vivo | Reduced inflammatory skin reaction to PMA. | [131] |
| Exosomes | in vitro model of psoriasis | Decreased expression of proinflammatory cytokines IL-1β, IL-6, and TNF-α, as well as oxidative stress-related NOX2 and NOX4. Autophagy process regulation by increasing ATG5, P62, Beclin1, and LC3B protein expression. | [132] |
| Conditioned medium | clinical use (case study) | Improvement in psoriatic plaques, elimination of silver scales, restoration of natural skin color. | [133] |
| Conditioned medium | clinical use (case study) | Improvement in psoriatic plaques, elimination of silver scales. Reduction of PSSI score to 0 from 28. | [134] |
| Exosomes | atopic dermatitis mouse model in vivo | Improvement of skin barrier restoration. Reduction of serum IL-4, IL-5, IL-13, TNF-α, IFN-γ, IL-17, TSLP, and IgE. | [135] |
| Membrane-free stem cell extract | atopic dermatitis mouse model in vivo | Improvement of skin condition. Reduction of serum IgE, IL-4, IL-10 IFN-γ, TNF-α, TARC. | [136] |
| Exosomes | atopic dermatitis mouse model in vivo | Alleviation of atopic dermatitis. Reduction of IL-4, IL-23, IL-31, TNF-α, IgE. | [137] |
| Exosomes | atopic dermatitis triple-cell model in vitro | Reduction of IL-6, IL-1β, and IL-1α gene expression. Reduction of IL-4, IL-6, and IL-1β protein expression. Increased FLG, LOR gene expression. Increased FLG protein expression. | [138] |
| NCT No. | Condition | Number Enrolled | Intervention/Treatment | Results | Reference |
|---|---|---|---|---|---|
| NCT06066827 | Androgenetic Alopecia | 60 | Three groups: Injection of AT-MSC secretome concentrate; topical use of minoxidil; injection of AT-MSC secretome concentrate combined with topical use of minoxidil. | Statistically significant improvement in hair growth parameters in all three groups. Best results were observed in the combination group (AT-MSC-CM with Minoxidil). Minimal side effects were reported. | [158] |
| NCT05296863 | Androgenetic Alopecia | 37 | Two groups: Intradermal injection of non-concentrated AT-MSC-CM combined with topical application of 5% Mixidil daily; intradermal injection of concentrated AT-MSC-CM combined with topical application of 5% Mixidil daily. | Significant increase in hair growth in both groups. Minimal side effects were reported. | [159] |
| NCT05129800 | Androgenetic Alopecia | 72 | Four groups: Injection of platelet-rich plasma prepared using a tube from company 1 (PRP1); injection of platelet-rich plasma prepared using a tube from company 2 (PRP2); mesotherapy with ampule containing AT-MSC-CM and mixture of recombinant growth factors from company 1 (MZT1); mesotherapy with ampule containing AT-MSC-CM and mixture of recombinant growth factors from company 2 (MZT2). | Significant improvement in hair growth parameters in groups MZT1 and PRP2. Significant improvement in vertex hair density in MZT2 group. | [160] |
| NCT05508191 | Skin Aging/Rejuvenation | 30 | Two groups: four-fold concentrate of AT-MSC-CM and fractional CO2 Laser; four-fold concentrate of AT-MSC-CM and fractional microneedle. | Significant improvements in the total dermoscopy photoaging scale, improvements in fine wrinkles and hyperpigmented macules in both groups. | [161] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sendera, A.; Kubis, H.; Pałka, A.; Banaś-Ząbczyk, A. Therapeutic and Clinical Potential of Adipose-Derived Stem Cell Secretome for Skin Regeneration. Cells 2025, 14, 1727. https://doi.org/10.3390/cells14211727
Sendera A, Kubis H, Pałka A, Banaś-Ząbczyk A. Therapeutic and Clinical Potential of Adipose-Derived Stem Cell Secretome for Skin Regeneration. Cells. 2025; 14(21):1727. https://doi.org/10.3390/cells14211727
Chicago/Turabian StyleSendera, Anna, Hubert Kubis, Anna Pałka, and Agnieszka Banaś-Ząbczyk. 2025. "Therapeutic and Clinical Potential of Adipose-Derived Stem Cell Secretome for Skin Regeneration" Cells 14, no. 21: 1727. https://doi.org/10.3390/cells14211727
APA StyleSendera, A., Kubis, H., Pałka, A., & Banaś-Ząbczyk, A. (2025). Therapeutic and Clinical Potential of Adipose-Derived Stem Cell Secretome for Skin Regeneration. Cells, 14(21), 1727. https://doi.org/10.3390/cells14211727

