Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1394 KiB  
Review
Catalytic Systems for 5-Hydroxymethylfurfural Preparation from Different Biomass Feedstocks: A Review
by Jiao Tao, Yunchuan Pan, Haiyang Zhou, Yufei Tang, Guoquan Ren, Zhihao Yu, Jiaxuan Li, Rui Zhang, Xiaoyun Li, Yina Qiao, Xuebin Lu and Jian Xiong
Catalysts 2024, 14(1), 30; https://doi.org/10.3390/catal14010030 - 29 Dec 2023
Cited by 11 | Viewed by 3882
Abstract
The preparation of high-value-added platform compounds from biomass materials provides an important method for solving fossil energy shortages. Known as the “sleeping giant”, 5-HMF is one of the most important biomass platform compounds with promising applications. At present, raw materials for the preparation [...] Read more.
The preparation of high-value-added platform compounds from biomass materials provides an important method for solving fossil energy shortages. Known as the “sleeping giant”, 5-HMF is one of the most important biomass platform compounds with promising applications. At present, raw materials for the preparation of 5-HMF mainly comprise sugar compounds and non-food biomass. The current systems for preparing 5-HMF are disadvantaged by poor selectivity and a low conversion rate. This paper focuses on the catalytic mechanisms and catalytic systems for the synthesis of 5-HMF from different biomass feedstocks and reviews a series of existing techniques for the preparation of 5-HMF. Catalytic systems for the synthesis of 5-HMF from different feedstocks are also discussed in depth, providing theoretical support for its subsequent in-depth study. The development of efficient catalysts and catalytic systems for the conversion of polysaccharide raw materials into 5-HMF is anticipated. Full article
Show Figures

Graphical abstract

20 pages, 3867 KiB  
Review
Solid Acid–Base Catalysts Based on Layered Double Hydroxides Applied for Green Catalytic Transformations
by Xiaolu You, Lishi Chen, Shan He and Guiju Zhang
Catalysts 2024, 14(1), 28; https://doi.org/10.3390/catal14010028 - 28 Dec 2023
Cited by 10 | Viewed by 3977
Abstract
Layered double hydroxides (LDHs) have emerged as promising catalysts for various acid–base catalytic reactions. Due to their unique structure and regulatable dual acid–base properties, they offer more environmentally friendly and sustainable alternatives to traditional liquid acid and base catalysts. This study introduces the [...] Read more.
Layered double hydroxides (LDHs) have emerged as promising catalysts for various acid–base catalytic reactions. Due to their unique structure and regulatable dual acid–base properties, they offer more environmentally friendly and sustainable alternatives to traditional liquid acid and base catalysts. This study introduces the structural composition, preparation methods, and acid–base catalytic properties of LDH-based catalysts. Recent application progress in LDHs and rehydrated LDHs, LDH-based metal nanocatalysts, and LDH-based mixed metal oxide catalysts used as solid acid–base catalysts in acid–base green catalytic conversion is reviewed. The challenges and prospects of LDH-based catalysts as green and sustainable catalysts are summarized and proposed. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

14 pages, 6373 KiB  
Article
Catalytic Oxidation Mechanism of Toluene on the Ce0.875Zr0.125O2 (110) Surface
by Yuning Leng, Xuesong Cao, Xiaomin Sun and Chenxi Zhang
Catalysts 2024, 14(1), 22; https://doi.org/10.3390/catal14010022 - 27 Dec 2023
Cited by 2 | Viewed by 2432
Abstract
Aromatic volatile organic compounds (VOCs) are toxic to public health and contribute to global air pollution; thus, it is urgent to control VOC emissions. Catalytic oxidation technology has been widely investigated to eliminate aromatic VOCs; this technology exhibits high catalytic efficiency even at [...] Read more.
Aromatic volatile organic compounds (VOCs) are toxic to public health and contribute to global air pollution; thus, it is urgent to control VOC emissions. Catalytic oxidation technology has been widely investigated to eliminate aromatic VOCs; this technology exhibits high catalytic efficiency even at low temperatures. However, the reaction mechanism of aromatic VOCs’ total oxidation over metal-oxide-based catalysts, which is of great significance in the design of catalysts, is not yet clear. In this study, we systemically calculated the catalytic oxidation mechanism of toluene over the Ce0.875Zr0.125O2 catalyst using density functional theory (DFT). The results show that toluene first loses hydrogen from the methyl group via oxy-dehydrogenation and is gradually oxidized by lattice or adsorbed oxygen to benzyl alcohol, benzaldehyde, and benzoic acid following the Mars-van Krevelen (MVK) mechanism. Afterwards, there is a decarboxylation step to produce phenyl, which is further oxidized to benzoquinone. The rate-determining step then proceeds via the ring-opening reaction, leading to the formation of small molecule intermediates, which are finally oxidized to CO2 and H2O. This work may provide atomic-scale insight into the role of lattice and adsorbed oxygen in catalytic oxidation reactions. Full article
(This article belongs to the Section Computational Catalysis)
Show Figures

Graphical abstract

14 pages, 7130 KiB  
Article
Density Functional Theory Study of CuAg Bimetal Electrocatalyst for CO2RR to Produce CH3OH
by Sensen Xue, Xingyou Liang, Qing Zhang, Xuefeng Ren, Liguo Gao, Tingli Ma and Anmin Liu
Catalysts 2024, 14(1), 7; https://doi.org/10.3390/catal14010007 - 20 Dec 2023
Cited by 6 | Viewed by 2221
Abstract
Converting superfluous CO2 into value-added chemicals is regarded as a practical approach for alleviating the global warming problem. Powered by renewable electricity, CO2 reduction reactions (CO2RR) have attracted intense interest owing to their favorable efficiency. Metal catalysts exhibit high [...] Read more.
Converting superfluous CO2 into value-added chemicals is regarded as a practical approach for alleviating the global warming problem. Powered by renewable electricity, CO2 reduction reactions (CO2RR) have attracted intense interest owing to their favorable efficiency. Metal catalysts exhibit high catalytic efficiency for CO2 reduction. However, the reaction mechanisms have yet to be investigated. In this study, CO2RR to CH3OH catalyzed by CuAg bimetal is theoretically investigated. The configurations and stability of the catalysts and the reaction pathway are studied. The results unveil the mechanisms of the catalysis process and prove the feasibility of CuAg clusters as efficient CO2RR catalysts, serving as guidance for further experimental exploration. This study provides guidance and a reference for future work in the design of mixed-metal catalysts with high CO2RR performance. Full article
(This article belongs to the Special Issue Theoretical and Computational Studies of Catalytic Reactions)
Show Figures

Graphical abstract

24 pages, 1424 KiB  
Review
Heterogeneous Catalysts for Carbon Dioxide Methanation: A View on Catalytic Performance
by Mazhar Ahmed Memon, Yanan Jiang, Muhammad Azher Hassan, Muhammad Ajmal, Hong Wang and Yuan Liu
Catalysts 2023, 13(12), 1514; https://doi.org/10.3390/catal13121514 - 15 Dec 2023
Cited by 21 | Viewed by 7125
Abstract
CO2 methanation offers a promising route for converting CO2 into valuable chemicals and energy fuels at the same time as hydrogen is stored in methane, so the development of suitable catalysts is crucial. In this review, the performance of catalysts for [...] Read more.
CO2 methanation offers a promising route for converting CO2 into valuable chemicals and energy fuels at the same time as hydrogen is stored in methane, so the development of suitable catalysts is crucial. In this review, the performance of catalysts for CO2 methanation is presented and discussed, including noble metal-based catalysts and non-noble metal-based catalysts. Among the noble metal-based catalysts (Ru, Rh, and Pd), Ru-based catalysts show the best catalytic performance. In the non-noble metal catalysts, Ni-based catalysts are the best among Ni-, Co-, and Fe-based catalysts. The factors predominantly affecting catalytic performance are the dispersion of the active metal; the synergy of the active metal with support; and the addition of dopants. Further comprehensive investigations into (i) catalytic performance under industrial conditions, (ii) stability over a much longer period and (iii) activity enhancement at low reaction temperatures are anticipated to meet the industrial applications of CO2 methanation. Full article
Show Figures

Graphical abstract

16 pages, 3213 KiB  
Review
Recent Progress on Ruthenium-Based Electrocatalysts towards the Hydrogen Evolution Reaction
by Lulu Li, Fenyang Tian, Longyu Qiu, Fengyu Wu, Weiwei Yang and Yongsheng Yu
Catalysts 2023, 13(12), 1497; https://doi.org/10.3390/catal13121497 - 7 Dec 2023
Cited by 76 | Viewed by 4751
Abstract
Hydrogen has emerged as an important candidate for clean energy, owing to its environmentally friendly advantages. Electrolytic hydrogen production stands out as the most promising technology for hydrogen production. Therefore, the design of highly efficient electrocatalysts is significant to drive the application of [...] Read more.
Hydrogen has emerged as an important candidate for clean energy, owing to its environmentally friendly advantages. Electrolytic hydrogen production stands out as the most promising technology for hydrogen production. Therefore, the design of highly efficient electrocatalysts is significant to drive the application of hydrogen technologies. Platinum (Pt)-based catalysts are famous for their outstanding performance in the hydrogen evolution reaction (HER). However, the expensive cost limits its wide application. Ruthenium (Ru)-based catalysts have received extensive attention due to their relatively lower cost and HER performance similar to that of Pt. Nevertheless, the performance of Ru-based catalysts is still unable to meet industrial demands. Therefore, improving HER performance through the modification of Ru-based catalysts remains significant. In this review, the reaction mechanism of HER is analyzed and the latest research progress in the modification of Ru-based electrocatalysts is summarized. From the reaction mechanism perspective, addressing the adsorption of intermediates on the Ru-based electrocatalyst surface, the adsorption–activation of interface water molecules, and the behavior of interface water molecules and proposing solutions to enhance performance of Ru-based electrocatalyst are the main findings, ultimately contributing to promoting their application in the field of electrocatalysis. Full article
(This article belongs to the Special Issue Noble Metal-Based Nanomaterials for Heterogeneous Catalysis)
Show Figures

Figure 1

13 pages, 2484 KiB  
Article
Novel Ionic Liquid Synthesis of Bimetallic Fe–Ru Catalysts for the Direct Hydrogenation of CO2 to Short Chain Hydrocarbons
by Marina Maddaloni, Ander Centeno-Pedrazo, Simone Avanzi, Nayan Jyoti Mazumdar, Haresh Manyar and Nancy Artioli
Catalysts 2023, 13(12), 1499; https://doi.org/10.3390/catal13121499 - 7 Dec 2023
Cited by 6 | Viewed by 5689
Abstract
The selective hydrogenation of CO2 for the production of net-zero fuels and essential chemical building blocks is a promising approach to combat climate change. Key to this endeavor is the development of catalysts with high activity and selectivity for desired hydrocarbon products [...] Read more.
The selective hydrogenation of CO2 for the production of net-zero fuels and essential chemical building blocks is a promising approach to combat climate change. Key to this endeavor is the development of catalysts with high activity and selectivity for desired hydrocarbon products in the C2–C5 range. The process involves a two-step reaction, starting with the reverse water–gas shift (RWGS) reaction and proceeding to the Fischer–Tropsch reactions under high pressure. Understanding the catalyst features that control the selectivity of these pathways is crucial for product formation, as well as identifying morphological changes in the catalysts during the reaction to optimize their performance. In this study, an innovative method for synthesizing iron–ruthenium bimetallic catalysts is introduced, capitalizing on the synergistic effects of these metals as active phases. This method leverages ionic liquids as solvents, allowing for the precise and uniform distribution of active metal phases. Advanced characterizations and extensive catalytic tests have demonstrated that the use of ionic liquids outperformed traditional colloid-based techniques, resulting in superior selectivity for target hydrocarbons. The success of this inventive approach not only advances the field of CO2 hydrogenation catalysis, but also represents a significant stride towards sustainable e-fuel production. Full article
Show Figures

Graphical abstract

35 pages, 7530 KiB  
Review
Recent Advances in Catalyst Design for Carboxylation Using CO2 as the C1 Feedstock
by Sagarkumar Rajendrakumar Shah, Nayan Jyoti Mazumdar, Ander Centeno-Pedrazo, Dhanapati Deka, Nancy Artioli and Haresh Manyar
Catalysts 2023, 13(12), 1489; https://doi.org/10.3390/catal13121489 - 30 Nov 2023
Cited by 3 | Viewed by 5185
Abstract
Carbon dioxide is ideal for carboxylation reactions as a renewable and sustainable C1 feedstock and has significant recognition owing to its low cost, non-toxicity, and high abundance. To depreciate the environmental concentration of CO2, which causes the greenhouse gas effect, developing [...] Read more.
Carbon dioxide is ideal for carboxylation reactions as a renewable and sustainable C1 feedstock and has significant recognition owing to its low cost, non-toxicity, and high abundance. To depreciate the environmental concentration of CO2, which causes the greenhouse gas effect, developing new catalytic protocols for organic synthesis in CO2 utilization is of great importance. This review focuses on carboxylation reactions using CO2 as a C1 feedstock to synthesize value-added functionalized carboxylic acids and their corresponding derivatives via catalytically generated allyl metal intermediates, photoredox catalysis, and electrocatalysis with a focus on recent developments and opportunities in catalyst design for carboxylation reactions. In this article, we describe recent developments in the carboxylation of C–H bonds, alkenes, and alkynes using CO2 as the C1 source for various reactions under different conditions, as well as the potential direction for the further development of CO2 utilization in organic synthesis. Full article
Show Figures

Graphical abstract

39 pages, 6032 KiB  
Review
A Review on the Use of Catalysis for Biogas Steam Reforming
by Sergio Nogales-Delgado, Carmen María Álvez-Medina, Vicente Montes and Juan Félix González
Catalysts 2023, 13(12), 1482; https://doi.org/10.3390/catal13121482 - 29 Nov 2023
Cited by 7 | Viewed by 4167
Abstract
Hydrogen production from natural gas or biogas, at different purity levels, has emerged as an important technology with continuous development and improvement in order to stand for sustainable and clean energy. Regarding biogas, which can be obtained from multiple sources, hydrogen production through [...] Read more.
Hydrogen production from natural gas or biogas, at different purity levels, has emerged as an important technology with continuous development and improvement in order to stand for sustainable and clean energy. Regarding biogas, which can be obtained from multiple sources, hydrogen production through the steam reforming of methane is one of the most important methods for its energy use. In that sense, the role of catalysts to make the process more efficient is crucial, normally contributing to a higher hydrogen yield under milder reaction conditions in the final product. The aim of this review is to cover the main points related to these catalysts, as every aspect counts and has an influence on the use of these catalysts during this specific process (from the feedstocks used for biogas production or the biodigestion process to the purification of the hydrogen produced). Thus, a thorough review of hydrogen production through biogas steam reforming was carried out, with a special emphasis on the influence of different variables on its catalytic performance. Also, the most common catalysts used in this process, as well as the main deactivation mechanisms and their possible solutions are included, supported by the most recent studies about these subjects. Full article
(This article belongs to the Special Issue Biomass Derived Heterogeneous and Homogeneous Catalysts, 2nd Edition)
Show Figures

Graphical abstract

22 pages, 7672 KiB  
Article
Photocatalytic Applications of SnO2 and Ag2O-Decorated SnO2 Coatings on Cement Paste
by Danilo da Silva Vendramini, Victoria Gabriela Benatto, Alireza Mohebi Ashtiani and Felipe de Almeida La Porta
Catalysts 2023, 13(12), 1479; https://doi.org/10.3390/catal13121479 - 28 Nov 2023
Cited by 3 | Viewed by 2275
Abstract
Recently, the production of new photocatalytic materials has attracted considerable attention as a promising strategy to mitigate anthropogenic environmental degradation. In this study, cement paste composites (water/cement ratio = 0.5) were prepared using a coating based on nanoparticles of SnO2 (SnO2 [...] Read more.
Recently, the production of new photocatalytic materials has attracted considerable attention as a promising strategy to mitigate anthropogenic environmental degradation. In this study, cement paste composites (water/cement ratio = 0.5) were prepared using a coating based on nanoparticles of SnO2 (SnO2/cement paste) and SnO2 decorated with Ag2O (Ag2O-decorated SnO2/cement paste) for photocatalytic applications. These coatings were prepared in this study by using the hydrothermal method as the strategy. Thus, photocatalyst efficiency was evaluated through the degradation of methylene blue (MB) and methyl red (MR) as cationic and anionic dyes, respectively, and the simultaneous degradation of MB/MR (1:1 v/v) dyes. Moreover, the photocatalytic mechanism was investigated in the presence of scavengers. Notably, an increase in pH in the range of 2–6 resulted in selective degradation of the MB/MR dye mixtures. Overall, the photocatalytic performance of these materials provides a novel platform technology focused on advanced civil engineering applications, which consequently facilitates the mitigation of various environmental problems. Full article
(This article belongs to the Special Issue Theoretical and Experimental Investigation of Catalytic Materials)
Show Figures

Figure 1

21 pages, 1907 KiB  
Review
TiO2-Based Photocatalytic Building Material for Air Purification in Sustainable and Low-Carbon Cities: A Review
by Yuanchen Wei, Hong Meng, Que Wu, Xiaoyu Bai and Yongqing Zhang
Catalysts 2023, 13(12), 1466; https://doi.org/10.3390/catal13121466 - 24 Nov 2023
Cited by 18 | Viewed by 8259
Abstract
TiO2-based building materials possess air purification, self-cleaning, and sterilization functionalities, making them innovative green building materials with significant potential for future energy-saving and emission-reduction applications. However, the transition from laboratory-scale to practical applications poses substantial challenges in improving the photocatalytic efficiency [...] Read more.
TiO2-based building materials possess air purification, self-cleaning, and sterilization functionalities, making them innovative green building materials with significant potential for future energy-saving and emission-reduction applications. However, the transition from laboratory-scale to practical applications poses substantial challenges in improving the photocatalytic efficiency and stability of TiO2-based building materials. In recent years, researchers have made considerable efforts to enhance their efficiency and stability. This paper provides a concise overview of the photocatalytic principles employed in buildings for air purification, discusses preparation techniques for TiO2-based building materials, explores strategies to improve their efficiency, outlines key factors influencing their performance in practical applications, analyzes limitations, and discusses future development trends. Finally, we propose recommendations for further research on photocatalytic buildings and their real-world implementation as a valuable reference for developing highly efficient and stable photocatalytic building materials. The aim of this paper is to guide the application of TiO2-based photocatalysts in green buildings towards creating more efficient and stable low-carbon buildings that support sustainable urban growth. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

30 pages, 9516 KiB  
Review
Application of Unconventional External-Field Treatments in Air Pollutants Removal over Zeolite-Based Adsorbents/Catalysts
by Haodan Cheng, Xiaoning Ren, Yuan Yao, Xiaolong Tang, Honghong Yi, Fengyu Gao, Yuansong Zhou and Qingjun Yu
Catalysts 2023, 13(12), 1461; https://doi.org/10.3390/catal13121461 - 23 Nov 2023
Cited by 5 | Viewed by 2802
Abstract
Zeolite-based materials are widely used as adsorbents and catalysts for purifying air pollutants like NOx and VOCs due to abundant pore structure, regular pore distribution, and numerous ion exchange sites. Thermal treatment is a necessary procedure for both removing impurities in pores [...] Read more.
Zeolite-based materials are widely used as adsorbents and catalysts for purifying air pollutants like NOx and VOCs due to abundant pore structure, regular pore distribution, and numerous ion exchange sites. Thermal treatment is a necessary procedure for both removing impurities in pores and promoting the metal active dispersed evenly before the zeolite-based adsorbents/catalysts were applied for purifying the NOx/VOCs. Nevertheless, the conventional thermal field treatment (i.e., high-temperature calcination, high-temperature purging, etc.) takes large energy consumption. In contrast, unconventional external-field treatments such as non-thermal plasma and microwave show significant advantages of high efficiency, low energy consumption as well and low pollution, which were used to substitute the traditional thermal treatment in many fields. In this paper, the roles of non-thermal plasma or microwave in the adsorption/catalysis of the NOx/VOCs are reviewed from three aspects assisting activation of materials, cooperative catalysis process, and assisting zeolites synthesis. The reasons for unconventional treatments in improving textural properties, active sites, performance, etc. of zeolite-based materials were illuminated in detail. Moreover, the influences of various parameters (i.e., power, time, temperature, etc.) on the above aspects are elaborated. It is hoped that this review could provide some advanced guidance for the researchers to develop highly efficient materials. Full article
Show Figures

Graphical abstract

14 pages, 4290 KiB  
Article
RuO2@IrO2/C Core-Shell Structure Catalyst for Efficient and Durable Acidic Oxygen Evolution
by Xin Teng, Junan Gao, Zuobo Yang, Xin Liang, Xiaokuan Wu, Jimmy Yun and Jie Zhang
Catalysts 2023, 13(12), 1456; https://doi.org/10.3390/catal13121456 - 22 Nov 2023
Cited by 4 | Viewed by 3056
Abstract
Proton exchange membrane (PEM) water electrolysis for hydrogen production has a high current density and overall efficiency, and is a very promising hydrogen production strategy. However, its application is limited by the high anodic overpotential for oxygen evolution and the instability of catalysts. [...] Read more.
Proton exchange membrane (PEM) water electrolysis for hydrogen production has a high current density and overall efficiency, and is a very promising hydrogen production strategy. However, its application is limited by the high anodic overpotential for oxygen evolution and the instability of catalysts. Therefore, anodic catalysts with a high activity and durability under acidic conditions need further research. Herein, we first synthesized the key intermediate Ru@Ir core-shell structures by controlling nanocrystals, then loaded them onto a carbon support and calcined to obtain a RuO2@IrO2/C core-shell nanocatalyst with a size smaller than 5 nm, whose activity exceeded that of commercial RuO2 and commercial IrO2. After a 200 h stability test, the catalyst did not show significant performance degradation or structural degeneration. Finally, the prepared catalyst was assembled into a PEM electrolyzer showing the same results as the three-electrode tests, demonstrating its potential for practical applications and providing new insights for designing nanocatalysts suitable for industrialized PEM water electrolysis to produce hydrogen Full article
Show Figures

Figure 1

26 pages, 5995 KiB  
Review
Catalysis for CO2 Hydrogenation—What We Have Learned/Should Learn from the Hydrogenation of Syngas to Methanol
by Zixu Yang, Derun Guo, Shengbin Dong, Jiayi Wu, Minghui Zhu, Yi-Fan Han and Zhong-Wen Liu
Catalysts 2023, 13(11), 1452; https://doi.org/10.3390/catal13111452 - 20 Nov 2023
Cited by 9 | Viewed by 5242
Abstract
This short review provides an in-depth analysis of the achievements and further developments of the catalytic hydrogenation of carbon dioxide (CO2) to methanol from those that are worth learning about based on the transformation of syngas into methanol. We begin by [...] Read more.
This short review provides an in-depth analysis of the achievements and further developments of the catalytic hydrogenation of carbon dioxide (CO2) to methanol from those that are worth learning about based on the transformation of syngas into methanol. We begin by exploring the environmental and energy-related implications of utilizing CO2 as a feedstock for methanol production by emphasizing its potential to mitigate greenhouse gas emissions and facilitate renewable energy integration. Then, different catalytic formulations focusing on precious metals, copper-based catalysts, and metal oxides are summarized, and insights into their advantages and limitations in the aspects of catalytic activity, selectivity, and stability are discussed. Precious metal catalysts, such as platinum and iridium, exhibit high activity but are cost-prohibitive, while copper-based catalysts present a promising and cost-effective alternative. Metal oxides are considered for their unique properties in CO2 activation. Mechanistic insights into reaction pathways are explored, with a particular emphasis on copper-based catalysts. Moreover, the complex steps involved in CO2 hydrogenation to methanol are discussed to shed light on the key intermediates and active sites responsible for catalysis, which is crucial for catalyst design and optimization. Finally, we stress the importance of ongoing research and development efforts to enhance catalyst efficiency, mechanistic comprehension, and process optimization. This review serves as a valuable resource for researchers, engineers, and policymakers working toward a more sustainable and carbon-neutral energy future. By harnessing CO2 as a carbon feedstock for methanol synthesis, we have the potential to address environmental concerns and advance the utilization of renewable energy sources, further contributing to the transition to a cleaner and more sustainable energy landscape. Full article
(This article belongs to the Special Issue Catalysis for Selective Hydrogenation of CO and CO2)
Show Figures

Figure 1

24 pages, 1866 KiB  
Review
Green Synthesis of Biocatalysts Based on Nanocarriers Promises an Effective Role in Pharmaceutical and Biomedical Fields
by Doaa S. R. Khafaga, Mohamed G. Radwan, Ghazala Muteeb, Mohammad Aatif and Mohd Farhan
Catalysts 2023, 13(11), 1448; https://doi.org/10.3390/catal13111448 - 17 Nov 2023
Cited by 13 | Viewed by 3176
Abstract
Nanobiocatalysts (NBCs) are a promising new class of biocatalysts that combine the advantages of enzymes and nanomaterials. Enzymes are biological catalysts that are highly selective and efficient, but they can be unstable in harsh environments. Nanomaterials, on the other hand, are small particles [...] Read more.
Nanobiocatalysts (NBCs) are a promising new class of biocatalysts that combine the advantages of enzymes and nanomaterials. Enzymes are biological catalysts that are highly selective and efficient, but they can be unstable in harsh environments. Nanomaterials, on the other hand, are small particles with unique properties that can improve the stability, activity, and selectivity of enzymes. The development of NBCs has been driven by the need for more sustainable and environmentally friendly bioprocessing methods. Enzymes are inherently green catalysts, but they can be expensive and difficult to recover and reuse. NBCs can address these challenges by providing a stable and reusable platform for enzymes. One of the key challenges in the development of NBCs is the immobilization of enzymes on nanomaterials. Enzyme immobilization is a process that attaches enzymes to a solid support, which can protect the enzymes from harsh environments and make them easier to recover and reuse. There are many different methods for immobilizing enzymes, and the choice of method depends on the specific enzyme and nanomaterial being used. This review explores the effective role of NBCs in pharmaceutical and biomedical fields. Full article
Show Figures

Graphical abstract

17 pages, 3641 KiB  
Review
Advances and Prospects of d-Tagatose Production Based on a Biocatalytic Isomerization Pathway
by Peiyu Miao, Qiang Wang, Kexin Ren, Zigang Zhang, Tongtong Xu, Meijuan Xu, Xian Zhang and Zhiming Rao
Catalysts 2023, 13(11), 1437; https://doi.org/10.3390/catal13111437 - 14 Nov 2023
Cited by 17 | Viewed by 5492
Abstract
d-tagatose is a low-calorie alternative to sucrose natural monosaccharide that is nearly as sweet. As a ketohexose, d-tagatose has disease-relieving and health-promoting properties. Due to its scarcity in nature, d-tagatose is mainly produced through chemical and biological methods. Compared to [...] Read more.
d-tagatose is a low-calorie alternative to sucrose natural monosaccharide that is nearly as sweet. As a ketohexose, d-tagatose has disease-relieving and health-promoting properties. Due to its scarcity in nature, d-tagatose is mainly produced through chemical and biological methods. Compared to traditional chemical methods, biological methods use whole cells and isolated enzymes as catalysts under mild reaction conditions with few by-products and no pollution. Nowadays, biological methods have become a very important topic in related fields due to their high efficiency and environmental friendliness. This paper introduces the functions and applications of d-tagatose and systematically reviews its production, especially by l-arabinose isomerase (L-AI), using biological methods. The molecular structures and catalytic mechanisms of L-AIs are also analyzed. In addition, the properties of L-AIs from different microbial sources are summarized. Finally, we overview strategies to improve the efficiency of d-tagatose production by engineering L-AIs and provide prospects for the future bioproduction of d-tagatose. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Green Catalysts)
Show Figures

Graphical abstract

32 pages, 3029 KiB  
Review
Recent Developments in Lignocellulosic Biofuel Production with Nanotechnological Intervention: An Emphasis on Ethanol
by Swagata Dutta, Sarveshwaran Saravanabhupathy, Anusha, Rajiv Chandra Rajak, Rintu Banerjee, Pritam Kumar Dikshit, Chandra Tejaswi Padigala, Amit K. Das and Beom Soo Kim
Catalysts 2023, 13(11), 1439; https://doi.org/10.3390/catal13111439 - 14 Nov 2023
Cited by 13 | Viewed by 4633
Abstract
Biofuel, an inexhaustible fuel source, plays a pivotal role in the contemporary era by diminishing the dependence on non-renewable energy sources and facilitating the mitigation of CO2 emissions. Due to the many constraints in existing technology and the resulting increased costs, the [...] Read more.
Biofuel, an inexhaustible fuel source, plays a pivotal role in the contemporary era by diminishing the dependence on non-renewable energy sources and facilitating the mitigation of CO2 emissions. Due to the many constraints in existing technology and the resulting increased costs, the production of biofuels on a large scale is a laborious process. Furthermore, the methods used to convert varied feedstock into the intended biofuel may vary based on the specific techniques and materials involved. The demand for bioethanol is increasing worldwide due to the implementation of regulations by world nations that mandates the blending of bioethanol with petrol. In this regard, second-generation bioethanol made from lignocellulosic biomass is emerging at a rapid rate. Pre-treatment, hydrolysis, and fermentation are some of the technical, practical, and economic hurdles that the biochemical conversion method must overcome. Nanoparticles (NPs) provide a very effective approach to address the present obstacles in using biomass, due to their selectivity, energy efficiency, and time management capabilities, while also reducing costs. NPs smaller dimensions allow them to be more effective at interacting with lignocellulosic components at low concentrations to release carbohydrates that can be utilized to produce bioethanol. This article provides a concise overview of various biofuels and the nanotechnological advancements in producing it, with a particular emphasis on ethanol. It provides a detailed discussion on the application of nanotechnology at each stage of ethanol production, with a particular emphasis on understanding the mechanism of how nanoparticles interact with lignocellulose. Full article
Show Figures

Figure 1

14 pages, 1057 KiB  
Review
An Approach towards the Conversion of Biomass Feedstocks into Biofuel Using a Zeolite Socony Mobil-5-Based Catalysts via the Hydrothermal Liquefaction Process: A Review
by Thandiswa Jideani, Emmanuel Chukwuchendo and Lindiwe Khotseng
Catalysts 2023, 13(11), 1425; https://doi.org/10.3390/catal13111425 - 9 Nov 2023
Cited by 6 | Viewed by 2831
Abstract
The conversion of biomass to biofuels as a renewable energy source is continuously gaining momentum due to the environmental concerns associated with using fossil fuels. Biomass is a cost-effective, long-term natural resource that may be converted to biofuels such as biodiesel, biogas, bio-oil, [...] Read more.
The conversion of biomass to biofuels as a renewable energy source is continuously gaining momentum due to the environmental concerns associated with using fossil fuels. Biomass is a cost-effective, long-term natural resource that may be converted to biofuels such as biodiesel, biogas, bio-oil, and biohydrogen using a variety of chemical, thermal, and biological methods. Thermochemical processes are one of the most advanced biomass conversion methods, with much potential and room for improvement. Among various thermochemical processes, hydrothermal liquefaction (HTL) is a promising technology that can convert higher water-content feedstocks into biofuel with significantly lower oxygen content and higher calorific value without requiring the biomass to be dried first. In HTL, temperature, pressure, residence time, catalyst, and solvent all play a vital role in bio-oil quality. This study provides a comprehensive review of the research and development on the effects of catalysts and the need to optimise existing catalysts for optimum biomass conversion into high-value bio-oil and other products. The catalyst of interest is ZSM-5, a heterogenous catalyst that has been seen to increase the hydrocarbon content and decrease oxygenated compounds and other unwanted by-products. The use and modification of this catalyst will play a vital role in generating renewable and carbon-neutral fuels. Full article
Show Figures

Figure 1

36 pages, 9272 KiB  
Review
Heterobimetallic Complexes of Bi- or Polydentate N-Heterocyclic Carbene Ligands and Their Catalytic Properties
by Csilla Enikő Czégéni, Ferenc Joó, Ágnes Kathó and Gábor Papp
Catalysts 2023, 13(11), 1417; https://doi.org/10.3390/catal13111417 - 5 Nov 2023
Viewed by 3279
Abstract
This review summarizes developments in the synthesis and catalytic applications of those heterobimetallic carbene complexes in which at least two different metals are bound to the same ligand by at least one M-C(carbene) bond each. Several new synthetic methods for such complexes yielding [...] Read more.
This review summarizes developments in the synthesis and catalytic applications of those heterobimetallic carbene complexes in which at least two different metals are bound to the same ligand by at least one M-C(carbene) bond each. Several new synthetic methods for such complexes yielding well-defined and thoroughly characterized compounds are presented. The new complexes were found to be catalytically active in several (most often tandem) reactions. In certain cases, the incorporation of two different metals into the same imidazole- or triazol-based NHC-carbene complex resulted in the substantially higher catalytic activity of the heterobimetallic complex compared either to its homobimetallic analogs or to mixtures of comparable mononuclear complex fragments containing the two metals independently. This is a clear demonstration of advantageous metal–metal cooperation within the catalyst. Opposite examples are also discussed, where the heterobimetallic carbene complex proved inferior in relation to its homobimetallic analogs or to mixtures of homonuclear fragments. Full article
(This article belongs to the Special Issue Organometallic Homogeneous Catalysis)
Show Figures

Graphical abstract

20 pages, 3196 KiB  
Article
Sustainably Sourced Mesoporous Carbon Molecular Sieves as Immobilization Matrices for Enzymatic Biofuel Cell Applications
by Federica Torrigino, Marcel Nagel, Zhujun Peng, Martin Hartmann and Katharina Herkendell
Catalysts 2023, 13(11), 1415; https://doi.org/10.3390/catal13111415 - 4 Nov 2023
Cited by 3 | Viewed by 2827
Abstract
Ordered mesoporous carbon CMK-3 sieves with a hexagonal structure and uniform pore size have recently emerged as promising materials for applications as adsorbents and electrodes. In this study, using sucrose as the sustainable carbon source and SBA-15 as a template, CMK-3 sieves are [...] Read more.
Ordered mesoporous carbon CMK-3 sieves with a hexagonal structure and uniform pore size have recently emerged as promising materials for applications as adsorbents and electrodes. In this study, using sucrose as the sustainable carbon source and SBA-15 as a template, CMK-3 sieves are synthesized to form bioelectrocatalytic immobilization matrices for enzymatic biofuel cell (EFC) electrodes. Their electrochemical performance, capacitive features, and the stability of enzyme immobilization are analyzed and compared to commercially available multi-walled carbon nanotubes (MWCNT) using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The anodic reaction in the presence of glucose oxidase (GOx) and ferrocene methanol (FcMeOH) on the sustainably sourced CMK-3-based electrodes produces bioelectrocatalytic current responses at 0.5 V vs. saturated calomel electrode (SCE) that are twice as high as on the MWCNT-based electrodes under saturated glucose conditions. For the cathodic reaction, the MWCNT-based cathode performs marginally better than the CMK-3-based electrodes in the presence of bilirubin oxidase (BOD) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS2−). The CMK-3-based EFCs assembled from the GOx anode and BOD cathode results in a power output of 93 μW cm−2. In contrast, the output power of MWCNT-based EFCs is approximately 53 μW cm−2. The efficiency of CMK-3 as a support material for biofuel cell applications is effectively demonstrated. Full article
Show Figures

Figure 1

20 pages, 19051 KiB  
Review
Engineering of GH11 Xylanases for Optimal pH Shifting for Industrial Applications
by In Jung Kim, Soo Rin Kim, Uwe T. Bornscheuer and Ki Hyun Nam
Catalysts 2023, 13(11), 1405; https://doi.org/10.3390/catal13111405 - 30 Oct 2023
Cited by 14 | Viewed by 3499
Abstract
Endo-1,4-β-xylanases belonging to the glycoside hydrolase (GH) 11 family hydrolyze the β-1,4-glycosidic linkages in the xylan backbone to convert polymeric xylan into xylooligosaccharides. GH11 xylanases play an essential role in sugar metabolism and are one of the most widely used enzymes in various [...] Read more.
Endo-1,4-β-xylanases belonging to the glycoside hydrolase (GH) 11 family hydrolyze the β-1,4-glycosidic linkages in the xylan backbone to convert polymeric xylan into xylooligosaccharides. GH11 xylanases play an essential role in sugar metabolism and are one of the most widely used enzymes in various industries, such as pulp and paper, food and feed, biorefinery, textile, and pharmaceutical industries. pH is a crucial factor influencing the biochemical properties of GH11 xylanase and its application in bioprocessing. For the optimal pH shifting of GH11 xylanase in industrial applications, various protein engineering studies using directed evolution, rational engineering, and in silico approaches have been adopted. Here, we review the functions, structures, and engineering methods developed for the optimal pH shifting of GH11 xylanases. The various GH11 engineering techniques and key residues involved in pH shifting are discussed based on their crystal and modeled structure. This review provides an overview of recent advancements in the characterization and engineering of GH11 xylanases, providing a guide for future research in this field. Full article
(This article belongs to the Special Issue New Trends in Industrial Biocatalysis)
Show Figures

Graphical abstract

18 pages, 4532 KiB  
Review
Bimetallic Single-Atom Catalysts for Electrocatalytic and Photocatalytic Hydrogen Production
by Mengyang Zhang, Keyu Xu, Ning Sun, Yanling Zhuang, Longlu Wang and Dafeng Yan
Catalysts 2023, 13(11), 1409; https://doi.org/10.3390/catal13111409 - 30 Oct 2023
Cited by 7 | Viewed by 3616
Abstract
Electrocatalytic and photocatalytic hydrogen evolution reactions (HERs) provide a promising approach to clean energy generation. Bimetallic single-atom catalysts have been developed and explored to be advanced catalysts for HER. It is urgent to review and summarize the recent advances in developing bimetallic single-atom [...] Read more.
Electrocatalytic and photocatalytic hydrogen evolution reactions (HERs) provide a promising approach to clean energy generation. Bimetallic single-atom catalysts have been developed and explored to be advanced catalysts for HER. It is urgent to review and summarize the recent advances in developing bimetallic single-atom HER catalysts. Firstly, the fundamentals of bimetallic single-atom catalysts are presented, highlighting their unique configuration of two isolated metal atoms on their supports and resultant synergistic effects. Secondly, recent advances in bimetallic single-atom catalysts for electrocatalytic HER under acidic/alkaline conditions are then reviewed, including W-Mo, Ru-Bi, Ni-Fe, Co-Ag, and other dual-atom systems on graphene and transition metal dichalcogenides (TMDs) with enhanced HER activity versus monometallic analogs due to geometric and electronic synergies. Then, photocatalytic bimetallic single-atom catalysts on semiconducting carbon nitrides for solar H2 production are also discussed. Finally, an outlook is provided on opportunities and challenges in precisely controlling bimetallic single-atom catalyst synthesis and gaining in-depth mechanistic insights into bimetallic interactions. Further mechanistic and synthetic studies on bimetallic single-atom catalysts will be imperative for developing optimal systems for efficient and sustainable hydrogen production. Full article
(This article belongs to the Section Nanostructured Catalysts)
Show Figures

Figure 1

23 pages, 9202 KiB  
Article
Acid-Catalyzed Etherification of Glycerol with Tert-Butanol: Reaction Monitoring through a Complete Identification of the Produced Alkyl Ethers
by Alfonso Cornejo, Inés Reyero, Idoia Campo, Gurutze Arzamendi and Luis M. Gandía
Catalysts 2023, 13(10), 1386; https://doi.org/10.3390/catal13101386 - 23 Oct 2023
Viewed by 2942
Abstract
Higher tert-Butyl glycerol ethers (tBGEs) are interesting glycerol derivatives that can be produced from tert-butyl alcohol (TBA) and glycerol using an acid catalyst. Glycerol tert-butylation is a complex reaction that leads to the formation of five tBGEs [...] Read more.
Higher tert-Butyl glycerol ethers (tBGEs) are interesting glycerol derivatives that can be produced from tert-butyl alcohol (TBA) and glycerol using an acid catalyst. Glycerol tert-butylation is a complex reaction that leads to the formation of five tBGEs (two monoethers, two diethers, and one triether). In order to gain insight into the reaction progress, the present work reports on the monitoring of glycerol etherification with TBA and p-toluensulfonic acid (PTSA) as homogeneous catalysts. Two analytical techniques were used: gas chromatography (GC), which constitutes the benchmark method, and 1H nuclear magnetic resonance (1H NMR), whose use for this purpose has not been reported to date. A method for the quantitative analysis of tBGEs and glycerol based on 1H NMR is presented that greatly reduced the analysis time and relative error compared with GC-based methods. The combined use of both techniques allowed for a complete quantitative and qualitative description of the glycerol tert-butylation progress. The set of experimental results collected showed the influence of the catalyst concentration and TBA/glycerol ratio on the etherification reaction and evidenced the intrinsic difficulties of this process to achieve high selectivities and yields to the triether. Full article
(This article belongs to the Special Issue Biomass Derived Heterogeneous and Homogeneous Catalysts, 2nd Edition)
Show Figures

Figure 1

14 pages, 4179 KiB  
Article
Noble Metal Single-Atom Coordinated to Nitrogen, Oxygen, and Carbon as Electrocatalysts for Oxygen Evolution
by Jianhua Wang, Jiangdong Bai, Yaqi Cang, Qing Li, Xing Fan and Haiping Lin
Catalysts 2023, 13(10), 1378; https://doi.org/10.3390/catal13101378 - 19 Oct 2023
Cited by 4 | Viewed by 2217
Abstract
Tuning the coordination environment centering metal atoms has been regarded as a promising strategy to promote the activities of noble metal single-atom catalysts (SACs). In the present work, first-principle calculations are employed to explore the oxygen evolution reaction (OER) performance of Ir and [...] Read more.
Tuning the coordination environment centering metal atoms has been regarded as a promising strategy to promote the activities of noble metal single-atom catalysts (SACs). In the present work, first-principle calculations are employed to explore the oxygen evolution reaction (OER) performance of Ir and Ru SACs with chemical coordination being nitrogen (M-N4-C), oxygen (M-O4-C), and carbon (M-C4-C) in graphene, respectively. A “three-step” strategy was implemented by progressively investigating these metrics (stability, catalytic activity, structure–activity relationship). A volcano plot of reactivity is established by using the adsorption-free energy of O* (∆GO*) as a theoretical descriptor. The intrinsic OER activity is IrN4-C > IrO4-C > RuO4-C > RuN4-C > IrC4-C > RuC4-C. The in-depth tuning mechanism of ∆GO* can be indicated and interpreted by the d-band centers of the active sites and the crystal orbital Hamilton population analysis of metal-oxygen bonds, respectively. Full article
(This article belongs to the Special Issue Theory-Guided Electrocatalysis and Photocatalysis)
Show Figures

Figure 1

19 pages, 4579 KiB  
Article
A New Ammonia Kinetic Model in Ru-Catalyzed Steam-Reforming Reaction Containing N2 in Natural Gas
by Chulmin Kim, Juhan Lee and Sangyong Lee
Catalysts 2023, 13(10), 1380; https://doi.org/10.3390/catal13101380 - 19 Oct 2023
Cited by 1 | Viewed by 3093
Abstract
Hydrogen for building fuel cells is primarily produced by natural-gas steam-reforming reactions. Pipeline-transported natural gas in Europe and North America used to contain about 1% to 5% N2, which reacts with H2 in steam-reforming reactions to form NH3. [...] Read more.
Hydrogen for building fuel cells is primarily produced by natural-gas steam-reforming reactions. Pipeline-transported natural gas in Europe and North America used to contain about 1% to 5% N2, which reacts with H2 in steam-reforming reactions to form NH3. In the case of Ru, one of the catalysts used in natural-gas steam-reforming reactions, the activity of the NH3-formation reaction is higher than that of Ni and Rh catalysts. Reforming gas containing NH3 is known to poison Pt catalysts in Polymer Electrolyte Membrane Fuel Cells (PEMFCs) and also poison catalysts in preferential oxidation (PROX). In this study, Langmuir–Hinshelwood-based models of the NH3-formation reaction considering H2 and CO were proposed and compared with a simplified form of the Temkin–Pyzhev model for NH3-formation rate. The kinetic parameters of each model were optimized by performing multi-objective function optimization on the experimental results using a tube-type reactor and the numerical results of a plug-flow one-dimension simple SR (steam-reforming) reactor. Full article
(This article belongs to the Topic Hydrogen Production Processes)
Show Figures

Figure 1

20 pages, 3931 KiB  
Review
Research Progress of the Selective Catalytic Reduction with NH3 over ZSM-5 Zeolite Catalysts for NOx Removal
by Wangxiang Pan, Jingping He, Guanlin Huang, Wentao Zhang and De Fang
Catalysts 2023, 13(10), 1381; https://doi.org/10.3390/catal13101381 - 19 Oct 2023
Cited by 8 | Viewed by 3585
Abstract
Nitrogen oxides (NOx) are very common air pollutants that are harmful to the environment and human bodies. Selective catalytic reduction with ammonia (NH3-SCR) is considered an effective means to remove NOx emissions due to its good environmental adaptability, [...] Read more.
Nitrogen oxides (NOx) are very common air pollutants that are harmful to the environment and human bodies. Selective catalytic reduction with ammonia (NH3-SCR) is considered an effective means to remove NOx emissions due to its good environmental adaptability, high catalytic activity, and remarkable selectivity. In this paper, the preparation methods, types, advantages, and challenges of ZSM-5 catalysts are reviewed. Special attention is paid to the catalytic properties and influence factors of ZSM-5 catalysts for NH3-SCR. The SCR performances of ZSM-5 catalysts doped with single or multiple metal ions are also reviewed. In addition, the environmental adaptabilities (sulfur resistance, alkali resistance, water resistance, and hydrothermal stability) of ZSM-5 catalysts are discussed, and the development of ZSM-5 catalysts in denitrification is summarized. Full article
Show Figures

Figure 1

32 pages, 5499 KiB  
Review
A Mini-Review on Lanthanum–Nickel-Based Perovskite-Derived Catalysts for Hydrogen Production via the Dry Reforming of Methane (DRM)
by Amvrosios G. Georgiadis, Nikolaos D. Charisiou and Maria A. Goula
Catalysts 2023, 13(10), 1357; https://doi.org/10.3390/catal13101357 - 10 Oct 2023
Cited by 10 | Viewed by 3962
Abstract
Given that the attempts to head toward a hydrogen economy are gathering pace, the dry reforming of methane (DRM) to produce hydrogen-rich syngas is a reaction that is worthy of investigation. Nickel-based catalysts have been extensively examined as a cost-effective solution for DRM, [...] Read more.
Given that the attempts to head toward a hydrogen economy are gathering pace, the dry reforming of methane (DRM) to produce hydrogen-rich syngas is a reaction that is worthy of investigation. Nickel-based catalysts have been extensively examined as a cost-effective solution for DRM, though they suffer from fast deactivation caused by coke accumulation. However, a number of published studies report high catalytic performance in terms of both activity and stability for La–Ni-based perovskite-derived catalysts used in DRM in comparison to other corresponding materials. In the work presented herein, a thorough analysis regarding the application of La–Ni-based perovskite catalysts for DRM is carried out. LaNiO3 is known for its anti-coking ability owing to the strong interaction between CO2 and La2O3. A further modification to improve the catalytic performance can be achieved by the partial or complete substitution of A or/and B sites of the perovskite catalysts. The latest developments with respect to this topic are also discussed in this manuscript. Even though the low surface area of perovskite catalysts has always been an obstacle for their commercialization, new supported and porous perovskite materials have recently emerged to address, at least partly, the challenge. Finally, conclusions and future outlooks for developing novel perovskite catalysts that may potentially pioneer new technology are included. Full article
Show Figures

Graphical abstract

25 pages, 14513 KiB  
Review
The Acquisition of Primary Amines from Alcohols through Reductive Amination over Heterogeneous Catalysts
by Hao Huang, Yuejun Wei, Yuran Cheng, Shuwen Xiao, Mingchih Chen and Zuojun Wei
Catalysts 2023, 13(10), 1350; https://doi.org/10.3390/catal13101350 - 7 Oct 2023
Cited by 6 | Viewed by 6656
Abstract
The synthesis of primary amines via the reductive amination of alcohols involves a hydrogen-borrowing or hydrogen-transfer mechanism, which consists of three main steps: alcohol hydroxyl dehydrogenation, carbonyl imidization, and imine hydrogenation. Heterogeneous catalysts are widely used for this reaction because of their high [...] Read more.
The synthesis of primary amines via the reductive amination of alcohols involves a hydrogen-borrowing or hydrogen-transfer mechanism, which consists of three main steps: alcohol hydroxyl dehydrogenation, carbonyl imidization, and imine hydrogenation. Heterogeneous catalysts are widely used for this reaction because of their high performance and amenability to separation and reuse. However, the efficiency of reductive amination is limited by the dehydrogenation step, which is severely affected by the competitive adsorption of NH3. We hope to improve the efficiency of reductive amination by increasing dehydrogenation efficiency. Therefore, in this overview, we introduce the research progress of alcohol reductive amination reaction catalyzed by heterogeneous metal catalysts, focusing on methods of enhancing dehydrogenation efficiency by screening the metal component and the acidity/alkalinity of the support. Finally, we propose some new strategies for the preparation of catalysts from the perspective of overcoming the competitive adsorption of NH3 and speculate on the design and synthesis of novel catalysts with high performance in the future. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Green Catalysts)
Show Figures

Figure 1

44 pages, 5378 KiB  
Review
Advanced Electrocatalysts for the Oxygen Evolution Reaction: From Single- to Multielement Materials
by América Higareda, Diana Laura Hernández-Arellano, Luis Carlos Ordoñez, Romeli Barbosa and Nicolas Alonso-Vante
Catalysts 2023, 13(10), 1346; https://doi.org/10.3390/catal13101346 - 5 Oct 2023
Cited by 20 | Viewed by 9882
Abstract
The proton exchange membrane water electrolyzer (PEM-WE) is a well-known green technology for hydrogen production. The main obstacle to its development, on a large scale, is the sluggish kinetics of the oxygen evolution reaction (OER). At present, the design of acid-stable electrocatalysts with [...] Read more.
The proton exchange membrane water electrolyzer (PEM-WE) is a well-known green technology for hydrogen production. The main obstacle to its development, on a large scale, is the sluggish kinetics of the oxygen evolution reaction (OER). At present, the design of acid-stable electrocatalysts with low overpotential and excellent stability for the OER constitutes an important activity in electrocatalysis. This review presents an analysis of the fundamentals and strategies for the design of advanced electrocatalysts for oxygen evolution, reaction mechanisms, and OER descriptors. The scrutiny of OER electrocatalysts, with elemental composition from single- to multielemental, are presented. In addition, the purpose of high-entropy alloys (HEAs), a recent research strategy, for the design of advanced materials is summarized. Briefly, the effect of support materials, which are beneficial for modulating the electronic properties of catalysts, is presented. Finally, the prospects for the development of acidic OER electrocatalysts are given. Full article
Show Figures

Graphical abstract

21 pages, 1851 KiB  
Review
A Comprehensive Overview on Biochar-Based Materials for Catalytic Applications
by Mattia Bartoli, Mauro Giorcelli and Alberto Tagliaferro
Catalysts 2023, 13(10), 1336; https://doi.org/10.3390/catal13101336 - 30 Sep 2023
Cited by 16 | Viewed by 3443
Abstract
The development of heterogeneous catalysts is one of the pillars of modern material science. Among all supports, carbonaceous ones are the most popular due to their high surface area, limited cost, and tunable properties. Nevertheless, materials such as carbon black are produced from [...] Read more.
The development of heterogeneous catalysts is one of the pillars of modern material science. Among all supports, carbonaceous ones are the most popular due to their high surface area, limited cost, and tunable properties. Nevertheless, materials such as carbon black are produced from oil-derived sources lacking in sustainability. Pyrolytic carbon produced from biomass, known as biochar, could represent a valid solution to combine the sustainability and performance of supported catalysts. In this review, we report a comprehensive overview of the most cutting-edge applications of biochar-based catalysts, providing a reference point for both experts and newcomers. This review will provide a description of all possible applications of biochar-based catalysts, proving their sustainability for the widest range of processes. Full article
(This article belongs to the Special Issue Advanced Carbon Nanomaterials in Catalysis)
Show Figures

Figure 1

14 pages, 4076 KiB  
Article
Promoting Bifunctional Oxygen Catalyst Activity of Double-Perovskite-Type Cubic Nanocrystallites for Aqueous and Quasi-Solid-State Rechargeable Zinc-Air Batteries
by Yijun Zhong, Xiaomin Xu, Chao Su, Moses Oludayo Tadé and Zongping Shao
Catalysts 2023, 13(10), 1332; https://doi.org/10.3390/catal13101332 - 29 Sep 2023
Cited by 7 | Viewed by 1846
Abstract
Transition metal oxide materials are promising oxygen catalysts that are alternatives to expensive and precious metal-containing catalysts. Integration of transition metal oxides with high activity for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is an important pathway for good bifunctionality. In [...] Read more.
Transition metal oxide materials are promising oxygen catalysts that are alternatives to expensive and precious metal-containing catalysts. Integration of transition metal oxides with high activity for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is an important pathway for good bifunctionality. In contrast to the conventional physical mixing and hybridization strategies, perovskite-type oxide provides an ideal structure for the integration of the transition metal element atoms on an atomic scale. Herein, B-site ordered double-perovskite-type La1.6Sr0.4MnCoO6 nanocrystallites with ultra-small cubic (20–50 nm) morphology and high specific surface areas (25 m2 g−1) were proposed. Rational designs were integrated to promote the ORR-OER catalysis, e.g., introducing oxygen vacancies via A-site cation substitution, further increasing surface oxygen vacancies via integration of a small amount of Pt/C and nanosizing of the material via a facile molten-salt method. The batteries with the La1.6Sr0.4MnCoO6 nanocrystallites and an aqueous alkaline electrolyte demonstrate decent discharge−charge voltage gaps of 0.75 and 1.10 V at 1 and 30 mA cm−2, respectively, and good cycling stability of 250 h (1500 cycles). A coin-type battery with a gel−polymer electrolyte also presents a good performance. Full article
Show Figures

Graphical abstract

26 pages, 5987 KiB  
Article
Plasmonic Photocatalysts Based on Au Nanoparticles and WO3 for Visible Light-Induced Photocatalytic Activity
by Margaux Desseigne, Virginie Chevallier, Véronique Madigou, Marie-Vanessa Coulet, Olivier Heintz, Hassan Ait Ahsaine and Madjid Arab
Catalysts 2023, 13(10), 1333; https://doi.org/10.3390/catal13101333 - 29 Sep 2023
Cited by 8 | Viewed by 2544
Abstract
In this work, we report the application of Au/WO3 composite as a photocatalyst for the degradation of dyes under solar light irradiation. Au/WO3 nanocomposites were synthesized using an acid precipitation method followed by an impregnation/reduction at room temperature. Two composites were [...] Read more.
In this work, we report the application of Au/WO3 composite as a photocatalyst for the degradation of dyes under solar light irradiation. Au/WO3 nanocomposites were synthesized using an acid precipitation method followed by an impregnation/reduction at room temperature. Two composites were obtained by loading gold nanoparticles on two morphologies of nanostructured WO3, nanoplatelets (NP), and pseudospheres (PS). The elaboration parameters of the nanocomposites were optimized according to the gold mass percentage, the HAuCl4 precursor concentration, and the impregnation time. The structural, microstructural, and textural characterization were conducted using advanced techniques: XRD, SEM/TEM microscopies, and XPS and DRS spectroscopies. The optimal synthesis parameters are a 48 h impregnation of a five mass percentage of gold from a HAuCl4 precursor with a concentration of 10−3 mol·L−1. The obtained composites were formed with Au nanoparticles of 7 nm in size. The XRD analyses did not reveal any modification of the oxide supports structure after gold grafting, contrary to the sorption analyses, which evidenced a change in the state of the materials surface. XPS analysis revealed the reduction of W6+ ions into W5+, favoring the presence of oxygen vacancies. Furthermore, a localized surface plasmon resonance effect was observed in the composite at 540 nm. The photocatalysis results of several dye pollutants have shown a selective degradation efficiency depending on the charge of the polluting molecules, pH medium, and mass loading of the catalysts. At the native pH, the photocatalysis process is highly efficient on a cationic molecule, with a low adsorption capacity. Au/WO3 PS composite appears to be the most efficient, degrading almost the whole RhB and MB only in 60 min and 90 min, respectively, while, for the MO anionic dye, the degradation is more efficient in acidic medium (80%) than in basic medium (0%). Trap tests of the main active species were investigated and a photodecomposition mechanism is proposed. Full article
(This article belongs to the Special Issue Catalytic Materials for Hazardous Wastewater Treatment)
Show Figures

Figure 1

39 pages, 7936 KiB  
Review
A Review on Biolubricants Based on Vegetable Oils through Transesterification and the Role of Catalysts: Current Status and Future Trends
by Sergio Nogales-Delgado, José María Encinar and Juan Félix González
Catalysts 2023, 13(9), 1299; https://doi.org/10.3390/catal13091299 - 16 Sep 2023
Cited by 21 | Viewed by 6165
Abstract
The use of biolubricants as an alternative to petroleum-based products has played an important role in the last decade. Due to the encouragement of global policies, which mainly support green chemistry and circular economy, there has been an increasing interest in bio-based products, [...] Read more.
The use of biolubricants as an alternative to petroleum-based products has played an important role in the last decade. Due to the encouragement of global policies, which mainly support green chemistry and circular economy, there has been an increasing interest in bio-based products, including biolubricants, from scientific and industrial points of view. Their raw materials, production, and characteristics might vary, as biolubricants present different applications for a wide range of practical uses, making this field a continuously changing subject of study by researchers. The aim of this work was to study biolubricant production from vegetable oil crops from a bio-refinery perspective, paying attention to the main raw materials used, the corresponding production methods (with a special focus on double transesterification), the role of catalysts and some techno-economic studies. Thus, the main factors affecting quality parameters such as viscosity or oxidative stability have been covered, including catalyst addition, reaction temperature, or the use of raw materials, reagents, or additives were also analyzed. In conclusion, the search for suitable raw materials, the use of heterogeneous catalysts to improve the effectiveness and efficiency of the process, and the optimization of chemical conditions seem to be the most interesting research lines according to the literature. Full article
(This article belongs to the Special Issue Biomass Derived Heterogeneous and Homogeneous Catalysts, 2nd Edition)
Show Figures

Graphical abstract

34 pages, 5856 KiB  
Review
Overview of Ni-Based Catalysts for Hydrogen Production from Biogas Reforming
by Robinson L. Manfro and Mariana M. V. M. Souza
Catalysts 2023, 13(9), 1296; https://doi.org/10.3390/catal13091296 - 14 Sep 2023
Cited by 15 | Viewed by 3800
Abstract
The environmental impact and the forecasted scarcity of fossil fuels have intensified research on renewable energy sources. Hydrogen is a versatile energy carrier that can be produced from renewable sources and plays a key role in achieving global decarbonization targets. Biogas, produced by [...] Read more.
The environmental impact and the forecasted scarcity of fossil fuels have intensified research on renewable energy sources. Hydrogen is a versatile energy carrier that can be produced from renewable sources and plays a key role in achieving global decarbonization targets. Biogas, produced by anaerobic digestion of organic compounds, is rich in methane and carbon dioxide and can be used to produce renewable hydrogen by dry reforming. This review focuses on the recent advances in Ni-based catalysts for biogas reforming. The effect of supports and promoters on catalyst activity, stability, and resistance to carbon deposition will be systematically discussed. This review provides a better understanding of the influence of the synthesis method, metal-support interaction, acid/base sites, and oxygen mobility on catalytic activity. Special emphasis will be given to the development of core-shell structure catalysts and bimetallic catalysts of Ni with other transition metals and noble metals. Full article
(This article belongs to the Topic Catalysts for Hydrogen Production from Renewable Sources)
Show Figures

Figure 1

25 pages, 4827 KiB  
Review
Molecular Catalysts for OER/ORR in Zn–Air Batteries
by Evgeny V. Rebrov and Peng-Zhao Gao
Catalysts 2023, 13(9), 1289; https://doi.org/10.3390/catal13091289 - 10 Sep 2023
Cited by 38 | Viewed by 6115
Abstract
Zn–air batteries are becoming the promising power source for small electronic devices and electric vehicles. They provide a relatively high specific energy density at relatively low cost. This review presents exciting advances and challenges related to the development of molecular catalysts for cathode [...] Read more.
Zn–air batteries are becoming the promising power source for small electronic devices and electric vehicles. They provide a relatively high specific energy density at relatively low cost. This review presents exciting advances and challenges related to the development of molecular catalysts for cathode reactions in Zn–air batteries. Bifunctional electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play the main role in improving performance of reversible fuel cell and metal–air batteries. The catalyst development strategies are reviewed, along with strategies to enhance catalyst performance by application of magnetic field. Proper design of bifunctional molecular ORR/OER catalysts allows the prolongment of the battery reversibility to a few thousand cycles and reach of energy efficiencies of over 70%. Full article
(This article belongs to the Special Issue State of the Art in Molecular Catalysis in Europe)
Show Figures

Graphical abstract

18 pages, 2645 KiB  
Review
Progress in Developing LnBaCo2O5+δ as an Oxygen Reduction Catalyst for Solid Oxide Fuel Cells
by Fa Zheng and Shengli Pang
Catalysts 2023, 13(9), 1288; https://doi.org/10.3390/catal13091288 - 9 Sep 2023
Cited by 7 | Viewed by 2376
Abstract
Solid oxide fuel cells (SOFCs) represent a breed of eco-friendly, weather-independent, decentralized power generation technologies, distinguished for their broad fuel versatility and superior electricity generation efficiency. At present, SOFCs are impeded by a lack of highly efficient oxygen reduction catalysts, a factor that [...] Read more.
Solid oxide fuel cells (SOFCs) represent a breed of eco-friendly, weather-independent, decentralized power generation technologies, distinguished for their broad fuel versatility and superior electricity generation efficiency. At present, SOFCs are impeded by a lack of highly efficient oxygen reduction catalysts, a factor that significantly constrains their performance. The double perovskites LnBaCo2O5+δ (Ln = Lanthanide), renowned for their accelerated oxygen exchange and conductivity features, are widely acclaimed as a promising category of cathode catalysts for SOFCs. This manuscript offers a novel perspective on the physicochemical attributes of LnBaCo2O5+δ accumulated over the past two decades and delineates the latest advancements in fine-tuning the composition and nanostructure for SOFC applications. It highlights surface chemistry under operational conditions and microstructure as emerging research focal points towards achieving high-performance LnBaCo2O5+δ catalysts. This review offers a comprehensive insight into the latest advancements in utilizing LnBaCo2O5+δ in the field of SOFCs, presenting a clear roadmap for future developmental trajectories. Furthermore, it provides valuable insights for the application of double perovskite materials in domains such as water electrolysis, CO2 electrolysis, chemical sensors, and metal–air batteries. Full article
(This article belongs to the Special Issue Advanced Electrocatalysts for Fuel Cells and Metal–Air Batteries)
Show Figures

Graphical abstract

25 pages, 3621 KiB  
Review
Methane Combustion over Zeolite-Supported Palladium-Based Catalysts
by Jinxiong Tao, Yuxi Liu, Jiguang Deng, Lin Jing, Zhiquan Hou, Lu Wei, Zhiwei Wang and Hongxing Dai
Catalysts 2023, 13(9), 1251; https://doi.org/10.3390/catal13091251 - 29 Aug 2023
Cited by 10 | Viewed by 3172
Abstract
The emission of methane leads to the increase in the methane concentration in the atmosphere, which not only wastes resources but also intensifies the greenhouse effect and brings about serious environmental problems. Catalytic combustion can completely convert methane into carbon dioxide and water [...] Read more.
The emission of methane leads to the increase in the methane concentration in the atmosphere, which not only wastes resources but also intensifies the greenhouse effect and brings about serious environmental problems. Catalytic combustion can completely convert methane into carbon dioxide and water at low temperatures. However, the catalytic activities of the conventional supported palladium catalysts (e.g., Pd/Al2O3 and Pd/ZrO2) are easy to decrease or the two catalysts can even be deactivated under actual harsh reaction conditions (high temperatures, steam- and sulfur dioxide-containing atmospheres, etc.). Recently, noble metal catalysts supported on zeolites with ordered pores and good thermal stability have attracted much attention. This review article summarizes the recent progress on the development and characteristics of zeolite-supported noble metal catalysts for the combustion of methane. The effects of framework structures, silica/alumina ratios, acidity, doping of alkali metals or transition metals, particle sizes and distributions, and their locations of/in the zeolites on methane combustion activity are discussed. The importance of developing high-performance catalysts under realistic operation conditions is highlighted. In addition, the related research work on catalytic methane combustion in the future is also envisioned. Full article
Show Figures

Graphical abstract

71 pages, 50530 KiB  
Review
Copper-Catalyzed/Hypervalent Iodine-Mediated Functionalization of Unactivated Compounds
by Marta Papis, Francesca Foschi, Sara Colombo, Egle Maria Beccalli, Camilla Loro and Gianluigi Broggini
Catalysts 2023, 13(9), 1243; https://doi.org/10.3390/catal13091243 - 26 Aug 2023
Cited by 5 | Viewed by 4481
Abstract
The functionalization of unactivated substrates through the combination of copper catalysts and hypervalent iodine reagents represents a versatile tool in organic synthesis to access various classes of compounds. The hypervalent iodine derivatives can be used simply as oxidizing agents to regenerate the catalytic [...] Read more.
The functionalization of unactivated substrates through the combination of copper catalysts and hypervalent iodine reagents represents a versatile tool in organic synthesis to access various classes of compounds. The hypervalent iodine derivatives can be used simply as oxidizing agents to regenerate the catalytic species or they can associate the functionalization of the starting material. In this review, special attention will be paid to methodologies which provide the introduction of nucleophiles into the reagent by use of suitable benziodoxol(on)es or iodonium salts. Many reactions concern C- and N-arylations, but may also involve formation of different carbon–carbon and carbon–nitrogen bonds, carbon–oxygen as well as carbon–halogen and carbon–phosphorus bonds. Full article
(This article belongs to the Special Issue Advancements in Catalytic Oxidations in Organic Synthesis)
Show Figures

Graphical abstract

21 pages, 4812 KiB  
Review
Recent Advances in Synergistic Modulation of Transition-Metal-Based Electrocatalysts for Water Oxidation: A Mini Review
by Zhen Li, Ying Wang and Lawrence Yoon Suk Lee
Catalysts 2023, 13(9), 1230; https://doi.org/10.3390/catal13091230 - 22 Aug 2023
Cited by 10 | Viewed by 3279
Abstract
Synergistic modulation has been extensively explored to develop highly efficient transition-metal-based electrocatalysts for oxygen evolution reaction (OER) because coupling effects among intrinsic activity, conductivity, mass transfer, mass diffusion, and intermediates adsorption can further promote catalytic activity. In this review, recent progress in both [...] Read more.
Synergistic modulation has been extensively explored to develop highly efficient transition-metal-based electrocatalysts for oxygen evolution reaction (OER) because coupling effects among intrinsic activity, conductivity, mass transfer, mass diffusion, and intermediates adsorption can further promote catalytic activity. In this review, recent progress in both experimental and theoretical research on synergistic modulation for transition-metal-based alkaline OER electrocatalysts is focused. Specifically, synergistic effects will be presented in the following aspects: (1) metal reactive sites and heterogeneous atoms; (2) heterogeneous atoms and crystallographic structure; (3) electronic structure and morphology; (4) elementary reaction steps; and (5) external fields. Finally, the remaining challenges and prospects of synergistic modulation for efficient OER are further proposed. Full article
(This article belongs to the Special Issue Materials and Phenomenology for Electrocatalysis and Redox Reactions)
Show Figures

Figure 1

14 pages, 3691 KiB  
Article
Metal-Doped HZSM-5 Zeolite Catalysts for Catalytic Cracking of Raw Bio-Oil: Exploring Activity toward Value-Added Products
by María Eugenia Chiosso, Iratxe Crespo, Andrea Beatriz Merlo and Beatriz Valle
Catalysts 2023, 13(8), 1198; https://doi.org/10.3390/catal13081198 - 10 Aug 2023
Cited by 4 | Viewed by 3784
Abstract
Catalytic cracking of bio-oil, conducted at atmospheric pressure without hydrogen supply, is a cost-effective and versatile approach for the targeted synthesis of biofuels and platform chemicals. The conversion of raw bio-oil follows intricate reaction pathways strongly influenced by the catalyst properties. In this [...] Read more.
Catalytic cracking of bio-oil, conducted at atmospheric pressure without hydrogen supply, is a cost-effective and versatile approach for the targeted synthesis of biofuels and platform chemicals. The conversion of raw bio-oil follows intricate reaction pathways strongly influenced by the catalyst properties. In this work, we explore the use of various transition metals (Cr, Fe, and Zn) to modify the properties of HZSM-5 zeolite and assess their impact on the catalytic cracking of real raw bio-oil feedstock. The effect of metal loading on physical and chemical characteristics of metal-doped zeolite catalysts was studied through XRD, XRF, N2 physisorption, NH3-TPD, FTIR, H2-TPR. The behavior of each catalyst was evaluated in a continuous two-step catalytic cracking system (TS-CC) operating at 450 °C and space-time 0.7 gcatalysth/gfeed. The results highlight the importance of carefully selecting active metal species to optimize the performance of HZSM-5 in the catalytic cracking of bio-oil. Cr and Fe were found to be effective metals in increasing the selectivity of C2–C4 olefins in the gas product and mono-aromatics in the hydrocarbon liquid product, whereas the Zn-doped catalyst exhibits poor activity compared to bulk zeolite. Furthermore, a significant impact of the metal oxidation state on catalytic activity was observed, with reduced metals promoting the formation of H2, CO, and CO2 at the expense of hydrocarbon production. Full article
(This article belongs to the Special Issue Catalysis in Biomass Valorization for Fuel and Chemicals)
Show Figures

Graphical abstract

17 pages, 5817 KiB  
Article
Visible-Light-Induced Photocatalytic Degradation of Rhodamine B Dye Using a CuS/ZnS p-n Heterojunction Nanocomposite under Visible-Light Irradiation
by Rachel Mugumo, Emmanuel Ichipi, Shepherd M. Tichapondwa and Evans M. Nkhalambayausi Chirwa
Catalysts 2023, 13(8), 1184; https://doi.org/10.3390/catal13081184 - 3 Aug 2023
Cited by 26 | Viewed by 2984
Abstract
The aim of this work was to investigate a new, simple, one-pot combustion synthesis technique for creating sulphur-based CuS/ZnS p-n heterojunction nanocomposite photocatalysts. This study examined the photocatalytic activity and reusability of these nanocomposites in removing rhodamine B (RhB) dye under visible-light irradiation. [...] Read more.
The aim of this work was to investigate a new, simple, one-pot combustion synthesis technique for creating sulphur-based CuS/ZnS p-n heterojunction nanocomposite photocatalysts. This study examined the photocatalytic activity and reusability of these nanocomposites in removing rhodamine B (RhB) dye under visible-light irradiation. Various methods of characterisation were employed to determine the properties of the materials, including particle morphology, crystalline phases, and bandgap energy. The intrinsic reaction parameters, such as catalyst loading, the pH level of the solution, and initial pollutant concentration, were varied to establish the optimal photodegradation conditions. The results showed that a binary CuS/ZnS catalyst with a 10 g L−1 loading, at pH 5, degraded 97% of 5 ppm RhB dye after 270 min of visible light irradiation. Additionally, this composite catalyst exhibited excellent chemical stability and reusability, achieving 83% RhB dye removal after five recycling runs. Scavenger tests identified the photogenerated holes (h+) and superoxide free radicals (•O2) as the primary reactive species responsible for degradation. This study provides valuable insight into the design of highly efficient nanomaterials for removing organic pollutants in wastewater, and a possible reaction mechanism is proposed. Full article
Show Figures

Figure 1

15 pages, 2471 KiB  
Article
Identifying the Active Phase of RuO2 in the Catalytic CO Oxidation Reaction, Employing Operando CO Infrared Spectroscopy and Online Mass Spectrometry
by Phillip Timmer, Lorena Glatthaar, Tim Weber and Herbert Over
Catalysts 2023, 13(8), 1178; https://doi.org/10.3390/catal13081178 - 1 Aug 2023
Cited by 9 | Viewed by 2839
Abstract
Operando diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) is combined with online mass spectrometry (MS) to help to resolve a long-standing debate concerning the active phase of RuO2 supported on rutile TiO2 (RuO2@TiO2) during the CO oxidation [...] Read more.
Operando diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) is combined with online mass spectrometry (MS) to help to resolve a long-standing debate concerning the active phase of RuO2 supported on rutile TiO2 (RuO2@TiO2) during the CO oxidation reaction. DRIFTS has been demonstrated to serve as a versatile probe molecule to elucidate the active phase of RuO2@TiO2 under various reaction conditions. Fully oxidized and fully reduced catalysts serve to provide reference DRIFT spectra, based on which the operando CO spectra acquired during CO oxidation under various reaction conditions are interpreted. Partially reduced RuO2@TiO2 was identified as the most active catalyst in the CO oxidation reaction. This is independent of the reaction conditions being reducing or oxidizing and whether the starting catalyst is the fully oxidized RuO2@TiO2 or the partially reduced RuO2@TiO2. Full article
Show Figures

Graphical abstract

12 pages, 6066 KiB  
Article
Metal Bi Loaded Bi2Ti2O7/CaTiO3 for Enhanced Photocatalytic Efficiency for NO Removal under Visible Light
by Diyuan Du, Menglin Shi, Qingqing Guo, Yanqin Zhang, Ahmed A. Allam, Ahmed Rady and Chuanyi Wang
Catalysts 2023, 13(8), 1169; https://doi.org/10.3390/catal13081169 - 30 Jul 2023
Cited by 6 | Viewed by 1875
Abstract
NO has caused many serious environmental problems and even seriously threatened human health. The development of a cheap and efficient method to remove NO from the air has become an urgent need. In this paper, a novel nanocomposite metal-semiconductor photocatalyst Bi-Bi2Ti [...] Read more.
NO has caused many serious environmental problems and even seriously threatened human health. The development of a cheap and efficient method to remove NO from the air has become an urgent need. In this paper, a novel nanocomposite metal-semiconductor photocatalyst Bi-Bi2Ti2O7/CaTiO3 was prepared. Compared to the original Bi2Ti2O7/CaTiO3, the modification by the metal Bi increased its photocatalytic activity from 25% to 64% under visible light irradiation. The improved photoactivity owns to the SPR effect and the electron capture effect of Bi metals in metal-semiconductor loaded systems improving the separation efficiency of electron-hole pairs and significantly improving the light absorption capacity of the composite photocatalyst. The capture experiment of active species showed that •OH, •O2, h+ and e are the main active species in the photocatalytic conversion of NO. This work provides new insights into the conformational relationships of Ti-based photocatalysts for NO removal. Full article
(This article belongs to the Special Issue Photocatalysis in Air Purification)
Show Figures

Figure 1

18 pages, 5117 KiB  
Article
Photocatalytic Systems Based on ZnO Produced by Supercritical Antisolvent for Ceftriaxone Degradation
by Stefania Mottola, Antonietta Mancuso, Olga Sacco, Vincenzo Vaiano and Iolanda De Marco
Catalysts 2023, 13(8), 1173; https://doi.org/10.3390/catal13081173 - 30 Jul 2023
Cited by 9 | Viewed by 1941
Abstract
Emerging contaminants are a significant issue in the environment. Photocatalysis is proposed as a solution for the degradation of pollutants contained in wastewater. In this work, ZnO-based photocatalysts have been produced and tested for the photocatalytic degradation of an antibiotic; specifically, ceftriaxone has [...] Read more.
Emerging contaminants are a significant issue in the environment. Photocatalysis is proposed as a solution for the degradation of pollutants contained in wastewater. In this work, ZnO-based photocatalysts have been produced and tested for the photocatalytic degradation of an antibiotic; specifically, ceftriaxone has been used as a model contaminant. Moreover, there is particular interest in combining small-size ZnO particles and β-cyclodextrin (β-CD), creating a hybrid photocatalyst. Zinc acetate (ZnAc) (subsequently calcinated into ZnO) and β-CD particles with a mean diameter of 0.086 and 0.38 µm, respectively, were obtained using the supercritical antisolvent process (SAS). The produced photocatalysts include combinations of commercial and micronized particles of ZnO and β-CD and commercial and micronized ZnO. All the samples were characterized through UV–Vis diffuse reflectance spectroscopy (DRS), and the band gap values were calculated. Raman and FT-IR measurements confirmed the presence of ZnO and the existence of functional groups due to the β-cyclodextrin and ZnO combination in the hybrid photocatalysts. Wide-angle X-ray diffraction patterns proved that wurtzite is the main crystalline phase for all hybrid photocatalytic systems. In the photocatalytic degradation tests, it was observed that all the photocatalytic systems exhibited 100% removal efficiency within a few minutes. However, the commercial ZnO/micronized β-CD hybrid system is the photocatalyst that shows the best performance; in fact, when using this hybrid system, ceftriaxone was entirely degraded in 1 min. Full article
(This article belongs to the Special Issue Photocatalytical Technology in Europe: State-of-the-Art)
Show Figures

Figure 1

21 pages, 403 KiB  
Review
Synthesis and Specific Properties of the Ceria and Ceria-Zirconia Nanocrystals and Their Aggregates Showing Outstanding Catalytic Activity in Redox Reactions—A Review
by Roman Dziembaj, Marcin Molenda and Lucjan Chmielarz
Catalysts 2023, 13(8), 1165; https://doi.org/10.3390/catal13081165 - 29 Jul 2023
Cited by 8 | Viewed by 3173
Abstract
Non-stoichiometric CeO2−y, especially in the form of nanocrystal aggregates, exhibits exceptional catalytic activity in redox reactions. It significantly improves the activity of transition metals and their oxides dispersed on/or in it, also acting as an oxygen buffer. Particularly, active oxygen species [...] Read more.
Non-stoichiometric CeO2−y, especially in the form of nanocrystal aggregates, exhibits exceptional catalytic activity in redox reactions. It significantly improves the activity of transition metals and their oxides dispersed on/or in it, also acting as an oxygen buffer. Particularly, active oxygen species (O2n−, O) are generated at the M/CeO2−y nanoparticle interface, as well as in the surface layer of their solid-state solutions MxCe1−xO2−y. The crystal structure of CeO2, ZrO2 and (Ce, Zr)O2 and its defects are discussed in connection with the resulting specific catalytic activity. All the methods (simple precipitation and co-precipitation from mother liquors, sol–gel methods, precipitation from nanoemulsions, hydrothermal and solvothermal techniques, combustion and flame spray pyrolysis, precipitation using molecular and solid-state matrices, 3D printing and mechanochemical methods) used for the synthesis of these nanomaterials are comprehensively reviewed, describing the rules of individual procedures and preparation details. Methods of deposition of metal catalysts and their oxides on CeO2 nanoparticles, such as impregnation, washcoating and precipitation deposition, were also discussed. This review contains more than 160 references to representative papers wherein the reader can find further details on individual syntheses of effective ceria-based catalysts for redox reactions. Full article
15 pages, 3703 KiB  
Article
Au Clusters Supported on Defect-Rich Ni-Ti Oxides Derived from Ultrafine Layered Double Hydroxides (LDHs) for CO Oxidation at Ambient Temperature
by Ayu Takahashi, Akihiro Nakayama, Toru Murayama, Norihito Sakaguchi, Tetsuya Shimada, Shinsuke Takagi and Tamao Ishida
Catalysts 2023, 13(8), 1155; https://doi.org/10.3390/catal13081155 - 26 Jul 2023
Cited by 1 | Viewed by 1658
Abstract
Ultrafine layered double hydroxides (LDHs) have abundant hydroxy groups at their edge sites, serving as anchor sites for metal NPs. Furthermore, transformation of ultrafine LDHs into mixed metal oxides (MMOs) generates abundant oxygen vacancies, which are advantageous for O2 activation during Au-catalyzed [...] Read more.
Ultrafine layered double hydroxides (LDHs) have abundant hydroxy groups at their edge sites, serving as anchor sites for metal NPs. Furthermore, transformation of ultrafine LDHs into mixed metal oxides (MMOs) generates abundant oxygen vacancies, which are advantageous for O2 activation during Au-catalyzed CO oxidation. We used ultrafine Ni-Ti LDHs with low crystallinity or Ni-Ti MMOs supported on SiO2 onto which Au NPs were deposited by deposition–precipitation (DP) and DP–urea (DPU). The catalytic activity of the Au catalysts was significantly affected by the preparation method, with the highest activity obtained by depositing Au onto LDH/SiO2 by DPU, followed by transformation of LDH to MMO (Au/Ni-Ti MMO/SiO2 (LDH-DPU)). The presence of Au on LDHs affected the transformation of LDHs into MMOs, resulting in LDH-DPU having the greatest number of oxygen vacancies in the TiO2 domain in MMOs. Consequently, the adsorbed or the lattice oxygen on the surface of LDH-DPU can be easily utilized for CO oxidation at low temperatures. Moreover, the catalytic activity of LDH-DPU increased with water vapor concentration up to 100% relative humidity at room temperature, suggesting the potential of Au/Ni-Ti MMO/SiO2 as an air purification catalyst. Full article
Show Figures

Figure 1

13 pages, 4232 KiB  
Article
Insights into SnO2 Nanoparticles Supported on Fibrous Mesoporous Silica for CO Catalytic Oxidation
by Guobo Li, Yingying Zhang, Jie Yan, Yiwei Luo, Conghui Wang, Weiwei Feng, Shule Zhang, Wenming Liu, Zehui Zhang and Honggen Peng
Catalysts 2023, 13(8), 1156; https://doi.org/10.3390/catal13081156 - 26 Jul 2023
Cited by 1 | Viewed by 1896
Abstract
A large surface area dendritic mesoporous silica material (KCC-1) was successfully synthesized and used as a support to confine SnO2 nanoparticles (NPs). Owing to the large specific surface area and abundant mesoporous structure of dendritic KCC-1, the SnO2 NPs were highly [...] Read more.
A large surface area dendritic mesoporous silica material (KCC-1) was successfully synthesized and used as a support to confine SnO2 nanoparticles (NPs). Owing to the large specific surface area and abundant mesoporous structure of dendritic KCC-1, the SnO2 NPs were highly dispersed, resulting in significantly improved CO catalytic oxidation activity. The obtained Snx/KCC-1 catalysts (x represents the mass fraction of SnO2 loading) exhibited excellent CO catalytic activity, with the Sn7@KCC-1 catalyst achieving 90% CO conversion at about 175 °C. The SnO2 NPs on the KCC-1 surface in a highly dispersed amorphous form, as well as the excellent interaction between SnO2 NPs and KCC-1, positively contributed to the catalytic removal process of CO on the catalyst surface. The CO catalytic removal pathway was established through a combination of in situ diffuse reflectance infrared transform spectroscopy and density-functional theory calculations, revealing the sequential steps: ① CO → CO32−ads, ② CO32−ads → CO2free+SnOx−1, ③ SnOx−1+O2 → SnOx+1. This study provides valuable insights into the design of high-efficiency non-precious metal catalysts for CO catalytic oxidation catalysts with high efficiency. Full article
Show Figures

Graphical abstract

15 pages, 2181 KiB  
Article
Phosphate Coordination in a Water-Oxidizing Cobalt Oxide Electrocatalyst Revealed by X-ray Absorption Spectroscopy at the Phosphorus K-Edge
by Si Liu, Shima Farhoosh, Paul Beyer, Stefan Mebs, Michael Haumann and Holger Dau
Catalysts 2023, 13(8), 1151; https://doi.org/10.3390/catal13081151 - 25 Jul 2023
Cited by 5 | Viewed by 2439
Abstract
In the research on water splitting at neutral pH, phosphorus-containing transition metal oxyhydroxides are often employed for catalyzing the oxygen evolution reaction (OER). We investigated a cobalt–phosphate catalyst (CoCat) representing this material class. We found that CoCat films prepared with potassium phosphate release [...] Read more.
In the research on water splitting at neutral pH, phosphorus-containing transition metal oxyhydroxides are often employed for catalyzing the oxygen evolution reaction (OER). We investigated a cobalt–phosphate catalyst (CoCat) representing this material class. We found that CoCat films prepared with potassium phosphate release phosphorus in phosphate-free electrolytes within hours, contrasting orders of magnitude’s faster K+ release. For P speciation and binding mode characterization, we performed technically challenging X-ray absorption spectroscopy experiments at the P K-edge and analyzed the resulting XANES and EXAFS spectra. The CoCat-internal phosphorus is present in the form of phosphate ions. Most phosphate species are likely linked to cobalt ions in Co–O–PO3 motifs, where the connecting oxygen could be a terminal or bridging ligand in Co-oxide fragments (P–Co distance, ~3.1 Å), with additional ionic bonds to K+ ions (P–K distance, ~3.3 Å). The phosphate coordination bond is stronger than the ionic K+-binding, explaining the strongly diverging ion release rates of phosphate and K+. Our results support a structural role of phosphate in the CoCat, with these ions binding at the margins of Co-oxide fragments, thereby limiting the long-range material ordering. The relations of catalyst-internal phosphate ions to cobalt’s redox-state changes, proton transfer, and catalytic activity are discussed. Full article
(This article belongs to the Special Issue Electrocatalytic Water Oxidation)
Show Figures

Graphical abstract

15 pages, 3859 KiB  
Article
Photothermal-Assisted Photocatalytic Degradation of Tetracycline in Seawater Based on the Black g-C3N4 Nanosheets with Cyano Group Defects
by Loic Jiresse Nguetsa Kuate, Zhouze Chen, Jialin Lu, Huabing Wen, Feng Guo and Weilong Shi
Catalysts 2023, 13(7), 1147; https://doi.org/10.3390/catal13071147 - 24 Jul 2023
Cited by 70 | Viewed by 3307
Abstract
As a broad-spectrum antibiotic, tetracycline (TC) has been continually detected in soil and seawater environments, which poses a great threat to the ecological environment and human health. Herein, a black graphitic carbon nitride (CN-B) photocatalyst was synthesized by the one-step calcination method of [...] Read more.
As a broad-spectrum antibiotic, tetracycline (TC) has been continually detected in soil and seawater environments, which poses a great threat to the ecological environment and human health. Herein, a black graphitic carbon nitride (CN-B) photocatalyst was synthesized by the one-step calcination method of urea and phloxine B for the degradation of tetracycline TC in seawater under visible light irradiation. The experimental results showed that the photocatalytic degradation rate of optimal CN-B-0.1 for TC degradation was 92% at room temperature within 2 h, which was 1.3 times that of pure CN (69%). This excellent photocatalytic degradation performance stems from the following factors: (i) ultrathin nanosheet thickness reduces the charge transfer distance; (ii) the cyanogen defect promotes photogenerated carriers’ separation; (iii) and the photothermal effect of CN-B increases the reaction temperature and enhances the photocatalytic activity. This study provides new insight into the design of photocatalysts for the photothermal-assisted photocatalytic degradation of antibiotic pollutants. Full article
Show Figures

Figure 1

18 pages, 2124 KiB  
Review
Recent Advances in Platinum and Palladium Solvent Extraction from Real Leaching Solutions of Spent Catalysts
by Ana Paula Paiva
Catalysts 2023, 13(7), 1146; https://doi.org/10.3390/catal13071146 - 24 Jul 2023
Cited by 7 | Viewed by 6169
Abstract
The strategic importance of platinum and palladium, two platinum-group metals (PGMs), is particularly supported by their technological applications, one of the most relevant being the role they perform as catalysts for several sorts of chemical reactions. The cumulative demand for these two PGMs [...] Read more.
The strategic importance of platinum and palladium, two platinum-group metals (PGMs), is particularly supported by their technological applications, one of the most relevant being the role they perform as catalysts for several sorts of chemical reactions. The cumulative demand for these two PGMs to be used as catalysts more than justifies increasing research efforts to develop sustainable recycling processes to maintain their supply. This critically appraised topic review describes the recent research trends (since 2010) developed by the world’s research communities to reach sustainable methods to recover platinum and palladium from spent catalysts in the liquid phase, namely those involving a solvent extraction (SX) step. The selected recycling processes are based on extensive fundamental research, but this paper intends to focus on information collected about SX procedures applied to real leaching samples of spent catalysts, either from automobile or industrial sources. A critical appraisal of the claimed success levels, the identified constraints, and open challenges is carried out, together with some perspectives on possible ways to redirect research efforts and minimize the gap between academia and industry on this matter. Full article
(This article belongs to the Special Issue Recent Advances Utilized in the Recycling of Catalysts II)
Show Figures

Graphical abstract

Back to TopTop