Special Issue "Peptides: Molecular and Biotechnological Aspects"

A special issue of Biomolecules (ISSN 2218-273X). This special issue belongs to the section "Biochemistry".

Deadline for manuscript submissions: 20 December 2019.

Special Issue Editor

Assoc. Prof. Hamilton Cabral
E-Mail Website
Guest Editor
Department Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, CEP 14040-903 Ribeirao Preto, Sao Paulo, Brazil
Interests: bioactive peptides; cancer; natural peptides; molecular biology; proteases and proteomic

Special Issue Information

Dear Colleagues,

According to the World Health Organization, thousands of deaths are related to an unhealthy diet that stands as one of the main risk factors for non-communicable diseases, also known as chronic diseases. Among these disorders, the most diffuse are cardiovascular diseases and cancers, which bear the major responsibility for mortality and morbidity. The increased incidence of these diseases leads to investigate new therapies. Peptides have been emerging as an alternative treatment for many disorders. They can interact with a specific target, eliciting a physiological effect. This specificity causes less side effects and lower toxicity and confers excellent safety, tolerability, and efficacy in humans.

On the other hand, these peptides have intrinsic weaknesses, with poor chemical and physical stability and short circulating plasma life. Many studies have been performed to design new drugs based on peptides, trying to minimize their disadvantages and improve their pharmacokinetic and pharmacodynamic characteristics. Despite numerous studies, the action mechanism of most peptides is not well known and necessitates further research.

The market of pharmaceutical peptides has been increasing proportionally to the number of researches, with a projected annual growth rate of 9–10%. In 2019, $70 billion of these medicines are expected to be sold, more than the amount predicted for pharmaceuticals worldwide.

Assoc. Prof. Hamilton Cabral
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomolecules is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • chronic diseases
  • natural peptide
  • mechanism of action
  • peptide delivery
  • peptide design
  • peptide-protein interaction
  • pharmaceutical peptide
  • synthetic peptide
  • biological activity of peptides
  • peptide developments and peptide stability

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Unravelling the Skin Secretion Peptides of the Gliding Leaf Frog, Agalychnis spurrelli (Hylidae)
Biomolecules 2019, 9(11), 667; https://doi.org/10.3390/biom9110667 - 30 Oct 2019
Abstract
Frog skin secretions contain medically-valuable molecules, which are useful for the discovery of new biopharmaceuticals. The peptide profile of the skin secretion of Agalychnis spurrelli has not been investigated; therefore, the structural and biological characterization of its compounds signify an inestimable opportunity to [...] Read more.
Frog skin secretions contain medically-valuable molecules, which are useful for the discovery of new biopharmaceuticals. The peptide profile of the skin secretion of Agalychnis spurrelli has not been investigated; therefore, the structural and biological characterization of its compounds signify an inestimable opportunity to acquire new biologically-active chemical scaffolds. In this work, skin secretion from this amphibian was analysed by molecular cloning and tandem mass spectrometry. Although the extent of this work was not exhaustive, eleven skin secretion peptides belonging to five peptide families were identified. Among these, we report the occurrence of two phyllokinins, and one medusin-SP which were previously reported in other related species. In addition, eight novel peptides were identified, including four dermaseptins, DRS-SP2 to DRS-SP5, one phylloseptin-SP1, and three orphan peptides. Phylloseptin-SP1 and dermaseptins-SP2 were identified in HPLC fractions based on their molecular masses determined by MALDI-TOF MS. Among the antimicrobial peptides, dermaseptin-SP2 was the most potent, inhibiting Escherichia coli, Staphylococcus aureus, and ORSA with a minimum inhibitory concentration (MIC) of 2.68 μM, and Candida albicans with an MIC of 10.71 μM, without haemolytic effects. The peptides described in this study represent but a superficial glance at the considerable structural diversity of bioactive peptides produced in the skin secretion of A. spurrelli. Full article
(This article belongs to the Special Issue Peptides: Molecular and Biotechnological Aspects)
Show Figures

Figure 1

Open AccessArticle
Design of N-Terminal Derivatives from a Novel Dermaseptin Exhibiting Broad-Spectrum Antimicrobial Activity against Isolates from Cystic Fibrosis Patients
Biomolecules 2019, 9(11), 646; https://doi.org/10.3390/biom9110646 - 24 Oct 2019
Abstract
Dermaseptins are an antimicrobial peptide family widely identified from the skin secretions of phyllomeudusinae frogs. Here, we identify Dermaseptin-PC (DM-PC), from the skin secretion of Phyllomedusa coelestis, and further investigate the properties of this peptide, and a number of rationally designed truncated [...] Read more.
Dermaseptins are an antimicrobial peptide family widely identified from the skin secretions of phyllomeudusinae frogs. Here, we identify Dermaseptin-PC (DM-PC), from the skin secretion of Phyllomedusa coelestis, and further investigate the properties of this peptide, and a number of rationally designed truncated derivatives. The truncated 19-mer derived from the N-terminus exhibited similar antimicrobial potency when compared to the parent peptide, but the haemolytic effect of this truncated peptide was significantly decreased. Based on previous studies, the charge and hydrophobicity of truncated derivatives can affect the bioactivity of these peptides and thus we designed a 10-mer derivative with an optimised positive charge and a cyclohexylalanine (Cha) at the C-terminus for enhancing the hydrophobicity, DMPC-10A, which retained the antimicrobial activity of the parent peptide. To further investigate the influence of Cha at the C-terminus on activity, it was substituted by alanine (Ala) to generate another derivative, DMPC-10, but this was found to be much less potent. In addition, DM-PC, DMPC-19 and DMPC-10A not only rapidly killed planktonic bacteria isolated from cystic fibrosis (CF) patient, but also effectively eradicated their biofilm matrices. Full article
(This article belongs to the Special Issue Peptides: Molecular and Biotechnological Aspects)
Show Figures

Figure 1

Open AccessArticle
Electro-Acupuncture Alleviates Cisplatin-Induced Anorexia in Rats by Modulating Ghrelin and Monoamine Neurotransmitters
Biomolecules 2019, 9(10), 624; https://doi.org/10.3390/biom9100624 - 18 Oct 2019
Abstract
Anorexia is common in patients with cancer, mostly as a side effect of chemotherapy. The effect of electro-acupuncture (EA) on ameliorating cancer-related symptoms have been studied in animal models and in clinical trials. The aim of this study was to determine optimal conditions [...] Read more.
Anorexia is common in patients with cancer, mostly as a side effect of chemotherapy. The effect of electro-acupuncture (EA) on ameliorating cancer-related symptoms have been studied in animal models and in clinical trials. The aim of this study was to determine optimal conditions for the application of EA to alleviate anorexia, followed by the study of molecular mechanisms affecting its therapeutics. Anorexia was induced in male Wistar rats by injecting cisplatin, which was then followed by EA treatment at CV12, the acupuncture point located in the center of the abdominal midline. Body weight and food intake were measured daily throughout the duration of the study. The levels of monoamine neurotransmitters in the plasma were quantitatively analyzed by HPLC-ECD. Gastrointestinal hormone concentrations were elucidated with ELISA kits. RT-qPCR was performed to evaluate the mRNA expression of ghrelin (GHRL), neuropeptide Y (NPY), and pro-opiomelanocortin. The expression of c-Fos in the nucleus tractus solitarii was detected using western blotting analysis. The optimal conditions of EA to alleviate anorexia in rats was determined to be 1 unit for intensity and 10 Hz for frequency. EA treatment at CV12 reduced the levels of plasma monoamine neurotransmitters 5-hydroxytryptamine, 5-hydroxyindoleacetic acid, dopamine, and norepinephrine; as well as stimulated the expression of GHRL and NPY to alleviate cisplatin-induced anorexia in rats. EA stimulation at CV12 could be used to treat cisplatin-induced anorexia in rats. Full article
(This article belongs to the Special Issue Peptides: Molecular and Biotechnological Aspects)
Show Figures

Graphical abstract

Open AccessArticle
Effect of Marination Time on the Antioxidant Properties of Peptides Extracted from Organic Dry-Fermented Beef
Biomolecules 2019, 9(10), 614; https://doi.org/10.3390/biom9100614 - 16 Oct 2019
Abstract
In this study, we evaluated the effect of marination time on changes in the antioxidant properties of peptides extracted from bovine semimembranosus muscle. We measured antiradical scavenging capacity and reducing power of the peptides using a spectrophotometric decolorization method; inhibition of lipid oxidation [...] Read more.
In this study, we evaluated the effect of marination time on changes in the antioxidant properties of peptides extracted from bovine semimembranosus muscle. We measured antiradical scavenging capacity and reducing power of the peptides using a spectrophotometric decolorization method; inhibition of lipid oxidation was also assessed by estimating the level of malondialdehyde formed. According to our results, there was no benefit from the doubling of marinating time (from 24 to 48 h) as part of the preprocessing of beef. Samples from S1 batch (24 h marination) showed better antioxidant properties than those from S2 batch. We also tested various color parameters as a reflection of the inhibition of oxidative processes, in which case, the most favorable parameters from the consumer point of view were found to be lightness and redness. The effect of marination time on the degree of proteolytic changes was estimated using peptidomic approach. The degradation of myoglobin, hemoglobin, creatine kinase-type M, and beta-enolase—as the most sensitive proteins to proteolytic degradation—was observed during the 62 days of processing. It seems that the prolongation of marination time as a preprocessing step intensifies the hydrolytic degradation of proteins and peptides during the processing step. This results in the loss (or it has no effect) of antioxidative properties in organic dry-fermented beef. Full article
(This article belongs to the Special Issue Peptides: Molecular and Biotechnological Aspects)
Show Figures

Figure 1

Open AccessArticle
Cooperative Cellular Uptake and Activity of Octaarginine Antisense Peptide Nucleic Acid (PNA) Conjugates
Biomolecules 2019, 9(10), 554; https://doi.org/10.3390/biom9100554 - 01 Oct 2019
Abstract
Cellular uptake and antisense activity of d-octaarginine conjugated peptide nucleic acids (PNAs) is shown to exhibit pronounced cooperativity in serum-containing medium, in particular by being enhanced by analogous mis-match PNA–cell-penetrating peptide (PNA–CPP) conjugates without inherent antisense activity. This cooperativity does not show [...] Read more.
Cellular uptake and antisense activity of d-octaarginine conjugated peptide nucleic acids (PNAs) is shown to exhibit pronounced cooperativity in serum-containing medium, in particular by being enhanced by analogous mis-match PNA–cell-penetrating peptide (PNA–CPP) conjugates without inherent antisense activity. This cooperativity does not show cell or PNA sequence dependency, suggesting that it is a common effect in cationic CPP conjugated PNA delivery. Interestingly, our results also indicate that Deca-r8-PNA and r8-PNA could assist each other and even other non-CPP PNAs as an uptake enhancer agent. However, the peptide itself (without being attached to the PNA) failed to enhance uptake and antisense activity. These results are compatible with an endosomal uptake mechanism in which the endocytosis event is induced by multiple CPP–PNA binding to the cell surface requiring a certain CPP density, possibly in terms of nanoparticle number and/or size, to be triggered. In particular the finding that the number of endosomal events is dependent on the total CPP–PNA concentration supports such a model. It is not possible from the present results to conclude whether endosomal escape is also cooperatively induced by CPP–PNA. Full article
(This article belongs to the Special Issue Peptides: Molecular and Biotechnological Aspects)
Show Figures

Graphical abstract

Open AccessArticle
Studies on the Interaction of Alyteserin 1c Peptide and Its Cationic Analogue with Model Membranes Imitating Mammalian and Bacterial Membranes
Biomolecules 2019, 9(10), 527; https://doi.org/10.3390/biom9100527 - 25 Sep 2019
Abstract
Antimicrobial peptides (AMPs) are effector molecules of the innate immune system and have been isolated from multiple organisms. Their antimicrobial properties are due to the fact that they interact mainly with the anionic membrane of the microorganisms, permeabilizing it and releasing the cytoplasmic [...] Read more.
Antimicrobial peptides (AMPs) are effector molecules of the innate immune system and have been isolated from multiple organisms. Their antimicrobial properties are due to the fact that they interact mainly with the anionic membrane of the microorganisms, permeabilizing it and releasing the cytoplasmic content. Alyteserin 1c (+2), an AMP isolated from Alytes obstetricans and its more cationic and hydrophilic analogue (+5) were synthesized using the solid phase method, in order to study the interaction with model membranes by calorimetric and spectroscopic assays. Differential scanning calorimetry (DSC) showed that both peptides had a strong effect when the membrane contained phosphatidylcholine (PC) alone or was mixed with phosphatidylglycerol (PG), increasing membrane fluidization. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was used to study the secondary structure of the peptide. Peptide +2 exhibited a transition from β-sheet/turns to β-sheet/α-helix structures after binding with model membranes, whereas peptide +5 had a transition from aggregation/unordered to β-sheet/α-helix structures after binding with membrane-contained PC. Interestingly, the latter showed a β-sheet structure predominantly in the presence of PG lipids. Additionally, molecular dynamics (MD) results showed that the carboxy-terminal of the peptide +5 has the ability to insert into the surface of the PC/PG membranes, resulting in the increase of the membrane fluidity. Full article
(This article belongs to the Special Issue Peptides: Molecular and Biotechnological Aspects)
Show Figures

Figure 1

Open AccessArticle
Bioevaluation of Ranatuerin-2Pb from the Frog Skin Secretion of Rana pipiens and Its Truncated Analogues
Biomolecules 2019, 9(6), 249; https://doi.org/10.3390/biom9060249 - 25 Jun 2019
Cited by 1
Abstract
Antimicrobial peptides (AMPs) are considered as a promising agent to overcome the drug-resistance of bacteria. Large numbers of AMPs have been identified from the skin secretion of Rana pipiens, including brevinins, ranatuerins, temporins and esculentins. In this study, the cDNA precursor of [...] Read more.
Antimicrobial peptides (AMPs) are considered as a promising agent to overcome the drug-resistance of bacteria. Large numbers of AMPs have been identified from the skin secretion of Rana pipiens, including brevinins, ranatuerins, temporins and esculentins. In this study, the cDNA precursor of a broad-spectrum antimicrobial peptide, ranatuerin-2Pb, was cloned and identified. Additionally, two truncated analogues, RPa and RPb, were synthesised to investigate the structure-activity relationship of ranatuerin-2Pb. RPa lost antimicrobial activity against Candida albicans, MRSA, Enterococcus faecalis and Pseudomonas aeruginosa, while RPb retained its broad-spectrum antimicrobial activity. Additionally, ranatuerin-2Pb, RPa and RPb demonstrated inhibition and eradication effects against Staphylococcus aureus biofilm. RPb showed a rapid bacterial killing manner via membrane permeabilization without damaging the cell membrane of erythrocytes. Moreover, RPb decreased the mortality of S. aureus infected Galleria mellonella larvae. Collectively, our results suggested that RPb may pave a novel way for natural antimicrobial drug design. Full article
(This article belongs to the Special Issue Peptides: Molecular and Biotechnological Aspects)
Show Figures

Figure 1

Open AccessArticle
LFB: A Novel Antimicrobial Brevinin-Like Peptide from the Skin Secretion of the Fujian Large Headed Frog, Limnonectes fujianensi
Biomolecules 2019, 9(6), 242; https://doi.org/10.3390/biom9060242 - 21 Jun 2019
Abstract
Amphibians are a natural source of abundant antimicrobial peptides and thus have been widely investigated for isolation of such biomolecules. Many new antimicrobial peptide families have been discovered from amphibians. In this study, a novel antimicrobial peptide named Limnonectes fujianensis Brevinvin (LFB) has [...] Read more.
Amphibians are a natural source of abundant antimicrobial peptides and thus have been widely investigated for isolation of such biomolecules. Many new antimicrobial peptide families have been discovered from amphibians. In this study, a novel antimicrobial peptide named Limnonectes fujianensis Brevinvin (LFB) has been identified in the skin secretion from the Fujian large headed frog, Limnonectes fujianensis. The cDNA sequence was cloned from a skin secretion library and the predicted mature peptide was identified through MS/MS fragmentation sequencing of reverse phase HPLC fractions on the same sample. LFB was predicted to be an amphipathic, hydrophobic, alpha helical, and beta turn peptide that inserts into a lipid bilayer in order to kill the cells. In antimicrobial assays, a synthetic replicate of this novel antimicrobial peptide demonstrated significant activity against the Gram-positive bacterium Staphylococcus aureus, the Gram-negative bacterium Escherichia coli and the yeast, Candida albicans. This novel peptide was highly potent (MIC 4.88 uM) against Gram-negative bacterium, and also has the ability to inhibit the growth of human cancer cell lines with IC50 values ranging from 18.9 μM down to 2.0 μM. These findings help to enrich our understanding of Brevinin-like peptides. Moreover, the data presented here validate frog secretion as a source of potential novel antimicrobial peptides, that also exhibit anti-tumor properties, that could be useful for the treatment of cancer. Full article
(This article belongs to the Special Issue Peptides: Molecular and Biotechnological Aspects)
Show Figures

Figure 1

Back to TopTop