Vertically Ti3CN@NiFe LDH Nanoflakes as Self-Standing Catalysts for Enhanced Oxygen Evolution Reaction
Abstract
1. Introduction
2. Results and Discussion
2.1. Catalyst Synthesis and Structure Characterization
2.2. Electrocatalytic Performance for OER
3. Materials and Methods
3.1. Chemicals
3.2. Synthesis of Few-Layered Ti3CN MXene
3.3. Synthesis of LDH/MXNF
3.4. Structural Characterization
3.5. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S.A.; Jaramillo, T.F.; Sargent, E.H. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 2019, 364, 6438. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Du, Z.; Lai, X.; Lan, J.; Liu, X.; Liao, J.; Feng, Y.; Li, H. Synergistically modulating the electronic structure of Cr-doped FeNi LDH nanoarrays by O-vacancy and coupling of MXene for enhanced oxygen evolution reaction. Int. J. Hydrogen Energy 2023, 48, 1892–1903. [Google Scholar] [CrossRef]
- Sun, L.; Reddu, V.; Fisher, A.C.; Wang, X. Electrocatalytic reduction of carbon dioxide: Opportunities with heterogeneous molecular catalysts. Energy Environ. Sci. 2020, 13, 374–403. [Google Scholar] [CrossRef]
- Chen, M.; Fan, Q.; Chen, K.; Majkova, E.; Huang, Q.; Liang, K. MXene materials: Pioneering sustainable energy storage solutions. Carbon Neutralization 2024, 3, 493–500. [Google Scholar] [CrossRef]
- Gür, T.M. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage. Energy Environ. Sci. 2018, 11, 2696–2767. [Google Scholar] [CrossRef]
- Zeng, F.; Mebrahtu, C.; Liao, L.; Beine, A.K.; Palkovits, R. Stability and deactivation of OER electrocatalysts: A review. J. Energy Chem. 2022, 69, 301–329. [Google Scholar] [CrossRef]
- Trasatti, S. Electrocatalysis by oxides—Attempt at a unifying approach. J. Electroanal. Chem. Interfacial Electrochem. 1980, 111, 125–131. [Google Scholar] [CrossRef]
- Walter, M.G.; Warren, E.L.; McKone, J.R.; Boettcher, S.W.; Mi, Q.; Santori, E.A.; Lewis, N.S. Solar Water Splitting Cells. Chem. Rev. 2010, 110, 6446–6473. [Google Scholar] [CrossRef]
- Luo, J.; Matios, E.; Wang, H.; Tao, X.; Li, W. Interfacial structure design of MXene-based nanomaterials for electrochemical energy storage and conversion. InfoMat 2020, 2, 1057–1076. [Google Scholar] [CrossRef]
- Khateri, M.; Najafpour, M.M. Oxygen-Evolution Reaction on Nickel Oxyhydroxide’s Surface: Toward a Super Catalyst for Oxygen-Evolution Reaction with Ultralow Overpotentials. ACS Appl. Energy Mater. 2024, 7, 5028–5037. [Google Scholar] [CrossRef]
- Liu, S.; Wang, F.; Wang, J.; Wang, Z.; He, X.; Zhang, T.; Zhang, Z.; Liu, Q.; Liu, X.; Zhang, X. Dense heterogeneous interfaces boost the electrocatalytic oxygen evolution reaction. Appl. Catal. B Environ. Energy 2024, 355, 124148. [Google Scholar] [CrossRef]
- Gebauer, C.; Fischer, P.; Wassner, M.; Diemant, T.; Jusys, Z.; Hüsing, N.; Behm, R.J. Performance of titanium oxynitrides in the electrocatalytic oxygen evolution reaction. Nano Energy 2016, 29, 136–148. [Google Scholar] [CrossRef]
- Jiang, T.; Xie, W.; Geng, S.; Li, R.; Song, S.; Wang, Y. Constructing oxygen vacancy-regulated cobalt molybdate nanoflakes for efficient oxygen evolution reaction catalysis. Chin. J. Catal. 2022, 43, 2434–2442. [Google Scholar] [CrossRef]
- Anne, B.R.; Kundu, J.; Kabiraz, M.K.; Kim, J.; Cho, D.; Choi, S.-I. A Review on MXene as Promising Support Materials for Oxygen Evolution Reaction Catalysts. Adv. Funct. Mater. 2023, 33, 2306100. [Google Scholar] [CrossRef]
- Chen, X.; Xu, X.; Shao, C.; Ke, Z.; Cheng, Y.; Jin, H.; Da, Y.; Liu, D.; Chen, W. Facet-Dependent Lattice Oxygen Activation on Oxygen-Defective Co3O4 for Electrocatalytic Oxygen Evolution Reaction. ACS Energy Lett. 2024, 9, 2182–2192. [Google Scholar] [CrossRef]
- Liao, Y.; He, R.; Pan, W.; Li, Y.; Wang, Y.; Li, J.; Li, Y. Lattice distortion induced Ce-doped NiFe-LDH for efficient oxygen evolution. Chem. Eng. J. 2023, 464, 142669. [Google Scholar] [CrossRef]
- Lei, L.; Huang, D.; Zhou, C.; Chen, S.; Yan, X.; Li, Z.; Wang, W. Demystifying the active roles of NiFe-based oxides/(oxy)hydroxides for electrochemical water splitting under alkaline conditions. Coord. Chem. Rev. 2020, 408, 213177. [Google Scholar] [CrossRef]
- Xu, X.; Zhong, Y.; Wajrak, M.; Bhatelia, T.; Jiang, S.P.; Shao, Z. Grain boundary engineering: An emerging pathway toward efficient electrocatalysis. InfoMat 2024, 6, e12608. [Google Scholar] [CrossRef]
- Jin, Z.; Liu, C.; Liu, Z.; Han, J.; Fang, Y.; Han, Y.; Niu, Y.; Wu, Y.; Sun, C.; Xu, Y. Rational Design of Hydroxyl-Rich Ti3C2Tx MXene Quantum Dots for High-Performance Electrochemical N2 Reduction. Adv. Energy Mater. 2020, 10, 2000797. [Google Scholar] [CrossRef]
- Kan, D.; Wang, D.; Zhang, X.; Lian, R.; Xu, J.; Chen, G.; Wei, Y. Rational design of bifunctional ORR/OER catalysts based on Pt/Pd-doped Nb2CT2 MXene by first-principles calculations. J. Mater. Chem. A 2020, 8, 3097–3108. [Google Scholar] [CrossRef]
- Li, T.; Yan, X.; Huang, L.; Li, J.; Yao, L.; Zhu, Q.; Wang, W.; Abbas, W.; Naz, R.; Gu, J.; et al. Fluorine-free Ti3C2Tx (T = O, OH) nanosheets (∼50–100 nm) for nitrogen fixation under ambient conditions. J. Mater. Chem. A 2019, 7, 14462–14465. [Google Scholar] [CrossRef]
- Xiu, L.; Wang, Z.; Yu, M.; Wu, X.; Qiu, J. Aggregation-Resistant 3D MXene-Based Architecture as Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Nano 2018, 128, 8017–8028. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.-Q.; Xie, X.; Ren, C.E.; Makaryan, T.; Anasori, B.; Wang, G.; Gogotsi, Y. Hollow MXene Spheres and 3D Macroporous MXene Frameworks for Na-Ion Storage. Adv. Mater. 2017, 29, 1702410. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Cui, L.; Abdolhosseinzadeh, S.; Heier, J. Two-dimensional MXenes for lithium-sulfur batteries. InfoMat 2020, 2, 613–638. [Google Scholar] [CrossRef]
- Li, M.; Fan, Q.; Gao, L.; Liang, K.; Huang, Q. Chemical Intercalation of Layered Materials: From Structure Tailoring to Applications. Adv. Mater. 2024, 36, 2312918. [Google Scholar] [CrossRef]
- Liang, K.; Tabassum, A.; Majed, A.; Dun, C.; Yang, F.; Guo, J.; Prenger, K.; Urban, J.J.; Naguib, M. Synthesis of new two-dimensional titanium carbonitride TiC0.5N0.5Tx MXene and its performance as an electrode material for sodium-ion battery. InfoMat 2021, 3, 1422–1430. [Google Scholar] [CrossRef]
- Zong, H.; Hu, L.; Gong, S.; Yu, K.; Zhu, Z. Flower-petal-like Nb2C MXene combined with MoS2 as bifunctional catalysts towards enhanced lithium-sulfur batteries and hydrogen evolution. Electrochim. Acta 2022, 404, 139781. [Google Scholar] [CrossRef]
- Zhou, A.; Liu, Y.; Li, S.; Wang, X.; Ying, G.; Xia, Q.; Zhang, P. From structural ceramics to 2D materials with multi-applications: A review on the development from MAX phases to MXenes. J. Adv. Ceram. 2021, 10, 1194–1242. [Google Scholar] [CrossRef]
- Jin, S.; Guo, Y.; Wang, F.; Zhou, A. The synthesis of MXenes. MRS Bull. 2023, 48, 245–252. [Google Scholar] [CrossRef]
- Ding, H.; Li, Y.; Li, M.; Chen, K.; Liang, K.; Chen, G.; Lu, J.; Palisaitis, J.; Persson, P.O.Å.; Eklund, P.; et al. Chemical scissor–mediated structural editing of layered transition metal carbides. Science 2023, 379, 1130–1135. [Google Scholar] [CrossRef]
- Liang, K.; Wu, T.; Misra, S.; Dun, C.; Husmann, S.; Prenger, K.; Urban, J.J.; Presser, V.; Unocic, R.R.; Jiang, D.-E.; et al. Nitrogen-Doped Graphene-Like Carbon Intercalated MXene Heterostructure Electrodes for Enhanced Sodium- and Lithium-Ion Storage. Adv. Sci. 2024, 11, 2402708. [Google Scholar] [CrossRef] [PubMed]
- Kan, D.; Lian, R.; Wang, D.; Zhang, X.; Xu, J.; Gao, X.; Yu, Y.; Chen, G.; Wei, Y. Screening effective single-atom ORR and OER electrocatalysts from Pt decorated MXenes by first-principles calculations. J. Mater. Chem. A 2020, 8, 17065–17077. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, Y. Vacancy and N dopants facilitated Ti3+ sites activity in 3D Ti3-xC2Ty MXene for electrochemical nitrogen fixation. Appl. Catal. B Environ. 2021, 297, 120482. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, Q.; Tian, Y.; Ren, X.; Li, C.; Zu, Y.; Din, S.Z.U.; Gao, L.; Wu, J.; Chen, H.; et al. Few-layer Ti3CN MXene for ultrafast photonics applications in visible band. J. Mater. 2023, 9, 44–55. [Google Scholar] [CrossRef]
- Guo, W.; She, Z.; Xue, H.; Zhang, X. Density functional theory study on the Ti3CN and Ti3CNT2 (T = O, S and F) as high capacity anode material for Na ion batteries. Appl. Surf. Sci. 2020, 529, 147180. [Google Scholar] [CrossRef]
- Cao, S.; Huang, H.; Shi, K.; Wei, L.; You, N.; Fan, X.; Yang, Z.; Zhang, W. Engineering superhydrophilic/superaerophobic hierarchical structures of Co-CH@NiFe-LDH/NF to boost the oxygen evolution reaction. Chem. Eng. J. 2021, 422, 130123. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, D.; Chen, G.; Zhang, N.; Wan, H.; Liu, X.; Ma, R. Microcrystallization and lattice contraction of NiFe LDHs for enhancing water electrocatalytic oxidation. Carbon Energy 2022, 4, 901–913. [Google Scholar] [CrossRef]
- Gu, Y.; Park, D.-H.; Kim, M.-H.; Byeon, J.-H.; Lim, D.-M.; Park, S.-H.; Kim, J.-H.; Jang, J.-S.; Park, K.-W. NiFe layered double hydroxides synthesized based on solvent properties as anode catalysts for enhanced oxygen evolution reaction. Chem. Eng. J. 2024, 480, 147789. [Google Scholar] [CrossRef]
- Ko, Y.-J.; Han, M.H.; Kim, H.; Kim, J.-Y.; Lee, W.; Kim, J.; Kwak, J.Y.; Kim, C.-H.; Park, T.-E.; Yu, S.-H.; et al. Unraveling Ni-Fe 2D nanostructure with enhanced oxygen evolution via in situ and operando spectroscopies. Chem Catal. 2022, 2, 2312–2327. [Google Scholar] [CrossRef]
- Xiang, Y.; He, Y.; Zhang, W.; Li, B.; Li, H.; Wang, Y.; Yin, X.; Tang, W.; Li, Z.; He, Z. Superhydrophobic LDH/TTOS composite surface based on microstructure for the anti-corrosion, anti-fouling and oil-water separation application. Colloids Surf. A Physicochem. Eng. Asp. 2021, 622, 126558. [Google Scholar] [CrossRef]
- Chenakin, S.; Kruse, N. XPS characterization of transition metal oxalates. Appl. Surf. Sci. 2020, 515, 146041. [Google Scholar] [CrossRef]
- Kong, Y.; Wang, Y.; Chu, W.; Liu, Z. Tailoring surface and interface electronic structure of NiFe LDH via V doping for enhanced oxygen evolution reaction. J. Alloys Compd. 2021, 885, 160929. [Google Scholar] [CrossRef]
- Huang, K.; Dong, R.; Wang, C.; Li, W.; Sun, H.; Geng, B. Fe–Ni Layered Double Hydroxide Arrays with Homogeneous Heterostructure as Efficient Electrocatalysts for Overall Water Splitting. ACS Sustain. Chem. Eng. 2019, 7, 15073–15079. [Google Scholar] [CrossRef]
- Li, X.-P.; Han, W.-K.; Xiao, K.; Ouyang, T.; Li, N.; Peng, F.; Liu, Z.-Q. Enhancing hydrogen evolution reaction through modulating electronic structure of self-supported NiFe LDH. Catal. Sci. Technol. 2020, 10, 4184–4190. [Google Scholar] [CrossRef]
- Hao, N.; Wei, Y.; Wang, J.; Wang, Z.; Zhu, Z.; Zhao, S.; Han, M.; Huang, X. In situ hybridization of an MXene/TiO2/NiFeCo-layered double hydroxide composite for electrochemical and photoelectrochemical oxygen evolution. RSC Adv. 2018, 8, 20576–20584. [Google Scholar] [CrossRef]
- Hu, L.; Li, M.; Wei, X.; Wang, H.; Wu, Y.; Wen, J.; Gu, W.; Zhu, C. Modulating interfacial electronic structure of CoNi LDH nanosheets with Ti3C2Tx MXene for enhancing water oxidation catalysis. Chem. Eng. J. 2020, 398, 125605. [Google Scholar] [CrossRef]
- Yang, Z.; Lin, Y.; Jiao, F.; Li, J.; Wang, J.; Gong, Y. In situ growth of 3D walnut-like nano-architecture Mo-Ni2P@NiFe LDH/NF arrays for synergistically enhanced overall water splitting. J. Energy Chem. 2020, 49, 189–197. [Google Scholar] [CrossRef]
- Su, C.; Wang, D.; Wang, W.; Mitsuzaki, N.; Shao, R.; Xu, Q.; Chen, Z. Rational design of bimetallic metal-organic framework derived three-dimensional flower-like and porous NiCoFe LDH/NF electrocatalyst for electrochemical overall water splitting. J. Electroanal. Chem. 2024, 960, 118167. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Z.; Liu, W.; Xu, L.; Guan, M.; Huang, Y.; Zhao, Y.; Bao, J.; Li, H.-M. Novel Cobalt–Iron–Vanadium Layered Double Hydroxide Nanosheet Arrays for Superior Water Oxidation Performance. ACS Sustain. Chem. Eng. 2019, 7, 16828–16834. [Google Scholar] [CrossRef]
- Gupta, A.; Sadhanala, H.K.; Gedanken, A. Iron doped cobalt nickel layered double hydroxide supported on nickel foam as a robust electrocatalyst for highly efficient water oxidation in alkaline sea water. Electrochim. Acta 2023, 470, 143269. [Google Scholar] [CrossRef]
- Ullah, S.; Ahmed, W.; Zeeshan, M.; Hu, S.; Zhang, X. Integral 2D/3D structured CoSnO3@MXene/NF as a highly active and stable bifunctional electrocatalyst for alkaline water splitting. Int. J. Hydrogen Energy 2024, 70, 448–460. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, P.; Li, P.; Tang, M.; Yin, H.; Wang, D. A highly efficient and durable self-standing iron-cobalt-nickel trimetallic phosphide electrode for oxygen evolution reaction. J. Alloys Compd. 2023, 960, 170493. [Google Scholar] [CrossRef]
- Li, L.; Wang, Z.; She, X.; Pan, L.; Xi, C.; Wang, D.; Yi, J.; Yang, J. Ni-modified FeOOH integrated electrode by self-source corrosion of nickel foam for high-efficiency electrochemical water oxidation. J. Colloid Interface Sci. 2023, 652, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.; Park, S.; Kwon, T.; Kwon, M.; Yuk, S.; Kim, S.; Yeon, C.; Lee, C.-W.; Lee, D. Interface Engineering via Ti3C2Tx MXene Enabled Highly Efficient Bifunctional NiCoP Array Catalysts for Alkaline Water Splitting. ACS Appl. Mater. Interfaces 2024, 16, 34798–34808. [Google Scholar]
- Chen, J.; Liu, C.; Ren, W.; Sun, J.; Zhang, Y.; Zou, L. Synergistic effect of NF and rGO in preparing 3D NiFe-LDH/rGO@NF composites on electrocatalysts performance. J. Alloys Compd. 2022, 901, 163510. [Google Scholar] [CrossRef]
- Shen, B.; Feng, Y.; Wang, Y.; Sun, P.; Yang, L.; Jiang, Q.; He, H.; Huang, H. Holey MXene nanosheets intimately coupled with ultrathin Ni–Fe layered double hydroxides for boosted hydrogen and oxygen evolution reactions. Carbon 2023, 212, 118141. [Google Scholar] [CrossRef]
- Wang, X.; Wang, N.; Zhou, X.; Yue, Z.; Shan, Y.; Chen, K.; Yu, X. MXene introduced between CoNi LDH and NiMoO4 nanorods arrays: A bifunctional multistage composite for OER catalyst and supercapacitors. Int. J. Hydrogen Energy 2024, 86, 719–729. [Google Scholar] [CrossRef]
- Zuo, W.; Lan, X.; Lv, G.; Yang, C.; Lan, P.; Peng, B.; Liu, P.; Li, K. Sulfur and Phosphorus Co-Doped CoFeLDH/MXene Nanoarray Electrocatalyst for the Oxygen Evolution Reaction. ACS Appl. Nano Mater. 2024, 7, 11599–11608. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Z.; Zhou, Q.; Li, X.; Zhao, D.; Ding, B.; Wang, S. Ti3C2 mediates the NiFe-LDH layered electrocatalyst to enhance the OER performance for water splitting. Heliyon 2024, 10, e30966. [Google Scholar] [CrossRef]
- Liang, K.; Tabassum, A.; Kothakonda, M.; Zhang, X.; Zhang, R.; Kenney, B.; Koplitz, B.D.; Sun, J.; Naguib, M. Two-dimensional titanium carbonitride MXene as a highly efficient electrocatalyst for hydrogen evolution reaction. Mater. Rep. Energy 2022, 2, 100075. [Google Scholar] [CrossRef]
- Liang, K.; Guo, L.; Marcus, K.; Zhang, S.; Yang, Z.; Perea, D.E.; Zhou, L.; Du, Y.; Yang, Y. Overall Water Splitting with Room-Temperature Synthesized NiFe Oxyfluoride Nanoporous Films. ACS Catal. 2017, 7, 8406–8412. [Google Scholar] [CrossRef]
Catalyst | jgeo (mA cm−2) | η (mV) | Tafel Slope (mV dec−1) | Ref. |
---|---|---|---|---|
1.0-LDH/3MXNF | 100 | 247 | 67.7 | This Work |
NiFe-LDH/NF | 50 | 306 | 143.1 | [43] |
NiFeAu-LDH/NF | 100 | 267 | 58 | [44] |
MXene/TiO2/NiFeCo-LDH | 10 | 320 | 98.4 | [45] |
NiCo-LDH/MXene/NF | 100 | 257.4 | 68 | [46] |
Mo-Ni2P@NiFe LDH/NF | 40 | 269 | 44 | [47] |
NiCoFe-LDH/NF | 50 | 233 | 29.39 | [48] |
CoFeV-LDH/NF | 100 | 330 | 57 | [49] |
Fe0.05CoNi-LDH/NF | 10 | 212 | 48 | [50] |
CoSnO3@MX/NF | 100 | 321 | 101 | [51] |
FeCoNi-P/NF | 10 | 239 | 55.87 | [52] |
Ni-FeOOH/NF | 100 | 277 | 52 | [53] |
NCP-MX/NF | 50 | 303 | 69.5 | [54] |
NiFe-LDH/rGO@NF | 50 | 277 | 59.9 | [55] |
Cr-FeNi LDH/MXene | 10 | 232 | 54.4 | [2] |
LDH/H-Ti3C2Tx | 100 | 364 | 47 | [56] |
CoNi-LDH/MXene@NiMoO4/NF | 100 | 220 | 84.2 | [57] |
S,P-CoFeLDH/MXene | 10 | 305 | 39 | [58] |
NiFe-LDH/Ti3C2 | 10 | 334 | 55 | [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Tang, Q.; Fan, Q.; Zhuang, H.; Wang, S.; Pang, Y.; Liang, K. Vertically Ti3CN@NiFe LDH Nanoflakes as Self-Standing Catalysts for Enhanced Oxygen Evolution Reaction. Catalysts 2024, 14, 708. https://doi.org/10.3390/catal14100708
He L, Tang Q, Fan Q, Zhuang H, Wang S, Pang Y, Liang K. Vertically Ti3CN@NiFe LDH Nanoflakes as Self-Standing Catalysts for Enhanced Oxygen Evolution Reaction. Catalysts. 2024; 14(10):708. https://doi.org/10.3390/catal14100708
Chicago/Turabian StyleHe, Lei, Qing Tang, Qi Fan, Haizheng Zhuang, Shengchao Wang, Yifan Pang, and Kun Liang. 2024. "Vertically Ti3CN@NiFe LDH Nanoflakes as Self-Standing Catalysts for Enhanced Oxygen Evolution Reaction" Catalysts 14, no. 10: 708. https://doi.org/10.3390/catal14100708
APA StyleHe, L., Tang, Q., Fan, Q., Zhuang, H., Wang, S., Pang, Y., & Liang, K. (2024). Vertically Ti3CN@NiFe LDH Nanoflakes as Self-Standing Catalysts for Enhanced Oxygen Evolution Reaction. Catalysts, 14(10), 708. https://doi.org/10.3390/catal14100708