Forecasting Northward Range Expansion of Switchgrass in China via Multi-Scenario MaxEnt Simulations
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Switchgrass Occurrence Data Acquisition and Pre-Processing
2.2. Environmental Data Collection and Processing
2.3. MaxEnt Model Calibration and Configuration
2.3.1. Model Calibration and Tuning
2.3.2. Parameter Settings
2.3.3. Model Performance Assessment
2.4. Suitability Classification for Switchgrass
2.5. Dynamic Changes in Potential Suitable Habitats for Switchgrass
2.6. Centroid Shift of Suitable Habitats for Switchgrass
3. Results
3.1. Optimized Model Accuracy Assessment
3.2. Key Environmental Drivers of Switchgrass Distribution
3.3. Current Potential Suitable Habitats of Switchgrass in China
3.4. Spatiotemporal Patterns of Switchgrass Suitable Habitats Under Future Climate Change Scenarios
3.5. Trends in Suitable Habitat Area Changes for Switchgrass Under Future Climate Scenarios
3.6. Centroid Dynamics of Switchgrass Habitats Across Climate Regimes
4. Discussion
4.1. MaxEnt Model Optimization and Performance Evaluation for Switchgrass
4.2. Dominant Environmental Factors Governing Switchgrass Habitat Suitability
4.3. Projected Shifts in Potential Switchgrass Distribution Under Climate Change
4.4. Limitations and Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lawlor, J.A.; Comte, L.; Grenouillet, G.; Lenoir, J.; Baecher, J.A.; Bandara, R.M.W.J.; Bertrand, R.; Chen, I.C.; Diamond, S.E.; Lancaster, L.T.; et al. Mechanisms, detection and impacts of species redistributions under climate change. Nat. Rev. Earth Environ. 2024, 5, 351–368. [Google Scholar] [CrossRef]
- Suggitt, A.J.; Wheatley, C.J.; Aucott, P.; Beale, C.M.; Fox, R.; Hill, J.K.; Isaac, N.J.B.; Martay, B.; Southall, H.; Thomas, C.D.; et al. Linking climate warming and land conversion to species’ range changes across Great Britain. Nat. Commun. 2023, 14, 6759. [Google Scholar] [CrossRef]
- Murphy, S.J.; Smith, A.B. What can community ecologists learn from species distribution models? Ecosphere 2021, 12, e03864. [Google Scholar] [CrossRef]
- Pau, S.; Edwards, E.J.; Still, C.J. Improving our understanding of environmental controls on the distribution of C3 and C4 grasses. Glob. Change Biol. 2013, 19, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Lovell, J.T.; MacQueen, A.H.; Mamidi, S.; Bonnette, J.; Jenkins, J.; Napier, J.D.; Sreedasyam, A.; Healey, A.; Session, A.; Shu, S.; et al. Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature 2021, 590, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Napier, J.D.; Grabowski, P.P.; Lovell, J.T.; Bonnette, J.; Mamidi, S.; Gomez-Hughes, M.J.; VanWallendael, A.; Weng, X.; Handley, L.H.; Kim, M.K.; et al. A generalist–specialist trade-off between switchgrass cytotypes impacts climate adaptation and geographic range. Proc. Natl. Acad. Sci. USA 2022, 119, e2118879119. [Google Scholar] [CrossRef]
- Fu, J.; Du, J.; Lin, G.; Jiang, D. Analysis of yield potential and regional distribution for bioethanol in China. Energies 2021, 14, 4554. [Google Scholar] [CrossRef]
- Bai, J.; Luo, L.; Li, A.; Lai, X.; Zhang, X.; Yu, Y.; Wang, H.; Wu, N.; Zhang, L. Effects of biofuel crop switchgrass (Panicum virgatum) cultivation on soil carbon sequestration and greenhouse gas emissions: A review. Life 2022, 12, 2105. [Google Scholar] [CrossRef]
- Qian, W.; Qin, A. Spatial-temporal characteristics of temperature variation in China. Meteorol. Atmos. Phys. 2006, 93, 1–16. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Hou, F.; Yang, J.; Guo, X. Terrain evolution of China Seas and land since the Indo-China movement and characteristics of the stepped landform. Chin. J. Geophys. 2015, 58, 54–68. [Google Scholar] [CrossRef]
- Zhang, G.; Zeng, G.; Yang, X.; Jiang, Z. Future changes in extreme high temperature over China at 1.5 °C–5 °C global warming based on CMIP6 simulations. Adv. Atmos. Sci. 2021, 38, 253–267. [Google Scholar] [CrossRef]
- Özcan, G.E.; Ünel, E.; Sivrikaya, F. A Machine Learning Algorithm-Based Approach (MaxEnt) for Predicting Habitat Suitability of Formica rufa. J. Appl. Entomol. 2025, 149, 558–572. [Google Scholar] [CrossRef]
- Happs, R.M.; Hanes, R.J.; Bartling, A.W.; Field, J.L.; Harman-Ware, A.E.; Clark, R.J.; Pendergast, T.H.I.V.; Devos, K.M.; Webb, E.G.; Missaoui, A.; et al. Economic and Sustainability Impacts of Yield and Composition Variation in Bioenergy Crops: Switchgrass (Panicum virgatum L.). ACS Sustain. Chem. Eng. 2024, 12, 1897–1910. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Hou, X.; Guo, Q.; Yue, Y.; Wu, J.; Cao, Y.; Wang, Q.; Li, C.; Wang, Z.; Fan, X. Switchgrass Establishment Can Ameliorate Soil Properties of the Abandoned Cropland in Northern China. Agriculture 2022, 12, 1138. [Google Scholar] [CrossRef]
- Ricketts, M.P.; Heckman, R.W.; Fay, P.A.; Matamala, R.; Jastrow, J.D.; Fritschi, F.B.; Bonnette, J.; Juenger, T.E. Local adaptation of switchgrass drives trait relations to yield and differential responses to climate and soil environments. GCB Bioenergy 2023, 15, 680–696. [Google Scholar] [CrossRef]
- Zhang, N.; Sharma, B.P.; Khanna, M. Determining spatially varying profit-maximizing management practices for miscanthus and switchgrass production in the rainfed United States. GCB Bioenergy 2023, 15, 271–282. [Google Scholar] [CrossRef]
- Ma, Y.; An, Y.; Shui, J.; Sun, Z. Adaptability evaluation of switchgrass (Panicum virgatum L.) cultivars on the Loess Plateau of China. Plant Sci. 2011, 181, 638–643. [Google Scholar] [CrossRef]
- Li, P.; Chen, X.; Zhao, C.; Yue, Y.; Zhang, H.; Teng, K.; Guo, Q.; Li, C.; Mu, N.; Zuo, H.; et al. Research advances on the cultivation and comprehensive utilization of tall Gramineous grasses. Chin. Bull. Bot. 2024, 59, 847–860. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, S.; Han, Y.; He, J. Diurnal dynamics of photosynthetic parameters in five energy grass species within karst rocky desertification regions. Mod. Agric. Sci. Technol. 2017, 182–184, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Ahrens, C.W.; Meyer, T.H.; Auer, C.A. Distribution models for Panicum virgatum (Poaceae) reveal an expanded range in present and future climate regimes in the northeastern United States. Am. J. Bot. 2014, 101, 1886–1894. [Google Scholar] [CrossRef]
- Zhang, B.; Hastings, A.; Clifton-Brown, J.C.; Jiang, D.; Faaij, A.P.C. Modeled spatial assessment of biomass productivity and technical potential of Miscanthus × giganteus, Panicum virgatum L., and Jatropha on marginal land in China. GCB Bioenergy 2020, 12, 328–345. [Google Scholar] [CrossRef]
- Verrico, B.; Preston, J.C. Historic rewiring of grass flowering time pathways and implications for crop improvement under climate change. New Phytol. 2025, 245, 1864–1878. [Google Scholar] [CrossRef]
- Wang, W.; Tang, X.; Zhu, Q.; Pan, K.; Hu, Q.; He, M.; Li, J. Predicting the impacts of climate change on the potential distribution of major native non-food bioenergy plants in China. PLoS ONE 2014, 9, e111587. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Raza, M.Y. Research on China’s renewable energy policies under the dual carbon goals: A political discourse analysis. Energy Strategy Rev. 2023, 48, 101118. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Z.; Fang, W.; Ma, Z.; Liu, M.; Bi, J. China’s progress in synergetic governance of climate change and multiple environmental issues. PNAS Nexus 2024, 3, 351. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, S.; Zhao, W.; Meadows, M.E.; Fu, B. Finding pathways to synergistic development of sustainable development goals in China. Humanit. Soc. Sci. Commun. 2022, 9, 21. [Google Scholar] [CrossRef]
- Wu, T.; Lu, Y.; Fang, Y.; Xin, X.; Li, L.; Li, W.; Jie, W.; Zhang, J.; Liu, Y.; Zhang, L.; et al. The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev. 2019, 12, 1573–1600. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Mendes, P.; Velazco, S.J.E.; Andrade, A.F.A.d.; De Marco, P. Dealing with overprediction in species distribution models: How adding distance constraints can improve model accuracy. Ecol. Model. 2020, 431, 109180. [Google Scholar] [CrossRef]
- Wu, J.; Yan, L.; Zhao, J.; Peng, J.; Xiong, Y.; Xiong, Y.; Ma, X. Modeling climate change indicates potential shifts in the global distribution of Orchardgrass. Agronomy 2023, 13, 1985. [Google Scholar] [CrossRef]
- Liu, B.; Li, Y.; Zhao, J.; Weng, H.; Ye, X.; Liu, S.; Zhao, Z.; Ahmad, S.; Zhan, C. The potential habitat response of Cyclobalanopsis gilva to climate change. Plants 2024, 13, 2336. [Google Scholar] [CrossRef] [PubMed]
- Kass, J.M.; Muscarella, R.; Galante, P.J.; Bohl, C.L.; Pinilla-Buitrago, G.E.; Boria, R.A.; Soley-Guardia, M.; Anderson, R.P. ENMeval 2.0: Redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods Ecol. Evol. 2021, 12, 1602–1608. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, X.; Jiang, X.; Fan, T.; Liang, X.; Yan, W. MaxEnt modeling for predicting suitable habitat for endangered tree Keteleeria davidiana (Pinaceae) in China. Forests 2023, 14, 394. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Liu, L.; Qin, F.; Liu, Y.; Hu, Y.; Wang, W.; Duan, H.; Li, M. Forecast of potential suitable areas for forest resources in Inner Mongolia under the Shared Socioeconomic Pathway 245 scenario. Ecol. Indic. 2024, 167, 112694. [Google Scholar] [CrossRef]
- Liu, L.; Wang, R.; Zhang, Y.; Mou, Q.; Gou, Y.; Liu, K.; Huang, N.; Ouyang, C.; Hu, J.; Du, B. Simulation of potential suitable distribution of Alnus cremastogyne Burk. in China under climate change scenarios. Ecol. Indic. 2021, 133, 108396. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Li, C.; Liu, Z. Optimized Maxent model predictions of climate change impacts on the suitable distribution of Cunninghamia lanceolata in China. Forests 2020, 11, 302. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Z.; Gao, C.; Dong, Y.; Jing, Z.; Du, L.; Hou, X. MaxEnt-Based predictions of suitable potential distribution of Leymus secalinus under current and future climate change. Plants 2025, 14, 293. [Google Scholar] [CrossRef] [PubMed]
- Swets, J.A. Measuring the Accuracy of Diagnostic Systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef]
- Huang, B.; Chen, S.; Xu, L.; Jiang, H.; Chen, X.; He, H.; Chen, T. Predicting the potential geographical distribution of Zingiber striolatum Diels (Zingiberaceae), a medicine food homology plant in China. Sci. Rep. 2024, 14, 22206. [Google Scholar] [CrossRef]
- Yang, S.; Wang, H.; Tong, J.; Bai, Y.; Alatalo, J.M.; Liu, G.; Fang, Z.; Zhang, F. Impacts of environment and human activity on grid-scale land cropping suitability and optimization of planting structure, measured based on the MaxEnt model. Sci. Total Environ. 2022, 836, 155356. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, L.; Zhou, X.; Chen, R.; Zhao, G.; Zhang, F. Prediction of the potentially suitable areas of Leonurus japonicus in China based on future climate change using the optimized MaxEnt model. Ecol. Evol. 2023, 13, e10597. [Google Scholar] [CrossRef]
- Tian, S.; Fischer, M.; Chescheir, G.M.; Youssef, M.A.; Cacho, J.F.; King, J.S. Microtopography-induced transient waterlogging affects switchgrass (Alamo) growth in the lower coastal plain of North Carolina, USA. GCB Bioenergy 2018, 10, 577–591. [Google Scholar] [CrossRef]
- Zhang, X.; Fu, J.; Lin, G.; Jiang, D.; Yan, X. Switchgrass-Based bioethanol productivity and potential environmental impact from marginal lands in China. Energies 2017, 10, 260. [Google Scholar] [CrossRef]
- Cui, Y.; Fang, L.; Guo, X.; Wang, X.; Wang, Y.; Li, P.; Zhang, Y.; Zhang, X. Responses of soil microbial communities to nutrient limitation in the desert-grassland ecological transition zone. Sci. Total Environ. 2018, 642, 45–55. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Cao, W.; Wang, X.; Duan, Y.; Liu, X.; Yao, C. Response of the plant–soil system to desertification in the Hulun Buir Sandy Land, China. Land Degrad. Dev. 2023, 34, 2024–2037. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, Z.; Chen, Y.; Wei, X.; Feng, B.; Tao, F. How much yield loss has been caused by extreme temperature stress to the irrigated rice production in China? Clim. Change 2016, 134, 635–650. [Google Scholar] [CrossRef]
- Tang, Y.; Xie, J.; Geng, S. Marginal land-based biomass energy production in China. J. Integr. Plant Biol. 2010, 52, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, D.; Jiang, D.; Liu, L.; Huang, Y. Assessment of bioenergy potential on marginal land in China. Renew. Sustain. Energy Rev. 2011, 15, 1050–1056. [Google Scholar] [CrossRef]
- Qaseem, M.; Wu, A. Marginal lands for bioenergy in China: An outlook in status, potential and management. GCB Bioenergy 2021, 13, 21–44. [Google Scholar] [CrossRef]
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 2016, 6, 166–171. [Google Scholar] [CrossRef]
- Tokimatsu, K.; Yasuoka, R.; Nishio, M. Global zero emissions scenarios: The role of biomass energy with carbon capture and storage by forested land use. Appl. Energy 2017, 185, 1899–1906. [Google Scholar] [CrossRef]
- Zou, Y.; Backus, G.A.; Safford, H.D.; Sawyer, S.; Baskett, M.L. Quantifying the capacity for assisted migration to achieve conservation and forestry goals under climate change. J. Biogeogr. 2024, 51, 2440–2455. [Google Scholar] [CrossRef]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef]
- Aguilar, R.; Quesada, M.; Ashworth, L.; Herrerias-Diego, Y.; Lobo, J. Genetic consequences of habitat fragmentation in plant populations: Susceptible signals in plant traits and methodological approaches. Mol. Ecol. 2008, 17, 5177–5188. [Google Scholar] [CrossRef]
- Klinga, P.; Mikoláš, M.; Smolko, P.; Tejkal, M.; Höglund, J.; Paule, L. Considering landscape connectivity and gene flow in the Anthropocene using complementary landscape genetics and habitat modelling approaches. Landsc. Ecol. 2019, 34, 521–536. [Google Scholar] [CrossRef]
- Wu, X.; Pan, J.; Zhu, X. Optimizing the ecological source area identification method and building ecological corridor using a genetic algorithm: A case study in Weihe River Basin, NW China. Ecol. Inform. 2024, 80, 102519. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, J.; Mao, Y.; Liu, Z.; Zhao, G.; Zhang, F. Prediction of the potentially suitable areas of Elymus dahuricus Turcz in China under climate change based on maxent. Sci. Rep. 2025, 15, 17959. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, R.; Gao, L.; Huang, D.; Fan, Y.; Liu, C.; Chen, J. Predicting the current and future distributions of Pennisetum alopecuroides (L.) in China under climate change based on the MaxEnt model. PLoS ONE 2023, 18, e0281254. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Cui, B.; Duan, S.; Chen, J.; Fan, H.; Lu, B.; Zheng, J. Moving north in China: The habitat of Pedicularis kansuensis in the context of climate change. Sci. Total Environ. 2019, 697, 133979. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Bughrara, S.S. Isolation and characterization of cold-regulated transcriptional activator LpCBF3 gene from perennial ryegrass (Lolium perenne L.). Mol. Genet. Genom. 2008, 279, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Z.; Kang, H.; Park, M.; Jeong, H.; Sun, H.; Yang, D.; Lee, Y.; Song, P.; Lee, H. Overexpression of ICE1, a regulator of cold-induced transcriptome, confers cold tolerance to transgenic Zoysia japonica. J. Plant Biol. 2019, 62, 137–146. [Google Scholar] [CrossRef]
- Cao, H.; Zhang, L.; Ruan, Y.; Zhang, A.; Dong, X.; Zhang, X. Advances in switchgrass biotechnology. Pratacultural Sci. 2019, 36, 394–401. [Google Scholar] [CrossRef]
- Budzianowski, W.M. Negative carbon intensity of renewable energy technologies involving biomass or carbon dioxide as inputs. Renew. Sustain. Energy Rev. 2012, 16, 6507–6521. [Google Scholar] [CrossRef]
- Vaz, S.; Rodrigues de Souza, A.P.; Lobo Baeta, B.E. Technologies for carbon dioxide capture: A review applied to energy sectors. Clean. Eng. Technol. 2022, 8, 100456. [Google Scholar] [CrossRef]
- Kieffer, C.; Kaur, N.; Li, J.; Matamala, R.; Fay, P.A.; Hui, D. Photosynthetic responses of switchgrass to light and CO2 under different precipitation treatments. GCB Bioenergy 2024, 16, e13138. [Google Scholar] [CrossRef]
- Liu, H.; Lin, M.; Wang, H.; Li, X.; Zhou, D.; Bi, X.; Zhang, Y. N6-methyladenosine analysis unveils key mechanisms underlying long-term salt stress tolerance in switchgrass (Panicum virgatum). Plant Sci. 2024, 342, 112023. [Google Scholar] [CrossRef]
- Cheng, Y.; Luo, P.; Yang, H.; Li, M.; Ni, M.; Li, H.; Huang, Y.; Xie, W.; Wang, L. Land use and cover change accelerated China’s land carbon sinks limits soil carbon. npj Clim. Atmos. Sci. 2024, 7, 199. [Google Scholar] [CrossRef]
- Liu, H.; Wang, H.; Nong, H.; He, Y.; Chen, Y.; Wang, H.; Yu, M. Opportunities and implementation pathway for China’s forestry development under the “Dual Carbon” strategy. Carbon Res. 2024, 3, 59. [Google Scholar] [CrossRef]
- Deng, J.; Ni, H.; Zhang, Z.; Usman, S.; Yang, X.; Shen, Y.; Li, Y. Designing productive, energy-efficient, and environmentally friendly production systems by replacing fallow period with annual forage cultivation on the Loess Plateau of China. J. Clean. Prod. 2021, 320, 128660. [Google Scholar] [CrossRef]
Variables | Description | Units | Range | Contribution Rate (%) |
---|---|---|---|---|
Bio1 | Annual mean temperature | °C | 2.64–21.16 | 4.1 |
Bio2 | Mean diurnal range | °C | 6.40–14.42 | 1.3 |
Bio3 | Isothermality | 22.37–50.71 | 0.4 | |
Bio4 | Standard deviation of temperature seasonality | 351.21–1523.36 | 0.3 | |
Bio5 | Max temperature of warmest month | °C | 15.48–33.58 | 4.1 |
Bio6 | Min temperature of coldest month | °C | −24.53–8.87 | 0.1 |
Bio7 | Temperature annual range | °C | 21.43–52.60 | 0.3 |
Bio8 | Mean temperature of wettest quarter | °C | 9.62–26.56 | 0.2 |
Bio9 | Mean temperature of driest quarter | °C | −15.93–17.78 | 1.3 |
Bio10 | Mean temperature of warmest quarter | °C | 9.62–28.23 | 2.4 |
Bio11 | Mean temperature of coldest quarter | °C | −15.93–16.18 | 18.2 |
Bio12 | Annual precipitation | mm | 174.00–1601.00 | 0 |
Bio13 | Precipitation of wettest month | mm | 50.00–316.00 | 18.1 |
Bio14 | Precipitation of driest month | mm | 0.00–45.00 | 0.2 |
Bio15 | Variation of precipitation seasonality | 50.32–148.55 | 19.9 | |
Bio16 | Precipitation of wettest quarter | mm | 112.00–837.00 | 0 |
Bio17 | Precipitation of driest quarter | mm | 2.00–180.00 | 0 |
Bio18 | Precipitation of warmest quarter | mm | 107.00–829.00 | 0.1 |
Bio19 | Precipitation of coldest quarter | mm | 2.00–201.00 | 10.6 |
Elevation | Elevation | m | 1.00–4178.00 | 9.8 |
Aspect | Aspect | 17.35–332.40 | 3.6 | |
Slope | Slope | ° | 0.00–3.10 | 4.8 |
Model Type | Feature Combination | Regularization Multiplier | Delta.AICc | OR10 | AUC.diff |
---|---|---|---|---|---|
Default model | LQHP | 1 | 31.229 | 0.146 | 0.119 |
Optimize model | LQH | 4 | 0 | 0.125 | 0.110 |
Period | Area (104 km2) | Rate of Change (%) | ||||
---|---|---|---|---|---|---|
Stability | Contraction | Expansion | Stability | Contraction | Expansion | |
2050s-SSP1-2.6 | 681.69 | 32.01 | 115.66 | 82.19 | 3.86 | 13.95 |
2070s-SSP1-2.6 | 688.59 | 25.14 | 63.65 | 88.58 | 3.23 | 8.19 |
2090s-SSP1-2.6 | 681.64 | 32.05 | 129.24 | 80.87 | 3.80 | 15.33 |
2050s-SSP3-7.0 | 681.31 | 32.41 | 144.98 | 79.34 | 3.77 | 16.88 |
2070s-SSP3-7.0 | 669.81 | 43.92 | 228.50 | 71.09 | 4.66 | 24.25 |
2090s-SSP3-7.0 | 658.47 | 55.24 | 252.12 | 68.18 | 5.72 | 26.10 |
2050s-SSP5-8.5 | 674.97 | 38.74 | 165.15 | 76.80 | 4.41 | 18.79 |
2070s-SSP5-8.5 | 654.93 | 58.78 | 242.78 | 68.47 | 6.14 | 25.38 |
2090s-SSP5-8.5 | 644.91 | 68.79 | 261.53 | 66.13 | 7.05 | 26.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, Y.; Li, S.; Yang, Q.; Ren, J.; Liu, Y.; Luo, Y.; Zhao, L.; Luo, X.; Yao, B.; Guo, X. Forecasting Northward Range Expansion of Switchgrass in China via Multi-Scenario MaxEnt Simulations. Biology 2025, 14, 1061. https://doi.org/10.3390/biology14081061
Xiang Y, Li S, Yang Q, Ren J, Liu Y, Luo Y, Zhao L, Luo X, Yao B, Guo X. Forecasting Northward Range Expansion of Switchgrass in China via Multi-Scenario MaxEnt Simulations. Biology. 2025; 14(8):1061. https://doi.org/10.3390/biology14081061
Chicago/Turabian StyleXiang, Yangzhou, Suhang Li, Qiong Yang, Jun Ren, Ying Liu, Yang Luo, Ling Zhao, Xuqiang Luo, Bin Yao, and Xinzhao Guo. 2025. "Forecasting Northward Range Expansion of Switchgrass in China via Multi-Scenario MaxEnt Simulations" Biology 14, no. 8: 1061. https://doi.org/10.3390/biology14081061
APA StyleXiang, Y., Li, S., Yang, Q., Ren, J., Liu, Y., Luo, Y., Zhao, L., Luo, X., Yao, B., & Guo, X. (2025). Forecasting Northward Range Expansion of Switchgrass in China via Multi-Scenario MaxEnt Simulations. Biology, 14(8), 1061. https://doi.org/10.3390/biology14081061