Effects of Enzymatic Disintegration on the Decomposition of Organic Compounds During Methane Fermentation of Sewage Sludge
Abstract
1. Introduction
2. Results
2.1. Physical, Chemical, and Microbiological Properties of Sewage Sludge
2.2. Production and Composition of Biogas
3. Materials and Methods
3.1. Materials and Course of Study
- −
- Excess and digested sewage sludge as an inoculum (in a volume ratio of 2:3)—control sample (0%)
- −
- Four mixtures of municipal sewage sludge of the composition as above into which lipase (Thermo Fisher Scientific, Waltham, MA, USA, >30,000 U/mg) was introduced in amounts representing 1, 2, 3, and 4% (w/w) by weight of the sludge dry matter content.
- −
- pH value—potentiometrically;
- −
- Alkalinity (ALK)—using the titration method against indicators;
- −
- Chemical oxygen demand (COD)—via Macherey–Nagel Nanocolor tube tests (Macherey–Nagel, Dueren, Germany) using a UV–Vis spectrophotometer (NANOCOLOR® UV/VIS II, Macherey–Nagel, Dueren, Germany);
- −
- Volatile fatty acids (VFA)—using the distillation method;
- −
- Phosphates (PO43−)—via the molybdenum method using a DR6000 spectrophotometer (Hach, Loveland, CO, USA);
- −
- Ammonium nitrogen (N-NH4+)—using Macherey–Nagel Nanocolor tube tests using a UV–Vis spectrophotometer (Macherey–Nagel, Dueren, Germany).
- −
- p1—pressure in bioreactor, hPa;
- −
- V1—volume of free space in bioreactor, L;
- −
- p2—atmospheric pressure, hPa;
- −
- V2—calculated volume of biogas, L.
3.2. Statistical Analysis
4. Conclusions
- −
- The addition of lipase to sewage sludge effectively improves the methane fermentation process. The introduction of the enzyme at a rate of 1 to 4% relative to the dry weight of the sludge contributed to an increase in the degree of organic matter decomposition from 27.1% (in the control sample) to a maximum of 46.7%.
- −
- Enzymatic disintegration of the sludge with lipase helped to increase biogas production by 15–26%. The amount of biogas increased to 0.62 L·g−1 of dry organic matter, compared to 0.46 L·g−1 in the control sample.
- −
- The use of lipase resulted in an almost complete reduction in the abundance of pathogenic Escherichia coli and Salmonella spp. bacteria (95–100%), highlighting the potential of this method in improving the sanitary safety of sludge.
- −
- The introduction of lipase increased the release of phosphate (by 14.4–24.2%) and ammonium nitrogen (by 68.3–70.8%) compared to the control sample, indicating an intensification of the mineralization processes of organic compounds.
- −
- The results confirm that the enzymatic disintegration of sludge using lipase is an effective alternative to physical and chemical methods, offering increased biogas production efficiency and pathogen elimination.
- −
- The use of enzymes in the disintegration process can be a competitive alternative to physical and chemical methods, providing high efficiency while reducing negative environmental impacts.
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, B.; Dai, X.; Chai, X. Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations. Water Res. 2020, 180, 115912. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Hu, H.; Ye, Z.; Tan, S.; Yin, K.; Chen, Z.; Guo, D.; Rong, H.; Wang, J.; Pan, Z.; et al. A review on turning sewage sludge to value-added energy and materials via thermochemical conversion towards carbon neutrality. J. Clean. Prod. 2022, 379, 134657. [Google Scholar] [CrossRef]
- Guo, X.; Yuan, S.; Xu, Y.; Qian, G. Effects of phosphorus and iron on the composition and property of Portland cement clinker utilized incinerated sewage sludge ash. Constr. Build. Mater. 2022, 341, 127754. [Google Scholar] [CrossRef]
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Rorat, A.; Brattebo, H.; Almås, A.; Singh, B.R. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Brix, H. Sludge dewatering and mineralization in sludge treatment reed beds. Water 2017, 9, 160. [Google Scholar] [CrossRef]
- Samara, E.; Matsi, T.; Zdragas, A.; Barbayiannis, N. Use of clay minerals for sewage sludge stabilization and a preliminary assessment of the treated sludge’s fertilization capacity. Environ. Sci. Pollut. Res. 2019, 26, 35387–35398. [Google Scholar] [CrossRef]
- Zhen, G.; Lu, X.; Kato, H.; Zhao, Y.; Li, Y.Y. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives. Renew. Sustain. Energy Rev. 2017, 69, 559–577. [Google Scholar] [CrossRef]
- Nwokolo, N.; Mukumba, P.; Obileke, K.; Enebe, M. Waste to energy: A focus on the impact of substrate type in biogas production. Processes 2020, 8, 1224. [Google Scholar] [CrossRef]
- Nguyen, V.K.; Chaudhary, D.K.; Dahal, R.H.; Trinh, N.H.; Kim, J.; Chang, S.W.; Hong, Y.; La, D.D.; Nguyen, X.C.; Ngo, H.H.; et al. Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel 2021, 285, 119105. [Google Scholar] [CrossRef]
- Schnürer, A.; Jarvis, Å. Microbiology of the Biogas Process; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2018. [Google Scholar]
- Grübel, K.; Wacławek, S.; Machnicka, A.; Nowicka, E. Synergetic disintegration of waste activated sludge: Improvement of the anaerobic digestion and hygienization of sludge. J. Environ. Sci. Health A 2018, 53, 1067–1074. [Google Scholar] [CrossRef]
- Zubrowska-Sudol, M.; Podedworna, J.; Sytek-Szmeichel, K.; Bisak, A.; Krawczyk, P.; Garlicka, A. The effects of mechanical sludge disintegration to enhance full-scale anaerobic digestion of municipal sludge. Therm. Sci. Eng. Prog. 2018, 5, 289–295. [Google Scholar] [CrossRef]
- Kor-Bicakci, G.; Eskicioglu, C. Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion. Renew. Sustain. Energy Rev. 2019, 110, 423–443. [Google Scholar] [CrossRef]
- Zieliński, M.; Dębowski, M.; Krzemieniewski, M.; Rusanowska, P.; Zielińska, M.; Cydzik-Kwiatkowska, A.; Głowacka-Gil, A. Application of an innovative ultrasound disintegrator for sewage sludge conditioning before methane fermentation. J. Ecol. Eng. 2018, 19, 240–247. [Google Scholar] [CrossRef]
- Wang, X.; Gao, C.; Qi, X.; Zhang, Y.; Chen, T.; Xie, Y.; Zhang, A.; Gao, J. Enhancing sludge fermentation and anaerobic digestion by mechanical cutting pretreatment. Water Process Eng. 2021, 40, 101812. [Google Scholar] [CrossRef]
- Penghe, Z.; Yuling, L.; Chuanchuan, D.; Pengliang, W. Study on dissolution characteristics of excess sludge by low-temperature thermal hydrolysis and acid production by fermentation. ACS Omega 2020, 5, 26101–26109. [Google Scholar] [CrossRef] [PubMed]
- Barjenbruch, M.; Kopplow, O. Enzymatic, mechanical and thermal pre-treatment of surplus sludge. Adv. Environ. Res. 2003, 7, 715–720. [Google Scholar] [CrossRef]
- Roman, H.J.; Burgess, J.E.; Pletschke, B.I. Enzyme treatment to decrease solids and improve digestion of primary sewage sludge. Afr. J. Biotechnol. 2006, 5, 963–967. [Google Scholar]
- Burgess, J.E.; Pletschke, B.I. Hydrolytic enzymes in sewage sludge treatment: A mini-review. Water Sa 2008, 34, 343–350. [Google Scholar] [CrossRef]
- Myszograj, S.; Płuciennik-Koropczuk, E. Thermal disintegration of sewage sludge as a method of improving the biogas potential. Energies 2023, 16, 559. [Google Scholar] [CrossRef]
- Kocabaş, D.S.; Lyne, J.; Ustunol, Z. Hydrolytic enzymes in the dairy industry: Applications, market and future perspectives. Trends Food Sci. Tech. 2022, 119, 467–475. [Google Scholar] [CrossRef]
- Goswami, D.; Basu, J.K.; De, S. Lipase applications in oil hydrolysis with a case study on castor oil: A review. Crit. Rev. Biotechnol. 2013, 33, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Aloulou, A.; Rodriguez, J.A.; Fernandez, S.; van Oosterhout, D.; Puccinelli, D.; Carrière, F. Exploring the specific features of interfacial enzymology based on lipase studies. BBA Adv. 2006, 1761, 995–1013. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Kim, H.K. Antibacterial activity of emulsions containing unsaturated fatty acid ergosterol esters synthesized by lipase-mediated transesterification. Enzym. Microb. Technol. 2020, 139, 109581. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.Q.; O’Connor, C.J.; Roberton, A.M. The antimicrobial properties of milkfat after partial hydrolysis by calf pregastric lipase. Chem. Biol. Interact. 2002, 140, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.Y.; Shi, Y.G.; Wu, Y.; Bian, L.Q.; Zhu, Y.J.; Huang, X.Y.; Pan, Y.; Zeng, L.Y.; Zhang, R.R. Lipase-catalyzed synthesis of sucrose monolaurate and its antibacterial property and mode of action against four pathogenic bacteria. Molecules 2018, 23, 1118. [Google Scholar] [CrossRef]
- Ma, S.; Hu, H.; Wang, J.; Liao, K.; Ma, H.; Ren, H. The characterization of dissolved organic matter in alkaline fermentation of sewage sludge with different pH for volatile fatty acids production. Water Res. 2019, 164, 114924. [Google Scholar] [CrossRef]
- Kardos, L.; Juhasz, A.; Palko, G.Y.; Olah, J.; Barkacs, K.; Zaray, G.Y. Comparing of mesophilic and thermophilic anaerobic fermented sewage sludge based on chemical and biochemical tests. Appl. Ecol. Environ. Res. 2011, 9, 293–302. [Google Scholar] [CrossRef]
- Junior, I.V.; de Almeida, R.; Cammarota, M.C. A review of sludge pretreatment methods and co-digestion to boost biogas production and energy self-sufficiency in wastewater treatment plants. J. Water Process Eng. 2021, 40, 101857. [Google Scholar] [CrossRef]
- Macherzyński, B.; Włodarczyk-Makuła, M.; Wszelaka-Rylik, M.; Wojewódka, D. Evaluation of the possibility of PAH degradation by a consortium of fermentation bacteria. Desalination Water Treat. 2020, 186, 325–333. [Google Scholar] [CrossRef]
- Macherzyński, B.; Włodarczyk-Makuła, M. Biochemical neutralization of coke excess sewage sludge during anaerobic digestion process. Chem. Biochem. Eng. Q. 2018, 32, 239–246. [Google Scholar] [CrossRef]
- Yu, B.; Xiao, X.; Wang, J.; Hong, M.; Deng, C.; Li, Y.Y.; Liu, J. Enhancing phosphorus recovery from sewage sludge using anaerobic-based processes: Current status and perspectives. Bioresour. Technol. 2021, 341, 125899. [Google Scholar] [CrossRef]
- Di Costanzo, N.; Cesaro, A.; Di Capua, F.; Esposito, G. Exploiting the nutrient potential of anaerobically digested sewage sludge: A review. Energies 2021, 14, 8149. [Google Scholar] [CrossRef]
- Montusiewicz, A. Impact bioaugmentation on nutrient release in anaerobic digestion of sewage sludge. Proc. ECOpole 2015, 9, 269–277. [Google Scholar] [CrossRef]
- Macherzyński, B.; Włodarczyk-Makuła, M. Evaluation of the possibility of disposal of coke sludge in the co-fermentation process. Annu. Set Environ. Prot. 2015, 17, 1142–1161. [Google Scholar]
- Macherzyński, B.; Popowska-Nowak, E.; Włodarczyk-Makuła, M.; Bień, B.; Wszelaka-Rylik, M. Intensification of Energy Production in the Anaerobic Digestion Process of Sewage Sludge Using Enzymatic Disintegration. Energies 2025, 18, 11. [Google Scholar] [CrossRef]
Indicator | Indicator Values During Fermentation | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Before Fermentation | After 10 Days | After 20 Days | |||||||||||
Excess Sludge | Digested Sludge (Inoculum) | Excess and Digested Sludge | 0% | 1% | 2% | 3% | 4% | 0% | 1% | 2% | 3% | 4% | |
pH | 7.7 | 6.4 | 7.6 | 7.7 | 7.7 | 7.8 | 7.8 | 7.8 | 7.7 | 7.7 | 7.7 | 7.6 | 7.6 |
ALK, mgCaCO3·L−1 | 3830 | 305 | 2190 | 2850 | 2850 | 2900 | 2900 | 2900 | 3215 | 3200 | 3100 | 3000 | 3000 |
VFA, mgCH3COOH·L−1 | 437 | 8 | 198 | 297 | 278 | 222 | 220 | 202 | 250 | 224 | 201 | 150 | 145 |
VFA/ALK | 0.11 | 0.03 | 0.01 | 0.10 | 0.10 | 0.08 | 0.08 | 0.06 | 0.08 | 0.07 | 0.06 | 0.05 | 0.05 |
COD, mgO2·L−1 | 960 | 190 | 570 | 900 | 980 | 1120 | 1330 | 1470 | 640 | 700 | 740 | 790 | 830 |
DM, g·L−1 | 29.82 | 8.68 | 23.3 | 20.00 | 18.35 | 16.60 | 13.75 | 13.08 | 18.40 | 16.83 | 15.85 | 14.32 | 13.52 |
Organic Substances, g·L−1 | 18.10 | 6.02 | 14.33 | 11.45 | 10.57 | 9.65 | 8.00 | 7.50 | 10.45 | 9.52 | 8.80 | 8.04 | 7.64 |
PO43−, mgPO43−·L−1 | 121.7 | 39.3 | 89.4 | 93.3 | 96 | 99.9 | 100.5 | 105.3 | 104.5 | 107.5 | 111.9 | 112.6 | 117.9 |
N-NH4+, mgN-NH4+·L−1 | 135.2 | 7.2 | 115.6 | 122.5 | 124.6 | 126.4 | 130.1 | 144.2 | 364.7 | 371.8 | 388.7 | 393.7 | 396 |
Parameters | Unit | 0% | 1% | 2% | 3% | 4% |
---|---|---|---|---|---|---|
Loading the digester with organic pollutants | g·L−1·d−1 | 0.46 | ||||
Amount of biogas from 1 g of dry organic matter | L·g−1 | 0.46 | 0.54 | 0.56 | 0.58 | 0.62 |
Amount of methane from 1 g of dry organic matter | L·g−1 | 0.27 | 0.32 | 0.35 | 0.37 | 0.40 |
Degree of decomposition of organic substances | % | 27.1 | 33.5 | 38.6 | 43.9 | 46.7 |
Parameter | 1% | 2% | 3% | 4% |
---|---|---|---|---|
Total biogas production | 4.382 | 5.090 | 7.993 | 10.185 |
Degree of decomposition of organic matter | 7.347 | 9.539 | 11.003 | 14.142 |
Methane content of biogas | 0.686 | 1.671 | 1.395 | 1.166 |
Bacteria | Before Fermentation (Excess and Digested Sludge) | 0% | 2% | 3% |
---|---|---|---|---|
E. coli | 5.0 ± 0.0 × 103 | n.d. | n.d. | n.d. |
Salmonella spp. | 1.7 ± 0.60 × 104 | 8.3 ± 0.03 × 103 | 6.6 ± 0.0 × 102 | 11.9 ± 0.07 |
Legionella spp. | n.d. | n.d. | n.d. | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macherzyński, B. Effects of Enzymatic Disintegration on the Decomposition of Organic Compounds During Methane Fermentation of Sewage Sludge. Catalysts 2025, 15, 75. https://doi.org/10.3390/catal15010075
Macherzyński B. Effects of Enzymatic Disintegration on the Decomposition of Organic Compounds During Methane Fermentation of Sewage Sludge. Catalysts. 2025; 15(1):75. https://doi.org/10.3390/catal15010075
Chicago/Turabian StyleMacherzyński, Bartłomiej. 2025. "Effects of Enzymatic Disintegration on the Decomposition of Organic Compounds During Methane Fermentation of Sewage Sludge" Catalysts 15, no. 1: 75. https://doi.org/10.3390/catal15010075
APA StyleMacherzyński, B. (2025). Effects of Enzymatic Disintegration on the Decomposition of Organic Compounds During Methane Fermentation of Sewage Sludge. Catalysts, 15(1), 75. https://doi.org/10.3390/catal15010075