Special Issue "The Role of Drug Resistance-Associated Proteins in Cancer: from Conventional Anticancer Drugs to Targeting Drugs"

A special issue of Cancers (ISSN 2072-6694).

Deadline for manuscript submissions: 30 May 2020.

Special Issue Editors

Prof. Dr. Takeo Nakanishi
E-Mail Website
Guest Editor
Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi 370-0033, Japan
Interests: cancer; chemotherapy, drug-resistance, pharmacology, transporter, gene expression, pharmacokinetics, inflammation, prostaglandin
Prof. Dr. Zhe-Sheng (Jason) Chen
E-Mail Website
Guest Editor
Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, USA
Interests: Drug Resistance; ABC transporters; Cancer Chemotherapy; Natural Products; Nanomaterials
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

Cancer is among the leading causes of death worldwide. Despite the development of effective small molecules targeting oncogenic drivers, many patients relapse as treatment proceeds. Indeed, the failure of chemotherapy leaves resistant cancer cells to survive, eventually leading to the death of patients. Hence, drug resistance is still a major obstacle to overcome to achieve successful treatment.

Cancer cells become resistant against anti-cancer drugs due to diverse molecular mechanisms, such as heightened antiapoptotic potential, altered drug metabolisms, enhanced DNA repairs, and increased efflux and decreased uptake of drugs. Additionally, these biological events may be determined by an individual's genetic differences. In particular, the activated export of anticancer drugs by drug efflux pumps, such as P-glycoprotein, is well accepted as a universal model for multidrug resistance; however, efforts to block these pumps have not been successful thus far in clinical settings.

A better understanding of the molecular mechanisms underlying drug resistance acquired by cancer cells will provide us with clues for novel therapeutic strategies. Emerging evidence of exosomic microRNAs that contribute to tumor microenvironments may hold much promise for new approaches in developing effective individualized therapies. This Special Issue will highlight the current state of the art in diverse molecular mechanisms of drug resistance along with novel targets and prospects for improving cancer treatment.

Dr. Takeo Nakanishi
Dr. Zhe-Sheng (Jason) Chen
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cancers is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Lipid–Saporin Nanoparticles for the Intracellular Delivery of Cytotoxic Protein to Overcome ABC Transporter-Mediated Multidrug Resistance In Vitro and In Vivo
Cancers 2020, 12(2), 498; https://doi.org/10.3390/cancers12020498 - 21 Feb 2020
Abstract
Although the judicious use of anticancer drugs that target one or more receptor tyrosine kinases constitutes an effective strategy to attenuate tumor growth, drug resistance is commonly encountered in cancer patients. The ATP-binding cassette transporters are one of the major contributors to the [...] Read more.
Although the judicious use of anticancer drugs that target one or more receptor tyrosine kinases constitutes an effective strategy to attenuate tumor growth, drug resistance is commonly encountered in cancer patients. The ATP-binding cassette transporters are one of the major contributors to the development of multidrug resistance as their overexpression significantly decreases the intracellular concentration and thus, the efficacy of certain anticancer drugs. Therefore, the development of treatment strategies that would not be susceptible to efflux or excretion by specific ABC transporters could overcome resistance to treatment. Here, we investigated the anticancer efficacy of saporin, a ribosome-inactivating protein. Since saporin has poor permeability across the cell membrane, it was encapsulated in a lipid-based nanoparticle system (EC16-1) that effectively delivered the formulation (EC16-1/saporin) intracellularly and produced anti-cancer efficacy. EC16-1/saporin, at nanomolar concentrations, significantly inhibited the cellular proliferation of parental and ABCB1- and ABCG2-overexpressing cancer cells. EC16-1/saporin did not significantly alter the subcellular localization of ABCB1 and ABCG2. In addition, EC16-1/saporin induced apoptosis in parental and ABCB1- and ABCG2-overexpressing cancer cells. In a murine model system, EC16-1/saporin significantly inhibited the tumor growth in mice xenografted with parental and ABCB1- and ABCG2-overexpressing cancer cells. Our findings suggest that the EC16-1/saporin combination could potentially be a novel therapeutic treatment in patients with parental or ABCB1- and ABCG2-positive drug-resistant cancers. Full article
Show Figures

Figure 1

Open AccessArticle
Venetoclax, a BCL-2 Inhibitor, Enhances the Efficacy of Chemotherapeutic Agents in Wild-Type ABCG2-Overexpression-Mediated MDR Cancer Cells
Cancers 2020, 12(2), 466; https://doi.org/10.3390/cancers12020466 - 18 Feb 2020
Abstract
Previous studies have shown that small-molecule BCL-2 inhibitors can have a synergistic interaction with ABCG2 substrates in chemotherapy. Venetoclax is a potent and selective BCL-2 inhibitor, approved by the FDA in 2016 for the treatment of patients with chronic lymphocytic leukemia (CLL). This [...] Read more.
Previous studies have shown that small-molecule BCL-2 inhibitors can have a synergistic interaction with ABCG2 substrates in chemotherapy. Venetoclax is a potent and selective BCL-2 inhibitor, approved by the FDA in 2016 for the treatment of patients with chronic lymphocytic leukemia (CLL). This study showed that, at a non-toxic concentration, venetoclax at 10 µM significantly reversed multidrug resistance (MDR) mediated by wild-type ABCG2, without significantly affecting MDR mediated by mutated ABCG2 (R482G and R482T) and ABCB1, while moderate or no reversal effects were observed at lower concentrations (0.5 to 1 µM). The results showed that venetoclax increased the intracellular accumulation of chemotherapeutic agents, which was the result of directly blocking the wild-type ABCG2 efflux function and inhibiting the ATPase activity of ABCG2. Our study demonstrated that venetoclax potentiates the efficacy of wild-type ABCG2 substrate drugs. These findings may provide useful guidance in combination therapy against wild-type ABCG2-mediated MDR cancer in clinical practice. Full article
Show Figures

Figure 1

Open AccessArticle
ABCG2 Overexpression Contributes to Pevonedistat Resistance
Cancers 2020, 12(2), 429; https://doi.org/10.3390/cancers12020429 - 12 Feb 2020
Abstract
MLN4924 (pevonedistat) is a first-in-class NEDD8-activating enzyme (NAE) inhibitor in clinical trials for the treatment of solid tumors and hematologic malignancies. Despite the promising activity of MLN4924 observed in early trials, drug resistance has been noted in some patients. Identifying the underlying cause [...] Read more.
MLN4924 (pevonedistat) is a first-in-class NEDD8-activating enzyme (NAE) inhibitor in clinical trials for the treatment of solid tumors and hematologic malignancies. Despite the promising activity of MLN4924 observed in early trials, drug resistance has been noted in some patients. Identifying the underlying cause of treatment failure may help to better stratify patients that are most likely to benefit from this novel agent. Early preclinical studies revealed that the development of NAE mutations promotes resistance to MLN4924. However, these mutations have not been detected in patients that are relapsed/refractory to MLN4924, suggesting that other mechanisms are driving clinical resistance. To better understand the potential mechanisms of MLN4924 resistance, we generated MLN4924-resistant ovarian cancer cells. Interestingly, these cells did not develop mutations in NAE. Transcriptome analyses revealed that one of the most upregulated genes in resistant cells was ABCG2. This result was validated by quantitative real-time PCR and immunoblotting. Importantly, the sensitivity of MLN4924-resistant cells was restored by lentiviral short hairpin RNA (shRNA) targeting ABCG2. Further investigation using ABCG2-overexpressing NCI-H460/MX20 cells determined that these cells are resistant to the anticancer effects of MLN4924 and can be sensitized by co-treatment with the ABCG2 inhibitors YHO-13351 and fumitremorgin C. Finally, HEK293 models with overexpression of wild-type ABCG2 (R482) and variants (R482G and R482T) all demonstrated significant resistance to MLN4924 compared to wild-type cells. Overall, these findings define an important molecular resistance mechanism to MLN4924 and demonstrate that ABCG2 may be a useful clinical biomarker that predicts resistance to MLN4924 treatment. Full article
Open AccessArticle
Tivantinib, A c-Met Inhibitor in Clinical Trials, Is Susceptible to ABCG2-Mediated Drug Resistance
Cancers 2020, 12(1), 186; https://doi.org/10.3390/cancers12010186 - 12 Jan 2020
Abstract
Tivantinib, also known as ARQ-197, is a potent non-ATP competitive selective c-Met inhibitor currently under phase 3 clinical trial evaluation for liver and lung cancers. In this study, we explored factors that may lead to tivantinib resistance, especially in regards to its interaction [...] Read more.
Tivantinib, also known as ARQ-197, is a potent non-ATP competitive selective c-Met inhibitor currently under phase 3 clinical trial evaluation for liver and lung cancers. In this study, we explored factors that may lead to tivantinib resistance, especially in regards to its interaction with ATP-binding cassette super-family G member 2 (ABCG2). ABCG2 is one of the most important members of the ATP-binding cassette (ABC) transporter family, a group of membrane proteins that play a critical role in mediating multidrug resistance (MDR) in a variety of cancers, including those of the liver and lung. Tivantinib received a high score in docking analysis, indicating a strong interaction between tivantinib and ABCG2, and an ATPase assay indicated that tivantinib stimulated ABCG2 ATPase activity in a concentration-dependent manner. An MTT assay showed that ABCG2 overexpression significantly desensitized both the cancer cells and ABCG2 transfected-HEK293 cells to tivantinib and that this drug resistance can be reversed by ABCG2 inhibitors. Furthermore, tivantinib upregulated the protein expression of ABCG2 without altering the cell surface localization of ABCG2, leading to increased resistance to substrate drugs, such as mitoxantrone. Altogether, these data demonstrate that tivantinib is a substrate of ABCG2, and, therefore, ABCG2 overexpression may decrease its therapeutic effect. Our study provides evidence that the overexpression of ABCG2 should be monitored in clinical settings as an important risk factor for tivantinib drug resistance. Full article
Show Figures

Figure 1

Open AccessArticle
Ovatodiolide Suppresses Oral Cancer Malignancy by Down-Regulating Exosomal Mir-21/STAT3/β-Catenin Cargo and Preventing Oncogenic Transformation of Normal Gingival Fibroblasts
Cancers 2020, 12(1), 56; https://doi.org/10.3390/cancers12010056 - 24 Dec 2019
Abstract
Oral squamous cell carcinoma (OSCC) is among the most commonly diagnosed malignancies in the world. Patients with OSCC often develop treatment resistance, resulting in a poor prognosis. Mounting evidence indicates that interactions between cancerous cells and other components of the tumor microenvironment (TME) [...] Read more.
Oral squamous cell carcinoma (OSCC) is among the most commonly diagnosed malignancies in the world. Patients with OSCC often develop treatment resistance, resulting in a poor prognosis. Mounting evidence indicates that interactions between cancerous cells and other components of the tumor microenvironment (TME) determine their response to treatment. Herein, we examined the role of cancer stem cell-derived extracellular vesicles (CSC_EVs) generated from CAL27 and SCC-15 OSCC cells in the development of cisplatin (CDDP) resistance. We demonstrated that CSC_EVs enhance CDDP resistance, clonogenicity, and the tumorsphere formation potential of OSCC cells. Our bioinformatics analyses revealed that OSCC_EVs are enriched with microRNA (miR)-21-5p and are associated with increased metastasis, stemness, chemoresistance, and poor survival in patients with OSCC. Mechanistically, enhanced activity of CSC_EVs was positively correlated with upregulated β-catenin, phosphatidylinositol-3 kinase (PI3K), signal transducer and activator of transcription 3 (STAT3), mammalian target of rapamycin (mTOR), and transforming growth factor (TGF)-β1 messenger (m)RNA and protein expression levels. CSC_EVs also conferred a cancer-associated fibroblast (CAF) phenotype on normal gingival fibroblasts (NGFs), with the resultant CAFs enhancing the oncogenicity of OSCC cells. Interestingly, treatment with ovatodiolide (OV), the bioactive component of Anisomeles indica, suppressed OSCC tumorigenesis by reducing the cargo content of EVs derived from CSCs, suppressing self-renewal, and inhibiting the NGF-CAF transformation by disrupting EV-TME interactions. Moreover, by suppressing miR-21-5p, STAT3, and mTOR expressions in CSC_EVs, OV re-sensitized CSCs to CDDP and suppressed OSCC tumorigenesis. In vivo, treatment with OV alone or in combination with CDDP significantly reduced the tumor sphere-forming ability and decreased EV cargos containing mTOR, PI3K, STAT3, β-catenin, and miR-21-5p. In summary, our findings provide further strong evidence of OV’s therapeutic effect in OSCC. Full article
Show Figures

Figure 1

Open AccessArticle
Tumor Expression of Cyclin-Dependent Kinase 5 (Cdk5) Is a Prognostic Biomarker and Predicts Outcome of Oxaliplatin-Treated Metastatic Colorectal Cancer Patients
Cancers 2019, 11(10), 1540; https://doi.org/10.3390/cancers11101540 - 11 Oct 2019
Abstract
In recent years, an increasing number of studies have shown that elevated expression of cyclin dependent kinase (Cdk5) contributes to the oncogenic initiation and progression of many types of cancers. In this study, we investigated the expression pattern of Cdk5 in colorectal cancer [...] Read more.
In recent years, an increasing number of studies have shown that elevated expression of cyclin dependent kinase (Cdk5) contributes to the oncogenic initiation and progression of many types of cancers. In this study, we investigated the expression pattern of Cdk5 in colorectal cancer (CRC) cell lines and in a large number of tumor samples in order to evaluate its relevance in this pathogenesis and possible use as a prognostic marker. We found that Cdk5 is highly expressed and activated in CRC cell lines and that silencing of the kinase decreases their migration ability. In tumor tissues, Cdk5 is overexpressed compared to normal tissues due to a copy number gain. In patients with localized disease, we found that high Cdk5 levels correlate with poor prognosis, while in the metastatic setting, this was only the case for patients receiving an oxaliplatin-based treatment. When exploring the Cdk5 levels in the consensus molecular subtypes (CMS), we found the lowest levels in subtype 1, where high Cdk5 again was associated with a poorer prognosis. In conclusion, we confirm that Cdk5 is involved in CRC and disease progression and that it could serve as a prognostic and predictive biomarker in this disease. Full article
Show Figures

Figure 1

Open AccessArticle
A Novel Multi-Target Small Molecule, LCC-09, Inhibits Stemness and Therapy-Resistant Phenotypes of Glioblastoma Cells by Increasing miR-34a and Deregulating the DRD4/Akt/mTOR Signaling Axis
Cancers 2019, 11(10), 1442; https://doi.org/10.3390/cancers11101442 - 26 Sep 2019
Abstract
The management of glioblastomas (GBMs) is challenged by the development of therapeutic resistance and early disease recurrence, despite multi-modal therapy. This may be attributed to the presence of glioma stem cells (GSCs) which are known to survive radio- and chemotherapy, by circumventing death [...] Read more.
The management of glioblastomas (GBMs) is challenged by the development of therapeutic resistance and early disease recurrence, despite multi-modal therapy. This may be attributed to the presence of glioma stem cells (GSCs) which are known to survive radio- and chemotherapy, by circumventing death signals and inducing cell re-population. Recent findings suggest GSCs may be enriched by certain treatment modality. These necessitate the development of novel therapeutics capable of targeting GBM cell plasticity and therapy-resistant GSCs. Here, aided by computer-assisted structure characterization and target identification, we predicted that a novel 5-(2′,4′-difluorophenyl)-salicylanilide derivative, LCC-09, could target dopamine receptors and oncogenic markers implicated in GBMs. Bioinformatics data have indicated that dopamine receptor (DRD) 2, DRD4, CD133 and Nestin were elevated in GBM clinical samples and correlated to TMZ (Temozolomide) resistance and increased ALDH (Aldehyde dehydrogenase) activity (3.5–8.9%) as well as enhanced (2.1–2.4-fold) neurosphere formation efficiency in U87MG and D54MG GBM cell lines. In addition, TMZ-resistant GSC phenotype was associated with up-regulated DRD4, Akt, mTOR, β-catenin, CDK6, NF-κB and Erk1/2 expression. LCC-09 alone, or combined with TMZ, suppressed the tumorigenic and stemness traits of TMZ-resistant GBM cells while concomitantly down-regulating DRD4, Akt, mTOR, β-catenin, Erk1/2, NF-κB, and CDK6 expression. Notably, LCC-09-mediated anti-GBM/GSC activities were associated with the re-expression of tumor suppressor miR-34a and reversal of TMZ-resistance, in vitro and in vivo. Collectively, these data lay the foundation for further exploration of the clinical feasibility of administering LCC-09 as single-agent or combinatorial therapy for patients with TMZ-resistant GBMs. Full article
Show Figures

Figure 1

Open AccessArticle
Transport-Mediated Oxaliplatin Resistance Associated with Endogenous Overexpression of MRP2 in Caco-2 and PANC-1 Cells
Cancers 2019, 11(9), 1330; https://doi.org/10.3390/cancers11091330 - 08 Sep 2019
Cited by 1
Abstract
Our recent publications showed that multidrug resistance protein 2 (MRP2, encoded by the ABCC2 gene) conferred oxaliplatin resistance in human liver cancer HepG2 cells. However, the contribution of MRP2 to oxaliplatin resistance remains unclear in colorectal and pancreatic cancer lines. We investigated the [...] Read more.
Our recent publications showed that multidrug resistance protein 2 (MRP2, encoded by the ABCC2 gene) conferred oxaliplatin resistance in human liver cancer HepG2 cells. However, the contribution of MRP2 to oxaliplatin resistance remains unclear in colorectal and pancreatic cancer lines. We investigated the effects of silencing MRP2 by siRNA on oxaliplatin accumulation and sensitivity in human colorectal cancer Caco-2 cells and pancreatic cancer PANC-1 cells. We characterized the effects of oxaliplatin on MRP2 ATPase activities using membrane vesicles. Over-expression of MRP2 (endogenously in Caco-2 and PANC-1 cells) was associated with decreased oxaliplatin accumulation and cytotoxicity, but those deficits were reversed by inhibition of MRP2 with myricetin or siRNA knockdown. Silencing MRP2 by siRNA increased oxaliplatin-induced apoptotic rate in Caco-2 and PANC-1 cells. Oxaliplatin stimulated MRP2 ATPase activity with a concentration needed to reach 50% of the maximal stimulation (EC50) value of 8.3 ± 0.7 µM and Hill slope 2.7. In conclusion, oxaliplatin is a substrate of MRP2 with possibly two binding sites, and silencing MRP2 increased oxaliplatin accumulation and cytotoxicity in two widely available gastrointestinal tumour lines (PANC-1 and Caco-2). Full article
Show Figures

Figure 1

Back to TopTop