Editor's Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to authors, or important in this field. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

Article
Antibacterial Activity of Ikarugamycin against Intracellular Staphylococcus aureus in Bovine Mammary Epithelial Cells In Vitro Infection Model
Biology 2021, 10(10), 958; https://doi.org/10.3390/biology10100958 - 25 Sep 2021
Abstract
Staphylococcus aureus is an ubiquitous and versatile pathogen associated with a wide range of diseases. In animals, this bacterium is one of the causative agents of bovine mastitis, responsible for huge economic losses in the dairy industry. Besides the development of antibiotic resistance, [...] Read more.
Staphylococcus aureus is an ubiquitous and versatile pathogen associated with a wide range of diseases. In animals, this bacterium is one of the causative agents of bovine mastitis, responsible for huge economic losses in the dairy industry. Besides the development of antibiotic resistance, the intracellular survival of S. aureus within udder cells has rendered many antibiotics ineffective, leading to therapeutic failure. Our study therefore aims to investigate the in vitro bactericidal activity of ikarugamycin (IKA) against intracellular S. aureus using a bovine mammary epithelial cells (Mac-T cells) infection model and determine the cytotoxic effect. Minimum inhibitory concentration (MIC) was used to determine the antibacterial activity of IKA, and Mac-T cells were infected with S. aureus using gentamicin protection assay. IKA intracellular antibacterial activity assays were used to determine the bactericidal activity of IKA against intracellular S. aureus. The cytotoxicity of IKA against Mac-T cells was evaluated using the resazurin assay. We showed that, S. aureus is susceptible to IKA with a MIC value of 0.6 μg/mL. IKA at 4 × MIC and 8 × MIC have bactericidal activity by reducing 3 and 5 logs10 CFU/mL of S. aureus in the first six-hour of treatment respectively. In addition, IKA demonstrated intracellular killing activity by killing 90% of intracellular S. aureus at 5 μg/mL. This level is comparatively lower than 9.2 μg/mL determined as the half-maximal inhibitory concentration (IC50) of IKA required to kill 50% of Mac-T cells, highlighting a lower concentration required for bactericidal effect compared to the cytotoxic effect. The study highlighted that importance of IKA as a potential antibiotic candidate to be explored for the in vivo efficacy in treating S. aureus mastitis. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

Article
Clinical Significance of the Head-Up Tilt Test in Improving Prognosis in Patients with Possible Neurally Mediated Syncope
Biology 2021, 10(9), 919; https://doi.org/10.3390/biology10090919 - 15 Sep 2021
Abstract
Syncope is commonly encountered in daily clinical practice. Depending on its etiology (benign or life-threatening conditions or environmental triggers), syncope can be neurally mediated (reflex), cardiac, or orthostatic. Furthermore, neurologic disease can cause symptoms that mimic syncope. However, there is limited research on [...] Read more.
Syncope is commonly encountered in daily clinical practice. Depending on its etiology (benign or life-threatening conditions or environmental triggers), syncope can be neurally mediated (reflex), cardiac, or orthostatic. Furthermore, neurologic disease can cause symptoms that mimic syncope. However, there is limited research on neurally mediated syncope (NMS), which is considered a benign disorder, and close follow-ups are rarely performed. NMS can cause serious clinical events, including severe trauma and car accidents. The head-up tilt test (HUTT) is the gold standard for diagnosing NMS; however, its clinical significance remains unknown, and its relevance to NMS prognosis requires further research. This retrospective study aimed to assess the clinical significance of the HUTT for NMS. We reviewed the charts of 101 patients who underwent HUTT at Tokai University Hospital in Japan between January 2016 and March 2019. During the HUTT, 72 patients (69.2%) experienced syncope. Patients were followed up for 886.1 ± 457.7 days (interquartile range: 518–1293 days). The syncope recurrence rate was 16.9%; however, no significant difference was observed between the two groups (HUTT positive vs. negative) (13.8% vs. 18.1%, p = 0.772). Four of 29 (13.9%) and two of 72 (2.8%) patients in the negative and positive HUTT groups, respectively, experienced cardiac events (p = 0.019). Negative HUTT results may assist in anticipating unexpected clinical events within a few years. A negative HUTT result may allow us to reconsider the NMS diagnosis based on clinical information. Close outpatient follow-up of patients with negative HUTT results is warranted. Full article
Show Figures

Graphical abstract

Article
Genome Analysis of Acinetobacter lwoffii Strains Isolated from Permafrost Soils Aged from 15 Thousand to 1.8 Million Years Revealed Their Close Relationships with Present-Day Environmental and Clinical Isolates
Biology 2021, 10(9), 871; https://doi.org/10.3390/biology10090871 - 04 Sep 2021
Abstract
Microbial life can be supported at subzero temperatures in permafrost up to several million years old. Genome analysis of strains isolated from permafrost provides a unique opportunity to study microorganisms that have not previously come into contact with the human population. Acinetobacter lwoffii [...] Read more.
Microbial life can be supported at subzero temperatures in permafrost up to several million years old. Genome analysis of strains isolated from permafrost provides a unique opportunity to study microorganisms that have not previously come into contact with the human population. Acinetobacter lwoffii is a typical soil bacterium that has been increasingly reported as hospital pathogens associated with bacteremia. In order to identify the specific genetic characteristics of ancient permafrost-conserved strains of A. lwoffii and their differences from present-day clinical isolates, we carried out a genome-wide analysis of five strains of A. lwoffii isolated from permafrost aged from 15 thousand to 1.8 million years. Surprisingly, we did not identify chromosomal genetic determinants that distinguish permafrost strains from clinical A. lwoffii isolates and strains from other natural habitats. Phylogenetic analysis based on whole genome sequences showed that permafrost strains do not form a separate cluster and some of them are most closely related to clinical isolates. The genomes of clinical and permafrost strains contain similar mobile elements and prophages, which indicates an intense horizontal transfer of genetic material. Comparison of plasmids of modern and permafrost strains showed that plasmids from the modern strains are enriched with antibiotic resistance genes, while the content of genes for resistance to heavy metals and arsenic is nearly the same. The thawing of permafrost caused by global warming could release new potentially pathogenic strains of Acinetobacter. Full article
(This article belongs to the Special Issue Microbial Diversity and Microbial Resistance)
Show Figures

Figure 1

Article
Acute Increase in Blood αCGRP at Maximal Exercise and Its Association to Cardiorespiratory Fitness, Carbohydrate Oxidation and Work Performed: An Exploratory Study in Young Men
Biology 2021, 10(8), 783; https://doi.org/10.3390/biology10080783 - 17 Aug 2021
Abstract
This study aimed to explore if the acute variations in plasma concentration of α-calcitonin gene-related peptide (αCGRP) induced by a single maximal exercise bout may be associated to cardiorespiratory fitness and carbohydrate oxidation in humans. Twelve young adult Caucasian men (24.3 ± 0.9 [...] Read more.
This study aimed to explore if the acute variations in plasma concentration of α-calcitonin gene-related peptide (αCGRP) induced by a single maximal exercise bout may be associated to cardiorespiratory fitness and carbohydrate oxidation in humans. Twelve young adult Caucasian men (24.3 ± 0.9 years-old; 179.2 ± 1.9 cm of height; 23.9 ± 0.6 kg·m−2 body mass index) performed a graded exercise test. A venous catheter was placed before testing, and blood samples were taken at baseline, maximal effort and recovery. αCGRP was measured in plasma using a commercial double-sandwich enzyme-linked-immunoassay. A two-way repeated measurements ANOVA was used to compare the values obtained at baseline, maximal effort and recovery. In the whole sample, αCGRP increased at maximal effort and its concentration correlated directly, albeit non-significantly, with the muscle mass normalised VO2, VCO2, carbohydrate oxidation and relative power. Two thirds of the participants showed an increase in αCGRP concentration at maximal effort. Post hoc analysis showed that in these individuals, the muscle mass normalised VO2, VCO2, carbohydrate oxidation rate and relative power were higher than in the participants lacking this molecular response. Therefore, our data suggest that (a) a majority of young men respond to exercise with an increase in blood αCGRP concentration; and (b) individuals exhibiting this response also show a higher cardiorespiratory fitness, carbohydrate oxidation and work performed. These findings suggest that this neuropeptide could act as an exerkine with potential effects on physical performance. Full article
(This article belongs to the Section Physiology)
Show Figures

Figure 1

Article
Bcl-xL Is Required by Primary Hippocampal Neurons during Development to Support Local Energy Metabolism at Neurites
Biology 2021, 10(8), 772; https://doi.org/10.3390/biology10080772 - 13 Aug 2021
Abstract
B-cell lymphoma-extra large (Bcl-xL) is a mitochondrial protein known to inhibit mitochondria-dependent intrinsic apoptotic pathways. An increasing number of studies have demonstrated that Bcl-xL is critical in regulating neuronal energy metabolism and has a protective role in pathologies associated with an energy deficit. [...] Read more.
B-cell lymphoma-extra large (Bcl-xL) is a mitochondrial protein known to inhibit mitochondria-dependent intrinsic apoptotic pathways. An increasing number of studies have demonstrated that Bcl-xL is critical in regulating neuronal energy metabolism and has a protective role in pathologies associated with an energy deficit. However, it is less known how Bcl-xL regulates physiological processes of the brain. In this study, we hypothesize that Bcl-xL is required for neurite branching and maturation during neuronal development by improving local energy metabolism. We found that the absence of Bcl-xL in rat primary hippocampal neurons resulted in mitochondrial dysfunction. Specifically, the ATP/ADP ratio was significantly decreased in the neurites of Bcl-xL depleted neurons. We further found that neurons transduced with Bcl-xL shRNA or neurons treated with ABT-263, a pharmacological inhibitor of Bcl-xL, showed impaired mitochondrial motility. Neurons lacking Bcl-xL had significantly decreased anterograde and retrograde movement of mitochondria and an increased stationary mitochondrial population when Bcl-xL was depleted by either means. These mitochondrial defects, including loss of ATP, impaired normal neurite development. Neurons lacking Bcl-xL showed significantly decreased neurite arborization, growth and complexity. Bcl-xL depleted neurons also showed impaired synapse formation. These neurons showed increased intracellular calcium concentration and were more susceptible to excitotoxic challenge. Bcl-xL may support positioning of mitochondria at metabolically demanding regions of neurites like branching points. Our findings suggest a role for Bcl-xL in physiological regulation of neuronal growth and development. Full article
Show Figures

Figure 1

Article
Human Blood Serum Induces p38-MAPK- and Hsp27-Dependent Migration Dynamics of Adult Human Cardiac Stem Cells: Single-Cell Analysis via a Microfluidic-Based Cultivation Platform
Biology 2021, 10(8), 708; https://doi.org/10.3390/biology10080708 - 24 Jul 2021
Cited by 2
Abstract
Migratory capabilities of adult human stem cells are vital for assuring endogenous tissue regeneration and stem cell-based clinical applications. Although human blood serum has been shown to be beneficial for cell migration and proliferation, little is known about its impact on the migratory [...] Read more.
Migratory capabilities of adult human stem cells are vital for assuring endogenous tissue regeneration and stem cell-based clinical applications. Although human blood serum has been shown to be beneficial for cell migration and proliferation, little is known about its impact on the migratory behavior of cardiac stem cells and underlying signaling pathways. Within this study, we investigated the effects of human blood serum on primary human cardiac stem cells (hCSCs) from the adult heart auricle. On a technical level, we took advantage of a microfluidic cultivation platform, which allowed us to characterize cell morphologies and track migration of single hCSCs via live cell imaging over a period of up to 48 h. Our findings showed a significantly increased migration distance and speed of hCSCs after treatment with human serum compared to control. Exposure of blood serum-stimulated hCSCs to the p38 mitogen-activated protein kinase (p38-MAPK) inhibitor SB239063 resulted in significantly decreased migration. Moreover, we revealed increased phosphorylation of heat shock protein 27 (Hsp27) upon serum treatment, which was diminished by p38-MAPK-inhibition. In summary, we demonstrate human blood serum as a strong inducer of adult human cardiac stem cell migration dependent on p38-MAPK/Hsp27-signalling. Our findings further emphasize the great potential of microfluidic cultivation devices for assessing spatio-temporal migration dynamics of adult human stem cells on a single-cell level. Full article
(This article belongs to the Special Issue Stem Cells for Cardiovascular Biology and Medicine)
Show Figures

Figure 1

Article
Genomic Selection for End-Use Quality and Processing Traits in Soft White Winter Wheat Breeding Program with Machine and Deep Learning Models
Biology 2021, 10(7), 689; https://doi.org/10.3390/biology10070689 - 20 Jul 2021
Cited by 2
Abstract
Breeding for grain yield, biotic and abiotic stress resistance, and end-use quality are important goals of wheat breeding programs. Screening for end-use quality traits is usually secondary to grain yield due to high labor needs, cost of testing, and large seed requirements for [...] Read more.
Breeding for grain yield, biotic and abiotic stress resistance, and end-use quality are important goals of wheat breeding programs. Screening for end-use quality traits is usually secondary to grain yield due to high labor needs, cost of testing, and large seed requirements for phenotyping. Genomic selection provides an alternative to predict performance using genome-wide markers under forward and across location predictions, where a previous year’s dataset can be used to build the models. Due to large datasets in breeding programs, we explored the potential of the machine and deep learning models to predict fourteen end-use quality traits in a winter wheat breeding program. The population used consisted of 666 wheat genotypes screened for five years (2015–19) at two locations (Pullman and Lind, WA, USA). Nine different models, including two machine learning (random forest and support vector machine) and two deep learning models (convolutional neural network and multilayer perceptron) were explored for cross-validation, forward, and across locations predictions. The prediction accuracies for different traits varied from 0.45–0.81, 0.29–0.55, and 0.27–0.50 under cross-validation, forward, and across location predictions. In general, forward prediction accuracies kept increasing over time due to increments in training data size and was more evident for machine and deep learning models. Deep learning models were superior over the traditional ridge regression best linear unbiased prediction (RRBLUP) and Bayesian models under all prediction scenarios. The high accuracy observed for end-use quality traits in this study support predicting them in early generations, leading to the advancement of superior genotypes to more extensive grain yield trails. Furthermore, the superior performance of machine and deep learning models strengthens the idea to include them in large scale breeding programs for predicting complex traits. Full article
(This article belongs to the Special Issue Genetic Improvement and Breeding of Wheat)
Show Figures

Figure 1

Article
The Role of Monk Parakeets as Nest-Site Facilitators in Their Native and Invaded Areas
Biology 2021, 10(7), 683; https://doi.org/10.3390/biology10070683 - 19 Jul 2021
Cited by 1
Abstract
While most of the knowledge on invasive species focuses on their impacts, little is known about their potential positive effects on other species. Invasive ecosystem engineers can disrupt recipient environments; however, they may also facilitate access to novel resources for native species. The [...] Read more.
While most of the knowledge on invasive species focuses on their impacts, little is known about their potential positive effects on other species. Invasive ecosystem engineers can disrupt recipient environments; however, they may also facilitate access to novel resources for native species. The monk parakeet (Myiopsitta monachus) is a worldwide invader and the only parrot that builds its own communal nests, which can be used by other species. However, the ecological effects of these interspecific interactions are barely known. We compared the role of the monk parakeet as a nest-site facilitator in different rural and urban areas, both invaded and native, across three continents and eight breeding seasons. A total of 2690 nests from 42 tenant species, mostly cavity-nesting birds, were recorded in 26% of 2595 monk parakeet nests. Rural and invaded areas showed the highest abundance and richness of tenant species. Multispecies communal nests triggered interspecific aggression between the monk parakeet host and its tenants, but also a cooperative defense against predators. Despite the positive effects for native species, monk parakeets also facilitate nesting opportunities to other non-native species and may also transmit diseases to tenants, highlighting the complexity of biotic interactions in biological invasions. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Graphical abstract

Article
Suspension of Amorphous Calcium Phosphate Nanoparticles Impact Commitment of Human Adipose-Derived Stem Cells In Vitro
Biology 2021, 10(7), 675; https://doi.org/10.3390/biology10070675 - 16 Jul 2021
Cited by 1
Abstract
Amorphous calcium phosphate (aCaP) nanoparticles may trigger the osteogenic commitment of adipose-derived stem cells (ASCs) in vitro. The ASCs of three human donors are investigated using basal culture medium DMEM to either 5 or 50 µg/mL aCaP nanoparticles suspension (control: no nanoparticles). After [...] Read more.
Amorphous calcium phosphate (aCaP) nanoparticles may trigger the osteogenic commitment of adipose-derived stem cells (ASCs) in vitro. The ASCs of three human donors are investigated using basal culture medium DMEM to either 5 or 50 µg/mL aCaP nanoparticles suspension (control: no nanoparticles). After 7 or 14 days, stem cell marker genes, as well as endothelial, osteogenic, chondrogenic, and adipogenic genes, are analyzed by qPCR. Free calcium and phosphate ion concentrations are assessed in the cell culture supernatant. After one week and 5 µg/mL aCaP, downregulation of osteogenic markers ALP and Runx2 is found, and averaged across the three donors. Our results show that after two weeks, ALP is further downregulated, but Runx2 is upregulated. Endothelial cell marker genes, such as CD31 and CD34, are upregulated with 50 µg/mL aCaP and a 2-week exposure. Inter-donor variability is high: Two out of three donors show a significant upregulation of ALP and Runx2 at day 14 with 50 µg/mL aCaP compared to 5 µg/mL aCaP. Notably, all changes in stem cell commitment are obtained in the absence of an osteogenic medium. While the chemical composition of the culture medium and the saturation status towards calcium phosphate phases remain approximately the same for all conditions, gene expression of ASCs changes considerably. Hence, aCaP nanoparticles show the potential to trigger osteogenic and endothelial commitment in ASCs. Full article
(This article belongs to the Section Cell Biology)
Show Figures

Figure 1

Article
Male Differentiation in the Marine Copepod Oithona nana Reveals the Development of a New Nervous Ganglion and Lin12-Notch-Repeat Protein-Associated Proteolysis
Biology 2021, 10(7), 657; https://doi.org/10.3390/biology10070657 - 13 Jul 2021
Abstract
Copepods are among the most numerous animals, and they play an essential role in the marine trophic web and biogeochemical cycles. The genus Oithona is described as having the highest density of copepods. The Oithona male paradox describes the activity states of males, [...] Read more.
Copepods are among the most numerous animals, and they play an essential role in the marine trophic web and biogeochemical cycles. The genus Oithona is described as having the highest density of copepods. The Oithona male paradox describes the activity states of males, which are obliged to alternate between immobile and mobile phases for ambush feeding and mate searching, respectively, while the female is less mobile and feeds less. To characterize the molecular basis of this sexual dimorphism, we combined immunofluorescence, genomics, transcriptomics, and protein–protein interaction approaches and revealed the presence of a male-specific nervous ganglion. Transcriptomic analysis showed male-specific enrichment for nervous system development-related transcripts. Twenty-seven Lin12-Notch Repeat domain-containing protein coding genes (LDPGs) of the 75 LDPGs identified in the genome were specifically expressed in males. Furthermore, some LDPGs coded for proteins with predicted proteolytic activity, and proteases-associated transcripts showed a male-specific enrichment. Using yeast double–hybrid assays, we constructed a protein–protein interaction network involving two LDPs with proteases, extracellular matrix proteins, and neurogenesis-related proteins. We also hypothesized possible roles of the LDPGs in the development of the lateral ganglia through helping in extracellular matrix lysis, neurites growth guidance, and synapses genesis. Full article
(This article belongs to the Section Developmental Biology)
Show Figures

Figure 1

Article
Third Molar Agenesis Is Associated with Facial Size
Biology 2021, 10(7), 650; https://doi.org/10.3390/biology10070650 - 12 Jul 2021
Abstract
Individuals with congenitally missing permanent teeth, other than third molars, present smaller craniofacial configurations compared to normal controls. However, it is not known if agenesis of third molars is part of the same mechanism. Therefore, this study assessed individuals with and without isolated [...] Read more.
Individuals with congenitally missing permanent teeth, other than third molars, present smaller craniofacial configurations compared to normal controls. However, it is not known if agenesis of third molars is part of the same mechanism. Therefore, this study assessed individuals with and without isolated third molar agenesis and tested the relation of this condition to the size of their facial configurations, using geometric morphometric methods. We show that the absence of one or more third molars is associated with a smaller maxilla, smaller mandible and a smaller overall facial configuration. The effect was larger as the number of missing third molars increased. For example, the size of the mandibular centroids in five 16-year-old females with no, one, two, three or four missing third molars showed a size reduction of approximately 2.5 mm per missing third molar. In addition, in cases with third molar agenesis in one jaw only, the effect was also evident on the opposite jaw. Our findings suggest that isolated third molar agenesis is part of a developmental mechanism resulting also in craniofacial size reduction. This might be the effect of an evolutionary process observed in humans, leading to fewer and smaller teeth, as well as smaller facial structures. Full article
(This article belongs to the Section Developmental Biology)
Show Figures

Figure 1

Article
Biocompatibility and Antibiofilm Properties of Calcium Silicate-Based Cements: An In Vitro Evaluation and Report of Two Clinical Cases
Biology 2021, 10(6), 470; https://doi.org/10.3390/biology10060470 - 26 May 2021
Cited by 1
Abstract
Calcium silicate-based cements have reached excellent levels of performance in endodontics, providing predictable and successful results. To better assess the properties of these bioactive materials, the present study aimed to compare the biocompatibility and antibiofilm properties of ProRoot MTA and Biodentine. Human osteogenic [...] Read more.
Calcium silicate-based cements have reached excellent levels of performance in endodontics, providing predictable and successful results. To better assess the properties of these bioactive materials, the present study aimed to compare the biocompatibility and antibiofilm properties of ProRoot MTA and Biodentine. Human osteogenic sarcoma (Saos-2) cells were cultured on ProRoot MTA and Biodentine samples or in the presence of both cement extracts. Cell viability assay, measurement of reactive oxygen species (ROS), immunofluorescence analysis, as well as morphological evaluations were conducted. Moreover, Streptococcus mutans was used to assess the biofilm forming ability on ProRoot MTA and Biodentine disks. Finally, both cements were applied in vivo to treat immature permanent teeth affected by reversible pulpitis. Results: Cell viability assay demonstrated that Saos-2 cells had a dose- and time-dependent cytotoxicity to both analyzed cements, although cells exposed to ProRoot MTA showed a better cell vitality than those exposed to Biodentine (p < 0.001). Both cements demonstrated ROS production while this was greater in the case of Biodentine than ProRoot MTA (p < 0.001). Immunofluorescence images of the cytoskeleton and focal adhesions showed no differences in Saos-2 cells grown in the presence of ProRoot MTA eluate; whereas in the Biodentine groups, cells showed a morphology and focal adhesions more similar to that of the control sample, as the eluate concentration decreased. Morphological analysis revealed that Saos-2 cells were more flattened and exhibited better spreading when attached to ProRoot MTA disks than to Biodentine ones. The antibiofilm properties showed a time-dependent powerful inhibition of S. mutans superficial colonization and an antibiofilm effect of both cements. Clinically, complete root formation of the treated elements was achieved using the two studied cements, showing stable results over time. ProRoot MTA and Biodentine was demonstrated to be biocompatible and to possess antibiofilm properties. Their clinical application in vital pulp therapy provided successful outcomes after 2 years of follow-up. Full article
(This article belongs to the Special Issue Tissue Engineering and Regenerative Medicine)
Show Figures

Figure 1

Article
Expression Analysis of FGF/FGFR and FOX Family Proteins in Mucosal Tissue Obtained from Orofacial Cleft-Affected Children
Biology 2021, 10(5), 423; https://doi.org/10.3390/biology10050423 - 10 May 2021
Cited by 1
Abstract
Orofacial clefts affect hundreds of thousands of children worldwide annually and are usually corrected by a series of surgeries extending to childhood. The underlying mechanisms that lead to clefts are still unknown, mainly because of the multifactorial etiology and the myriad of interactions [...] Read more.
Orofacial clefts affect hundreds of thousands of children worldwide annually and are usually corrected by a series of surgeries extending to childhood. The underlying mechanisms that lead to clefts are still unknown, mainly because of the multifactorial etiology and the myriad of interactions between genes and environmental factors. In the present study, we investigated the role and expression of candidate genes belonging to the FGF/FGFR signaling pathway and FOX family in tissue material obtained from 12 pediatric patients undergoing cleft correction surgery. The expression was investigated using immunohistochemistry (IHC) and chromogenic in-situ hybridization (CISH) in three cell/tissue types—epithelial cells, connective tissue, and endothelial cells. We found elevated expression of FGFR1 in epithelial cells while no expression was observed in endothelial cells. Further, our results elucidate the potential pathogenetic role of FGFR1 in cellular proliferation, local site inflammation, and fibrosis in cleft patients. Along with bFGF (also called FGF2), FGFR1 could play a pro-inflammatory role in clefts. Over-amplification of FGFR2 in some patients, along with bFGF, could potentially suggest roles for these genes in angiogenesis. Additionally, increased expression of FOXE1 (also called TTF2) contributes to local site inflammation. Finally, zero to low amplification of FOXO1 could suggest its potential role in inducing oxidative stress in the endothelium along with reduced epithelial apoptosis. Full article
(This article belongs to the Section Developmental Biology)
Show Figures

Figure 1

Article
Hair Testing for Classic Drugs of Abuse to Monitor Cocaine Use Disorder in Patients Following Transcranial Magnetic Stimulation Protocol Treatment
Biology 2021, 10(5), 403; https://doi.org/10.3390/biology10050403 - 05 May 2021
Abstract
In recent years, hair has become an alternative biological specimen for drug testing in the fields of forensic and clinical toxicology. The advantages of hair testing include larger detection windows (months/years), depending on the length of the hair shaft, compared to those of [...] Read more.
In recent years, hair has become an alternative biological specimen for drug testing in the fields of forensic and clinical toxicology. The advantages of hair testing include larger detection windows (months/years), depending on the length of the hair shaft, compared to those of urine/blood (hours to 2–4 days for most drugs). Segmental hair analysis can disclose a month-to-month (considering 1 cm segment cuts) information of drug exposure (single or repeated) and potentially identify patterns of drug use/administration. Repetitive transcranial magnetic stimulation (rTMS) was recently proposed as a valid tool for therapeutic purposes in addictions, including cocaine use disorder (CocUD). Here, we proposed hair testing analyses of classic drugs of abuse in a clinical setting to monitor the clinical changes in treatment-seeker CocUD patients undergoing protocol treatments with rTMS stimulating the left dorsolateral prefrontal cortex (l-DLPFC). We collected hair samples from nine CocUD patients at different stages from the beginning of treatments. Hair sample analyses revealed significant changes in the patterns of cocaine use, according to the negativity of urine screening tests and the clinical reductions of craving. These data, albeit preliminary, suggest that hair testing analysis of classic drugs of abuse could be extended to clinical settings to monitor the clinical efficacy of innovative therapeutic interventions, such as rTMS. Full article
Article
Drinking Molecular Hydrogen Water Is Beneficial to Cardiovascular Function in Diet-Induced Obesity Mice
Biology 2021, 10(5), 364; https://doi.org/10.3390/biology10050364 - 23 Apr 2021
Abstract
Molecular hydrogen (MH) reportedly exerts therapeutic effects against inflammatory diseases as a suppressor of free radical chain reactions. Here, the cardiovascular protective effects of the intake of molecular hydrogen water (MHW) were investigated using high-fat diet-induced obesity (DIO) mice. MHW was prepared using [...] Read more.
Molecular hydrogen (MH) reportedly exerts therapeutic effects against inflammatory diseases as a suppressor of free radical chain reactions. Here, the cardiovascular protective effects of the intake of molecular hydrogen water (MHW) were investigated using high-fat diet-induced obesity (DIO) mice. MHW was prepared using supplier sticks and degassed water as control. MHW intake for 2 weeks did not improve blood sugar or body weight but decreased heart weight in DIO mice. Moreover, MHW intake improved cardiac hypertrophy, shortened the width of cardiomyocytes, dilated the capillaries and arterioles, activated myocardial eNOS-Ser-1177 phosphorylation, and restored left ventricular function in DIO mice. MHW intake promoted the histological conversion of hypertrophy to hyperplasia in white and brown adipose tissues (WAT and BAT) with the upregulation of thermogenic and cardiovascular protective genes in BAT (i.e., Ucp-1, Vegf-a, and eNos). Furthermore, the results of a colony formation assay of bone-marrow-derived endothelial progenitor cells (EPCs) indicated that MHW activated the expansion, differentiation, and mobilization of EPCs to maintain vascular homeostasis. These findings indicate that the intake of MHW exerts cardiovascular protective effects in DIO mice. Hence, drinking MHW is a potential prophylactic strategy against cardiovascular disorders in metabolic syndrome. Full article
Show Figures

Figure 1

Article
Oxygen Dependence of Flight Performance in Ageing Drosophila melanogaster
Biology 2021, 10(4), 327; https://doi.org/10.3390/biology10040327 - 14 Apr 2021
Cited by 1
Abstract
Similar to humans, insects lose their physical and physiological capacities with age, which makes them a convenient study system for human ageing. Although insects have an efficient oxygen-transport system, we know little about how their flight capacity changes with age and environmental oxygen [...] Read more.
Similar to humans, insects lose their physical and physiological capacities with age, which makes them a convenient study system for human ageing. Although insects have an efficient oxygen-transport system, we know little about how their flight capacity changes with age and environmental oxygen conditions. We measured two types of locomotor performance in ageing Drosophila melanogaster flies: the frequency of wing beats and the capacity to climb vertical surfaces. Flight performance was measured under normoxia and hypoxia. As anticipated, ageing flies showed systematic deterioration of climbing performance, and low oxygen impeded flight performance. Against predictions, flight performance did not deteriorate with age, and younger and older flies showed similar levels of tolerance to low oxygen during flight. We suggest that among different insect locomotory activities, flight performance deteriorates slowly with age, which is surprising, given that insect flight is one of the most energy-demanding activities in animals. Apparently, the superior capacity of insects to rapidly deliver oxygen to flight muscles remains little altered by ageing, but we showed that insects can become oxygen limited in habitats with a poor oxygen supply (e.g., those at high elevations) during highly oxygen-demanding activities such as flight. Full article
Show Figures

Figure 1

Article
The Evolution of Molybdenum Dependent Nitrogenase in Cyanobacteria
Biology 2021, 10(4), 329; https://doi.org/10.3390/biology10040329 - 14 Apr 2021
Abstract
Nitrogen fixation plays a crucial role in the nitrogen cycle by helping to convert nitrogen into a form usable by other organisms. Bacteria capable of fixing nitrogen are found in six phyla including Cyanobacteria. Molybdenum dependent nitrogenase (nif) genes are thought [...] Read more.
Nitrogen fixation plays a crucial role in the nitrogen cycle by helping to convert nitrogen into a form usable by other organisms. Bacteria capable of fixing nitrogen are found in six phyla including Cyanobacteria. Molybdenum dependent nitrogenase (nif) genes are thought to share a single origin as they have homologs in various phyla. However, diazotrophic bacteria have a mosaic distribution within the cyanobacterial lineage. Therefore, the aim of this study was to determine the cause of this mosaic distribution. We identified nif gene operon structures in the genomes of 85 of the 179 cyanobacterial strains for which whole genome sequences were available. Four nif operons were conserved in each diazotroph Cyanobacterium, although there were some gene translocations and insertions. Phylogenetic inference of these genes did not reveal horizontal gene transfer from outside the phylum Cyanobacteria. These results support the hypothesis that the mosaic distribution of diazotrophic bacteria in the cyanobacterial lineage is the result of the independent loss of nif genes inherited from common cyanobacterial ancestors in each lineage. Full article
Show Figures

Figure 1

Article
Effects on Steroid 5-Alpha Reductase Gene Expression of Thai Rice Bran Extracts and Molecular Dynamics Study on SRD5A2
Biology 2021, 10(4), 319; https://doi.org/10.3390/biology10040319 - 11 Apr 2021
Cited by 2
Abstract
Steroid 5-alpha reductases (SRD5As) are responsible for the conversion of testosterone to dihydrotestosterone, a potent androgen, which is the aetiologic factor of androgenetic alopecia. This study aimed to compare the SRD5A gene expression suppression activity exerted by Thai rice bran extracts and their [...] Read more.
Steroid 5-alpha reductases (SRD5As) are responsible for the conversion of testosterone to dihydrotestosterone, a potent androgen, which is the aetiologic factor of androgenetic alopecia. This study aimed to compare the SRD5A gene expression suppression activity exerted by Thai rice bran extracts and their components and investigate the interactional mechanism between bioactive compounds and SRD5A2 using molecular dynamics (MD) simulation. Bran of Oryza sativa cv. Tubtim Chumphae (TRB), Yamuechaebia Morchor (YRB), Riceberry (RRB), and Malinil Surin (MRB), all rice milling by-products, was solvent-extracted. The ethanolic extract of TRB had the highest sum of overall bioactive compounds (γ-oryzanol; α-, β-, and γ-tocopherol; phenolics; and flavonoids). Among all extracts, TRB greatly downregulated the expression of SRD5A1, SRD5A2, and SRD5A3; there were no significant differences between TRB and finasteride regarding SRD5A suppression. The linear relationship and principal component analysis supported that the α-tocopherol content was correlated with the SRD5A suppression exerted by TRB. Furthermore, MD simulation demonstrated that α-tocopherol had the highest binding affinity towards SRD5A2 by interacting with residues Phe118 and Trp201. Our findings indicate that α-tocopherol effectively downregulates the expression of SRD5A genes and inhibits SRD5A2 activity, actions that are comparable to standard finasteride. TRB, a source of α-tocopherol, could be developed as an anti-hair loss product. Full article
(This article belongs to the Special Issue Bioactivity of Medicinal Plants and Extracts)
Show Figures

Figure 1

Article
A Duplicated Copy of the Meiotic Gene ZIP4 Preserves up to 50% Pollen Viability and Grain Number in Polyploid Wheat
Biology 2021, 10(4), 290; https://doi.org/10.3390/biology10040290 - 02 Apr 2021
Cited by 2
Abstract
Although most flowering plants are polyploid, little is known of how the meiotic process evolves after polyploidisation to stabilise and preserve fertility. On wheat polyploidisation, the major meiotic gene ZIP4 on chromosome 3B duplicated onto 5B and diverged (TaZIP4-B2). TaZIP4-B2 was [...] Read more.
Although most flowering plants are polyploid, little is known of how the meiotic process evolves after polyploidisation to stabilise and preserve fertility. On wheat polyploidisation, the major meiotic gene ZIP4 on chromosome 3B duplicated onto 5B and diverged (TaZIP4-B2). TaZIP4-B2 was recently shown to promote homologous pairing, synapsis and crossover, and suppress homoeologous crossover. We therefore suspected that these meiotic stabilising effects could be important for preserving wheat fertility. A CRISPR Tazip4-B2 mutant was exploited to assess the contribution of the 5B duplicated ZIP4 copy in maintaining pollen viability and grain setting. Analysis demonstrated abnormalities in 56% of meiocytes in the Tazip4-B2 mutant, with micronuclei in 50% of tetrads, reduced size in 48% of pollen grains and a near 50% reduction in grain number. Further studies showed that most of the reduced grain number occurred when Tazip4-B2 mutant plants were pollinated with the less viable Tazip4-B2 mutant pollen rather than with wild type pollen, suggesting that the stabilising effect of TaZIP4-B2 on meiosis has a greater consequence in subsequent male, rather than female gametogenesis. These studies reveal the extraordinary value of the wheat chromosome 5B TaZIP4-B2 duplication to agriculture and human nutrition. Future studies should further investigate the role of TaZIP4-B2 on female fertility and assess whether different TaZIP4-B2 alleles exhibit variable effects on meiotic stabilisation and/or resistance to temperature change. Full article
(This article belongs to the Special Issue Crop Improvement Now and Beyond)
Show Figures

Figure 1

Article
PER2 Circadian Oscillation Sensitizes Esophageal Cancer Cells to Chemotherapy
Biology 2021, 10(4), 266; https://doi.org/10.3390/biology10040266 - 26 Mar 2021
Cited by 1
Abstract
Esophageal squamous cell carcinoma (eSCC) accounts for more than 85% cases of esophageal cancer worldwide and the 5-year survival rate associated with metastatic eSCC is poor. This low survival rate is the consequence of a complex mechanism of resistance to therapy and tumor [...] Read more.
Esophageal squamous cell carcinoma (eSCC) accounts for more than 85% cases of esophageal cancer worldwide and the 5-year survival rate associated with metastatic eSCC is poor. This low survival rate is the consequence of a complex mechanism of resistance to therapy and tumor relapse. To effectively reduce the mortality rate of this disease, we need to better understand the molecular mechanisms underlying the development of resistance to therapy and translate that knowledge into novel approaches for cancer treatment. The circadian clock orchestrates several physiological processes through the establishment and synchronization of circadian rhythms. Since cancer cells need to fuel rapid proliferation and increased metabolic demands, the escape from circadian rhythm is relevant in tumorigenesis. Although clock related genes may be globally repressed in human eSCC samples, PER2 expression still oscillates in some human eSCC cell lines. However, the consequences of this circadian rhythm are still unclear. In the present study, we confirm that PER2 oscillations still occur in human cancer cells in vitro in spite of a deregulated circadian clock gene expression. Profiling of eSCC cells by RNAseq reveals that when PER2 expression is low, several transcripts related to apoptosis are upregulated. Consistently, treating eSCC cells with cisplatin when PER2 expression is low enhances DNA damage and leads to a higher apoptosis rate. Interestingly, this process is conserved in a mouse model of chemically-induced eSCC ex vivo. These results therefore suggest that response to therapy might be enhanced in esophageal cancers using chronotherapy. Full article
(This article belongs to the Special Issue Circadian Disruption and Metabolic Disorders)
Show Figures

Figure 1

Article
Structural and Ultrastructural Morphological Evaluation of Giant Anteater (Myrmecophaga tridactyla) Prostate Gland
Biology 2021, 10(3), 231; https://doi.org/10.3390/biology10030231 - 17 Mar 2021
Abstract
The giant anteater (Myrmecophaga tridactyla) is a vulnerable species from Central and South America, and is considered possibly extinct in Belize, Guatemala, El Salvador, and Uruguay. Due to the species’ conservation and reproductive importance, this research aimed to characterize the morphology, [...] Read more.
The giant anteater (Myrmecophaga tridactyla) is a vulnerable species from Central and South America, and is considered possibly extinct in Belize, Guatemala, El Salvador, and Uruguay. Due to the species’ conservation and reproductive importance, this research aimed to characterize the morphology, histochemical, immunohistochemical, and ultrastructural feature of the giant anteater prostate gland. For this, we collected 11 giant anteater prostate glands and performed macroscopic, morphological, histochemical, immunohistochemical, and ultrastructural analysis. Nine prostate glands from an adult subject and two from young subjects were studied. Grossly, the adult giant anteater prostate gland is divided in two distinct zones; the central zones (composed mainly of ducts) and the peripheral zones (of acini formed by secretory cells). The secretory cells showed positive periodic acid–Schiff staining. Furthermore, the immunohistochemical characterization revealed a similar human prostate pattern, with p63 staining basal cells, uroplakin III (UPIII) superficial cells of prostatic urethra, androgen receptor (AR) expressing nucleus of secretory and stromal cells, and prostatic specific antigen (PSA) staining prostatic epithelial cells. Overall, our research provided an in-depth morphological description of the giant anteater’s prostate gland, providing valuable information for futures studies focused on giant anteater conservation. Full article
(This article belongs to the Section Developmental Biology)
Show Figures

Figure 1

Article
In Vivo Hepatoprotective and Nephroprotective Activity of Acylated Iridoid Glycosides from Scrophularia hepericifolia
Biology 2021, 10(2), 145; https://doi.org/10.3390/biology10020145 - 12 Feb 2021
Abstract
Phytochemical investigation of the chloroform fraction obtained from Scrophularia hypericifolia aerial parts led to the isolation of nine acylated iridoid glycosides. The new compounds were identified as 6-O-α-L(2″-acetyl, 3″,4″-di-O-trans-cinnamoyl) rhamnopyranosyl-6′-acetyl catalpol (6′-acetyl hypericifolin A) (1), 6-O-α-L(2″, 4″-diacetyl, 3″-O-trans [...] Read more.
Phytochemical investigation of the chloroform fraction obtained from Scrophularia hypericifolia aerial parts led to the isolation of nine acylated iridoid glycosides. The new compounds were identified as 6-O-α-L(2″-acetyl, 3″,4″-di-O-trans-cinnamoyl) rhamnopyranosyl-6′-acetyl catalpol (6′-acetyl hypericifolin A) (1), 6-O-α-L(2″, 4″-diacetyl, 3″-O-trans-cinnamoyl) rhamnopyranosyl-6′-acetyl catalpol (6′-acetyl hypericifolin B) (2), 6-O-α-L(2″-acetyl, 3″,4″-di-O-trans-cinnamoyl) rhamnopyranosyl catalpol (hypericifolin A) (3) and 6-O-α-L(2″, 4″-diacetyl, 3″-O-trans-cinnamoyl) rhamnopyranosyl catalpol (hypericifolin B) (4). Previously reported compounds were identified as laterioside (5), 8-O-acetylharpagide (6), 6-O-α-L(4′-O-trans-cinnamoyl) rhamnopyranosyl catalpol (7), lagotisoside D (8) and harpagoside (9). Identification achieved via analyses of physical and spectral data including 1D, 2D NMR and High Resolution Electrospray Ionization Mass spectroscopy (HRESIMS). Compounds 24 and 6 were subjected to biological evaluation against paracetamol-induced toxicity. The biochemical parameters aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and gamma glutamyl transpeptidase (GGT) as well as total bilirubin were used to access the liver condition. Measurement of serum levels of urea, creatinine, sodium and potassium cations were indicators for kidney condition. Liver and kidney samples were subjected to histopathological study. The best protection was found in the group treated with 3 followed by 4 and 6, while 2 was almost inactive. Full article
Show Figures

Figure 1

Article
Entropic Competition between Supercoiled and Torsionally Relaxed Chromatin Fibers Drives Loop Extrusion through Pseudo-Topologically Bound Cohesin
Biology 2021, 10(2), 130; https://doi.org/10.3390/biology10020130 - 07 Feb 2021
Cited by 2
Abstract
We propose a model for cohesin-mediated loop extrusion, where the loop extrusion is driven entropically by the energy difference between supercoiled and torsionally relaxed chromatin fibers. Different levels of negative supercoiling are controlled by varying imposed friction between the cohesin ring and the [...] Read more.
We propose a model for cohesin-mediated loop extrusion, where the loop extrusion is driven entropically by the energy difference between supercoiled and torsionally relaxed chromatin fibers. Different levels of negative supercoiling are controlled by varying imposed friction between the cohesin ring and the chromatin fiber. The speed of generation of negative supercoiling by RNA polymerase associated with TOP1 is kept constant and corresponds to 10 rotations per second. The model was tested by coarse-grained molecular simulations for a wide range of frictions between 2 to 200 folds of that of generic fiber and the surrounding medium. The higher friction allowed for the accumulation of higher levels of supercoiling, while the resulting extrusion rate also increased. The obtained extrusion rates for the given range of investigated frictions were between 1 and 10 kbps, but also a saturation of the rate at high frictions was observed. The calculated contact maps indicate a qualitative improvement obtained at lower levels of supercoiling. The fits of mathematical equations qualitatively reproduce the loop sizes and levels of supercoiling obtained from simulations and support the proposed mechanism of entropically driven extrusion. The cohesin ring is bound on the fibers pseudo-topologically, and the model suggests that the topological binding is not necessary. Full article
(This article belongs to the Special Issue Chromatin Dynamics)
Show Figures

Graphical abstract

Article
Identification of an RNA Silencing Suppressor Encoded by a Symptomless Fungal Hypovirus, Cryphonectria Hypovirus 4
Biology 2021, 10(2), 100; https://doi.org/10.3390/biology10020100 - 31 Jan 2021
Cited by 2
Abstract
Previously, we have reported the ability of a symptomless hypovirus Cryphonectria hypovirus 4 (CHV4) of the chestnut blight fungus to facilitate stable infection by a co-infecting mycoreovirus 2 (MyRV2)—likely through the inhibitory effect of CHV4 on RNA silencing (Aulia et al., Virology, 2019). [...] Read more.
Previously, we have reported the ability of a symptomless hypovirus Cryphonectria hypovirus 4 (CHV4) of the chestnut blight fungus to facilitate stable infection by a co-infecting mycoreovirus 2 (MyRV2)—likely through the inhibitory effect of CHV4 on RNA silencing (Aulia et al., Virology, 2019). In this study, the N-terminal portion of the CHV4 polyprotein, termed p24, is identified as an autocatalytic protease capable of suppressing host antiviral RNA silencing. Using a bacterial expression system, CHV4 p24 is shown to cleave autocatalytically at the di-glycine peptide (Gly214-Gly215) of the polyprotein through its protease activity. Transgenic expression of CHV4 p24 in Cryphonectria parasitica suppresses the induction of one of the key genes of the antiviral RNA silencing, dicer-like 2, and stabilizes the infection of RNA silencing-susceptible virus MyRV2. This study shows functional similarity between CHV4 p24 and its homolog p29, encoded by the symptomatic prototype hypovirus CHV1. Full article
(This article belongs to the Special Issue Biology of Hidden Partners: Fungi and Plants)
Show Figures

Figure 1

Article
Plasma Concentrations of Extracellular Vesicles Are Decreased in Patients with Post-Infarct Cardiac Remodelling
Biology 2021, 10(2), 97; https://doi.org/10.3390/biology10020097 - 30 Jan 2021
Cited by 2
Abstract
Background, the mechanisms underlying left ventricular remodelling (LVR) after acute myocardial infarction (AMI) remain obscure. In the course of AMI, blood cells and endothelial cells release extracellular vesicles (EVs). We hypothesized that changes in EV concentrations after AMI may underlie LVR. Methods, plasma [...] Read more.
Background, the mechanisms underlying left ventricular remodelling (LVR) after acute myocardial infarction (AMI) remain obscure. In the course of AMI, blood cells and endothelial cells release extracellular vesicles (EVs). We hypothesized that changes in EV concentrations after AMI may underlie LVR. Methods, plasma concentrations of EVs from endothelial cells (CD146+), erythrocytes (CD235a+), leukocytes (CD45+), platelets (CD61+), activated platelets (P-selectin+), and EVs exposing phosphatidylserine after AMI were determined by flow cytometry in 55 patients with the first AMI. LVR was defined as an increase in left ventricular end-diastolic volume by 20% at 6 months after AMI, compared to baseline. Results, baseline concentrations of EVs from endothelial cells, erythrocytes and platelets were lower in patients who developed LVR (p ≤ 0.02 for all). Concentrations of EVs from endothelial cells and erythrocytes were independent LVR predictors (OR 8.2, CI 1.3–54.2 and OR 17.8, CI 2.3–138.6, respectively) in multivariate analysis. Combining the three EV subtypes allowed to predict LVR with 83% sensitivity and 87% specificity. Conclusions, decreased plasma concentrations of EVs from endothelial cells, erythrocytes and platelets predict LVR after AMI. Since EV release EVs contributes to cellular homeostasis by waste removal, decreased concentrations of EVs may indicate dysfunctional cardiac homeostasis after AMI, thus promoting LVR. Full article
(This article belongs to the Collection Extracellular Vesicles: From Biomarkers to Therapeutic Tools)
Show Figures

Figure 1

Article
Plant Endemism Centres and Biodiversity Hotspots in Greece
Biology 2021, 10(2), 72; https://doi.org/10.3390/biology10020072 - 20 Jan 2021
Cited by 13
Abstract
Biodiversity hotspots (BH) cover a small fraction of the Earth’s surface, yet host numerous endemics. Human-induced biodiversity loss has been increasing worldwide, despite attempts to halt the extinction crisis. There is thus an urgent need to efficiently allocate the available conservation funds in [...] Read more.
Biodiversity hotspots (BH) cover a small fraction of the Earth’s surface, yet host numerous endemics. Human-induced biodiversity loss has been increasing worldwide, despite attempts to halt the extinction crisis. There is thus an urgent need to efficiently allocate the available conservation funds in an optimised conservation prioritization scheme. Identifying BH and endemism centres (EC) is therefore a valuable tool in conservation prioritization and planning. Even though Greece is one of the most plant species-rich European countries, few studies have dealt with the identification of BH or EC and none has ever incorporated phylogenetic information or extended to the national scale. Consequently, we are unaware of the extent that Special Areas of Conservation (SAC) of the Natura 2000 network efficiently protect Greek plant diversity. Here, we located for the first time at a national scale and in a phylogenetic framework, the areas serving as BH and EC, and assessed the effectiveness of the Greek SAC in safeguarding them. BH and EC are mainly located near mountainous areas, and in areas supposedly floristically impoverished, such as the central Aegean islands. A critical re-assessment of the Greek SAC might be needed to minimize the extinction risk of the Greek endemics, by focusing the conservation efforts also on the BH and EC that fall outside the established Greek SAC. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Figure 1

Article
Human Fatalities Caused by Hornet, Wasp and Bee Stings in Spain: Epidemiology at State and Sub-State Level from 1999 to 2018
Biology 2021, 10(2), 73; https://doi.org/10.3390/biology10020073 - 20 Jan 2021
Abstract
Epidemiology of fatalities in Spain due to hornet, wasp, and bee stings (Cause Code of Death: X23) is described. Over a 20-year period (1999–2018), a total of 78 fatalities were recorded, mostly occurring in males (85.9%), of 65 years and older (52.6%), at [...] Read more.
Epidemiology of fatalities in Spain due to hornet, wasp, and bee stings (Cause Code of Death: X23) is described. Over a 20-year period (1999–2018), a total of 78 fatalities were recorded, mostly occurring in males (85.9%), of 65 years and older (52.6%), at “unspecified places” (67.9%), and in the months of July and August (50%). The X23 mortality rates (X23MR) expressed in terms of annual rates and per million inhabitants, varied from 0.02 to 0.19 (mean value ± standard deviation = 0.09 ± 0.05), placing Spain at low levels in comparison with other countries. A more detailed and specific breakdown of the distribution of the yearly deaths at the sub-state level and across communities reveals some striking features. They were more concentrated in the communities of Galicia (35.8%), Andalucía (21.7%), and Castilla y León (12.8%). X23MR were estimated in Galicia at 1.82, 1.10, and 2.22 in 2014, 2016, and 2018, respectively; and in Asturias at 1.88 and 0.97, in 2014 and 2017, respectively. The role of the invasive species Vespa velutina (VV) is examined. Due to its habits, abundance, and broader distribution, the risk that VV represents to human health is unmatched by other Hymenoptera native species. Full article
(This article belongs to the Section Medical Biology)
Show Figures

Figure 1

Article
A Modelling Framework Linking Resource-Based Stochastic Translation to the Optimal Design of Synthetic Constructs
Biology 2021, 10(1), 37; https://doi.org/10.3390/biology10010037 - 07 Jan 2021
Cited by 1
Abstract
The effect of gene expression burden on engineered cells has motivated the use of “whole-cell models” (WCMs) that use shared cellular resources to predict how unnatural gene expression affects cell growth. A common problem with many WCMs is their inability to capture translation [...] Read more.
The effect of gene expression burden on engineered cells has motivated the use of “whole-cell models” (WCMs) that use shared cellular resources to predict how unnatural gene expression affects cell growth. A common problem with many WCMs is their inability to capture translation in sufficient detail to consider the impact of ribosomal queue formation on mRNA transcripts. To address this, we have built a “stochastic cell calculator” (StoCellAtor) that combines a modified TASEP with a stochastic implementation of an existing WCM. We show how our framework can be used to link a synthetic construct’s modular design (promoter, ribosome binding site (RBS) and codon composition) to protein yield during continuous culture, with a particular focus on the effects of low-efficiency codons and their impact on ribosomal queues. Through our analysis, we recover design principles previously established in our work on burden-sensing strategies, namely that changing promoter strength is often a more efficient way to increase protein yield than RBS strength. Importantly, however, we show how these design implications can change depending on both the duration of protein expression, and on the presence of ribosomal queues. Full article
(This article belongs to the Special Issue Computational Methods in Synthetic Biology)
Show Figures

Graphical abstract

Article
Combined Impact of No-Till and Cover Crops with or without Short-Term Water Stress as Revealed by Physicochemical and Microbiological Indicators
Biology 2021, 10(1), 23; https://doi.org/10.3390/biology10010023 - 01 Jan 2021
Cited by 1
Abstract
Combining no-till and cover crops (NT + CC) as an alternative to conventional tillage (CT) is generating interest to build-up farming systems’ resilience while promoting climate change adaptation in agriculture. Our field study aimed to assess the impact of long-term NT + CC [...] Read more.
Combining no-till and cover crops (NT + CC) as an alternative to conventional tillage (CT) is generating interest to build-up farming systems’ resilience while promoting climate change adaptation in agriculture. Our field study aimed to assess the impact of long-term NT + CC management and short-term water stress on soil microbial communities, enzymatic activities, and the distribution of C and N within soil aggregates. High-throughput sequencing (HTS) revealed the positive impact of NT + CC on microbial biodiversity, especially under water stress conditions, with the presence of important rhizobacteria (e.g., Bradyrhizobium spp.). An alteration index based on soil enzymes confirmed soil depletion under CT. C and N pools within aggregates showed an enrichment under NT + CC mostly due to C and N-rich large macroaggregates (LM), accounting for 44% and 33% of the total soil C and N. Within LM, C and N pools were associated to microaggregates within macroaggregates (mM), which are beneficial for long-term C and N stabilization in soils. Water stress had detrimental effects on aggregate formation and limited C and N inclusion within aggregates. The microbiological and physicochemical parameters correlation supported the hypothesis that long-term NT + CC is a promising alternative to CT, due to the contribution to soil C and N stabilization while enhancing the biodiversity and enzymes. Full article
(This article belongs to the Special Issue Linking Soil Biology to Agro-Ecosystems Functional Sustainability)
Show Figures

Figure 1

Article
Inhibition of FGF and TGF-β Pathways in hESCs Identify STOX2 as a Novel SMAD2/4 Cofactor
Biology 2020, 9(12), 470; https://doi.org/10.3390/biology9120470 - 16 Dec 2020
Cited by 1
Abstract
The fibroblast growth factor (FGF) and the transforming growth factor-β (TGF-β) pathways are both involved in the maintenance of human embryonic stem cells (hESCs) and regulate the onset of their differentiation. Their converging functions have suggested that these pathways might share a wide [...] Read more.
The fibroblast growth factor (FGF) and the transforming growth factor-β (TGF-β) pathways are both involved in the maintenance of human embryonic stem cells (hESCs) and regulate the onset of their differentiation. Their converging functions have suggested that these pathways might share a wide range of overlapping targets. Published studies have focused on the long-term effects (24–48 h) of FGF and TGF-β inhibition in hESCs, identifying direct and indirect target genes. In this study, we focused on the earliest transcriptome changes occurring between 3 and 9 h after FGF and TGF-β inhibition to identify direct target genes only. Our analysis clearly shows that only a handful of target transcripts are common to both pathways. This is surprising in light of the previous literature, and has implications for models of cell signaling in human pluripotent cells. In addition, we identified STOX2 as a novel primary target of the TGF-β signaling pathway. We show that STOX2 might act as a novel SMAD2/4 cofactor. Taken together, our results provide insights into the effect of cell signaling on the transcription profile of human pluripotent cells Full article
(This article belongs to the Special Issue Pluripotent Stem Cells, Cell Reprogramming and Tissue Modelling)
Show Figures

Figure 1

Article
The Cytoplasmic LIM Domain Protein Espinas Contributes to Photoreceptor Layer Selection in the Visual System
Biology 2020, 9(12), 466; https://doi.org/10.3390/biology9120466 - 14 Dec 2020
Abstract
During circuit assembly it is essential that neurons connect with their specific synaptic partners. To facilitate this process, a common strategy in many organisms is the organization of brain regions, including the fly visual system, in layers and columns. The atypical-cadherin Flamingo (Fmi) [...] Read more.
During circuit assembly it is essential that neurons connect with their specific synaptic partners. To facilitate this process, a common strategy in many organisms is the organization of brain regions, including the fly visual system, in layers and columns. The atypical-cadherin Flamingo (Fmi) and the receptor Golden Goal (Gogo) were proposed to regulate both the temporary and final layer selection of the R8 photoreceptor, through the cytoplasmic domain of Gogo. Our data suggests that Fmi intracellular signaling is also relevant for R8 final layer selection. The LIM-domain cytoplasmic molecule Espinas (Esn) binds Fmi, and they cooperatively control dendritic self-avoidance in sensory neurons. We observed defects in R8 layer selection in esn mutants with axons overshooting the final target layer, and we demonstrated that the LIM domain is necessary for layer selection. fmi knockdown in photoreceptors results in most R8 axons stalling at the temporary layer, however, we also detected R8 axons projecting past the final-target layer, and showed that fmi and esn genetically interact. Based on the previously described physical and genetic interactions between Fmi/Esn and the findings presented here, we propose that Esn signals downstream of Fmi to stabilize R8 axons in their final target layer. Full article
(This article belongs to the Section Neuroscience)
Show Figures

Figure 1

Article
Kin-Mediated Male Choice and Alternative Reproductive Tactics in Spider Mites
Biology 2020, 9(11), 360; https://doi.org/10.3390/biology9110360 - 26 Oct 2020
Cited by 1
Abstract
Optimal outbreeding and kin selection theories state that the degree of kinship is a fundamental determinant in any mating system. However, the role of kinship in male choice and alternative reproductive tactics (ARTs) is poorly known. We assessed the influence of kinship on [...] Read more.
Optimal outbreeding and kin selection theories state that the degree of kinship is a fundamental determinant in any mating system. However, the role of kinship in male choice and alternative reproductive tactics (ARTs) is poorly known. We assessed the influence of kinship on male choice and expression of ARTs in two populations of two-spotted spider mites Tetranychus urticae. Male spider mites guard premature females, which is an indicator of mate choice, and may conditionally adopt fighting or sneaking tactics to secure access to females. Males competing with kin or non-kin were offered one kin or non-kin female (experiment 1) and single males were presented a choice of kin and non-kin females (experiment 2). Under kin competition, males of both populations were more prone to guard non-kin than kin females at a 3:1 fighter:sneaker ratio. Under non-kin competition, all males were fighters. Under no-choice, males used novelty as indicator of genetic dissimilarity, serving as absolute decision rule for outbreeding. Under choice, comparative evaluation allowed males to preferentially guard females with higher reproductive potential. Overall, our study suggests that male spider mites can assess kinship of rivals and prospective mates. Kin discrimination allows adaptive, context-specific non-random mating preference and adjustment of ARTs. Full article
(This article belongs to the Section Behavior Biology)
Show Figures

Figure 1

Article
Cloning of Thalassiosira pseudonana’s Mitochondrial Genome in Saccharomyces cerevisiae and Escherichia coli
Biology 2020, 9(11), 358; https://doi.org/10.3390/biology9110358 - 26 Oct 2020
Abstract
Algae are attractive organisms for biotechnology applications such as the production of biofuels, medicines, and other high-value compounds due to their genetic diversity, varied physical characteristics, and metabolic processes. As new species are being domesticated, rapid nuclear and organelle genome engineering methods need [...] Read more.
Algae are attractive organisms for biotechnology applications such as the production of biofuels, medicines, and other high-value compounds due to their genetic diversity, varied physical characteristics, and metabolic processes. As new species are being domesticated, rapid nuclear and organelle genome engineering methods need to be developed or optimized. To that end, we have previously demonstrated that the mitochondrial genome of microalgae Phaeodactylum tricornutum can be cloned and engineered in Saccharomyces cerevisiae and Escherichia coli. Here, we show that the same approach can be used to clone mitochondrial genomes of another microalga, Thalassiosira pseudonana. We have demonstrated that these genomes can be cloned in S. cerevisiae as easily as those of P. tricornutum, but they are less stable when propagated in E. coli. Specifically, after approximately 60 generations of propagation in E. coli, 17% of cloned T. pseudonana mitochondrial genomes contained deletions compared to 0% of previously cloned P. tricornutum mitochondrial genomes. This genome instability is potentially due to the lower G+C DNA content of T. pseudonana (30%) compared to P. tricornutum (35%). Consequently, the previously established method can be applied to clone T. pseudonana’s mitochondrial genome, however, more frequent analyses of genome integrity will be required following propagation in E. coli prior to use in downstream applications. Full article
(This article belongs to the Special Issue Exploring and Designing Novel Microbes for Biotechnology)
Show Figures

Figure 1

Article
The Effect of a 13-Valent Conjugate Pneumococcal Vaccine on Circulating Antibodies Against Oxidized LDL and Phosphorylcholine in Man, A Randomized Placebo-Controlled Clinical Trial
Biology 2020, 9(11), 345; https://doi.org/10.3390/biology9110345 - 22 Oct 2020
Cited by 2
Abstract
In mice vaccination with Streptococcus pneumoniae results in an increase in anti-oxLDL IgM antibodies due to mimicry of anti-phosphorylcholine (present in the cell wall of S. pneumoniae) and anti-oxLDL IgM. In this study we investigated the human translation of this molecular mimicry [...] Read more.
In mice vaccination with Streptococcus pneumoniae results in an increase in anti-oxLDL IgM antibodies due to mimicry of anti-phosphorylcholine (present in the cell wall of S. pneumoniae) and anti-oxLDL IgM. In this study we investigated the human translation of this molecular mimicry by vaccination against S. pneumoniae using the Prevenar-13 vaccine. Twenty-four healthy male volunteers were vaccinated with Prevenar-13, either three times, twice or once in a double-blind, placebo-controlled, randomized single center clinical study. Anti-pneumococcal wall, oxLDL and phosphorycholine antibody levels were measured at a fixed serum dilution, as well as circulating lipid levels over the course of 68 weeks. A significant increase in anti-oxLDL IgG and IgM was seen in the group receiving two doses six months apart compared to the placebo. However, these differences were not observed in the groups receiving a single dose, two doses one month apart, or three doses. This study shows that vaccination with Prevenar-13 does not result in robust anti-oxLDL IgM levels in humans. Further research would be required to test alternative pneumococcal-based vaccines, vaccination regimens or study populations, such as cardiovascular disease patients. Full article
Show Figures

Figure 1

Article
Super-Resolution Fluorescence Microscopy Reveals Clustering Behaviour of Chlamydia pneumoniae’s Major Outer Membrane Protein
Biology 2020, 9(10), 344; https://doi.org/10.3390/biology9100344 - 20 Oct 2020
Cited by 2
Abstract
Chlamydia pneumoniae is a Gram-negative bacterium responsible for a number of human respiratory diseases and linked to some chronic inflammatory diseases. The major outer membrane protein (MOMP) of Chlamydia is a conserved immunologically dominant protein located in the outer membrane, which, together with [...] Read more.
Chlamydia pneumoniae is a Gram-negative bacterium responsible for a number of human respiratory diseases and linked to some chronic inflammatory diseases. The major outer membrane protein (MOMP) of Chlamydia is a conserved immunologically dominant protein located in the outer membrane, which, together with its surface exposure and abundance, has led to MOMP being the main focus for vaccine and antimicrobial studies in recent decades. MOMP has a major role in the chlamydial outer membrane complex through the formation of intermolecular disulphide bonds, although the exact interactions formed are currently unknown. Here, it is proposed that due to the large number of cysteines available for disulphide bonding, interactions occur between cysteine-rich pockets as opposed to individual residues. Such pockets were identified using a MOMP homology model with a supporting low-resolution (~4 Å) crystal structure. The localisation of MOMP in the E. coli membrane was assessed using direct stochastic optical reconstruction microscopy (dSTORM), which showed a decrease in membrane clustering with cysteine-rich regions containing two mutations. These results indicate that disulphide bond formation was not disrupted by single mutants located in the cysteine-dense regions and was instead compensated by neighbouring cysteines within the pocket in support of this cysteine-rich pocket hypothesis. Full article
Show Figures

Figure 1

Article
Coupling of the AQUATOX and EFDC Models for Ecological Impact Assessment of Chemical Spill Scenarios in the Jeonju River, Korea
Biology 2020, 9(10), 340; https://doi.org/10.3390/biology9100340 - 19 Oct 2020
Abstract
In this study, an ecological impact was assessed for the short-term leak scenario through the AQUATOX-EFDC model, which combines the proven ecological model AQUATOX with the hydrodynamic model EFDC. A case study of the coupled AQUATOX-EFDC model was conducted for 30–30,000 kg toluene [...] Read more.
In this study, an ecological impact was assessed for the short-term leak scenario through the AQUATOX-EFDC model, which combines the proven ecological model AQUATOX with the hydrodynamic model EFDC. A case study of the coupled AQUATOX-EFDC model was conducted for 30–30,000 kg toluene leak scenarios in the Jeonju River in South Korea. A 21-day scenario simulation was conducted, and the impact of the toluene spill accident was evaluated by comparing the biomass between the control simulation and the perturbed simulation. As a result of the simulation, it was found that in the scenario in which 3000 kg of toluene was leaked for a day, a substantial change was expected in the range of 0–640 m from the accident site. Additionally, for a 30,000 kg leak, a substantial change was expected in the range of 0–2300 m from the accident site, and the greatest damage was observed for the fish species group, the top predators. As a result, the AQUATOX-EFDC simulation showed a significant ecological impact, and the proposed model will be helpful to understand the ecological impact and establish the management strategy for the ecological risk of the chemical spill. Full article
(This article belongs to the Section Ecology)
Show Figures

Figure 1

Article
Clinical Veterinary Boron Neutron Capture Therapy (BNCT) Studies in Dogs with Head and Neck Cancer: Bridging the Gap between Translational and Clinical Studies
Biology 2020, 9(10), 327; https://doi.org/10.3390/biology9100327 - 07 Oct 2020
Cited by 1
Abstract
Translational Boron Neutron Capture Therapy (BNCT) studies performed by our group and clinical BNCT studies worldwide have shown the therapeutic efficacy of BNCT for head and neck cancer. The present BNCT studies in veterinary patients with head and neck cancer were performed to [...] Read more.
Translational Boron Neutron Capture Therapy (BNCT) studies performed by our group and clinical BNCT studies worldwide have shown the therapeutic efficacy of BNCT for head and neck cancer. The present BNCT studies in veterinary patients with head and neck cancer were performed to optimize the therapeutic efficacy of BNCT, contribute towards exploring the role of BNCT in veterinary medicine, put in place technical aspects for an upcoming clinical trial of BNCT for head and neck cancer at the RA-6 Nuclear Reactor, and assess the feasibility of employing the existing B2 beam to treat large, deep-seated tumors. Five dogs with head and neck cancer with no other therapeutic option were treated with two applications of BNCT mediated by boronophenyl-alanine (BPA) separated by 3–5 weeks. Two to three portals per BNCT application were used to achieve a potentially therapeutic dose over the tumor without exceeding normal tissue tolerance. Clinical and Computed Tomography results evidenced partial tumor control in all cases, with slight-moderate mucositis, excellent life quality, and prolongation in the survival time estimated at recruitment. These exploratory studies show the potential value of BNCT in veterinary medicine and contribute towards initiating a clinical BNCT trial for head and neck cancer at the RA-6 clinical facility. Full article
(This article belongs to the Special Issue Boron Neutron Capture Therapy: From Nuclear Physics to Biomedicine)
Show Figures

Figure 1

Article
Exogenous Abscisic Acid Can Influence Photosynthetic Processes in Peas through a Decrease in Activity of H+-ATP-ase in the Plasma Membrane
Biology 2020, 9(10), 324; https://doi.org/10.3390/biology9100324 - 04 Oct 2020
Cited by 6
Abstract
Abscisic acid (ABA) is an important hormone in plants that participates in their acclimation to the action of stressors. Treatment by exogenous ABA and its synthetic analogs are a potential way of controlling the tolerance of agricultural plants; however, the mechanisms of influence [...] Read more.
Abscisic acid (ABA) is an important hormone in plants that participates in their acclimation to the action of stressors. Treatment by exogenous ABA and its synthetic analogs are a potential way of controlling the tolerance of agricultural plants; however, the mechanisms of influence of the ABA treatment on photosynthetic processes require further investigations. The aim of our work was to investigate the participation of inactivation of the plasma membrane H+-ATP-ase on the influence of ABA treatment on photosynthetic processes and their regulation by electrical signals in peas. The ABA treatment of seedlings was performed by spraying them with aqueous solutions (10−5 M). The combination of a Dual-PAM-100 PAM fluorometer and GFS-3000 infrared gas analyzer was used for photosynthetic measurements; the patch clamp system on the basis of a SliceScope Pro 2000 microscope was used for measurements of electrical activity. It was shown that the ABA treatment stimulated the cyclic electron flow around photosystem I and decreased the photosynthetic CO2 assimilation, the amplitude of burning-induced electrical signals (variation potentials), and the magnitude of photosynthetic responses relating to these signals; in contrast, treatment with exogenous ABA increased the heat tolerance of photosynthesis. An investigation of the influence of ABA treatment on the metabolic component of the resting potential showed that this treatment decreased the activity of the H+-ATP-ase in the plasma membrane. Inhibitor analysis using sodium orthovanadate demonstrated that this decrease may be a mechanism of the ABA treatment-induced changes in photosynthetic processes, their heat tolerance, and regulation by electrical signals. Full article
(This article belongs to the Section Plant Science)
Show Figures

Graphical abstract

Article
National Publication Productivity during the COVID-19 Pandemic—A Preliminary Exploratory Analysis of the 30 Countries Most Affected
Biology 2020, 9(9), 271; https://doi.org/10.3390/biology9090271 - 05 Sep 2020
Cited by 8
Abstract
Background: The COVID 19 pandemic increased publication productivity enormously with numerous new COVID-19-related articles appearing daily, despite the fact that many health care workers in the partially overburdened national health care systems were faced with major challenges. Methods: In a cross-sectional, observational, retrospective [...] Read more.
Background: The COVID 19 pandemic increased publication productivity enormously with numerous new COVID-19-related articles appearing daily, despite the fact that many health care workers in the partially overburdened national health care systems were faced with major challenges. Methods: In a cross-sectional, observational, retrospective study we compared and correlated 17 epidemiologic, health care system-related and health-economic factors from medical databases and intergovernmental organisations potentially influencing the COVID-19 and non-COVID-19 publication productivity between 1 January and 30 April 2020 amongst the 30 countries most severely affected by the pandemic. These factors were additionally correlated with the national pre-COVID-19 publication rate for the same pre-year period to identify potential changes in the general publication behaviour. Findings: COVID-19 and non-COVID-19 publication rates correlated strongest with access to and quality of health care (ρ = 0.80 and 0.87, p < 0.0001), COVID-19 cases per capita (ρ = 0.78 and 0.72, p < 0.0001), GDP per capita (ρ = 0.69 and 0.76, p < 0.0001), health spending per capita (ρ = 0.61 and 0.73, p < 0.0001) and the pre-COVID-19 Hirsch-Index (ρ = 0.61 and 0.62, p = 0.002 and <0.0001). Ratios of publication rates for “Cancer”, “Diabetes” and “Stroke” in 2020 versus the pre-year period were 0.88 ± 0.06, 1.02 ± 0.18 and 0.9 ± 0.20, resulting in a pooled ratio of 0.93 ± 0.06 for non-COVID-19 publications. Interpretation: There are marked geographic and national differences in publication productivity during the COVID-19 pandemic. Both COVID-19- and non-COVID-19 publication productivity correlates with epidemiologic, health care system-related and healtheconomic factors, and pre-COVID publication expertise. Countries with a stable scientific infrastructure appear to maintain non-COVID-19 publication productivity nearly at the pre-year level and at the same time use their resilience to produce COVID-19 publications at high rates. Full article
(This article belongs to the Special Issue Coronavirus Disease 2019 (COVID-19))
Show Figures

Figure 1

Article
Deep Learning Neural Network Prediction Method Improves Proteome Profiling of Vascular Sap of Grapevines during Pierce’s Disease Development
Biology 2020, 9(9), 261; https://doi.org/10.3390/biology9090261 - 01 Sep 2020
Cited by 2
Abstract
Plant secretome studies highlight the importance of vascular plant defense proteins against pathogens. Studies on Pierce’s disease of grapevines caused by the xylem-limited bacterium Xylella fastidiosa (Xf) have detected proteins and pathways associated with its pathobiology. Despite the biological importance of [...] Read more.
Plant secretome studies highlight the importance of vascular plant defense proteins against pathogens. Studies on Pierce’s disease of grapevines caused by the xylem-limited bacterium Xylella fastidiosa (Xf) have detected proteins and pathways associated with its pathobiology. Despite the biological importance of the secreted proteins in the extracellular space to plant survival and development, proteome studies are scarce due to methodological challenges. Prosit, a deep learning neural network prediction method is a powerful tool for improving proteome profiling by data-independent acquisition (DIA). We explored the potential of Prosit’s in silico spectral library predictions to improve DIA proteomic analysis of vascular leaf sap from grapevines with Pierce’s disease. The combination of DIA and Prosit-predicted libraries increased the total number of identified grapevine proteins from 145 to 360 and Xf proteins from 18 to 90 compared to gas-phase fractionation (GPF) libraries. The new proteins increased the range of molecular weights, assisted in the identification of more exclusive peptides per protein, and increased identification of low-abundance proteins. These improvements allowed identification of new functional pathways associated with cellular responses to oxidative stress, to be investigated further. Full article
(This article belongs to the Section Proteomics)
Show Figures

Figure 1

Article
Histomorphological and Redox Delineations in the Testis and Epididymis of Albino Rats Fed with Green-Synthesized Cellulose
Biology 2020, 9(9), 246; https://doi.org/10.3390/biology9090246 - 25 Aug 2020
Abstract
It has also become increasingly necessary to diversify the production of cellulose for biomedical applications. In this study, cellulose-green-synthesized from Sesamum indicum (GSC)—was administered orally to rats for 14 days as follows: control, 100, 200 and 400 mg/kg GSC. The impact of GSC [...] Read more.
It has also become increasingly necessary to diversify the production of cellulose for biomedical applications. In this study, cellulose-green-synthesized from Sesamum indicum (GSC)—was administered orally to rats for 14 days as follows: control, 100, 200 and 400 mg/kg GSC. The impact of GSC on the antioxidant status and histomorphology of the testes and epididymis were studied. GSC had no effects on organ weights and organosomatic indices. In the testes, GSC caused nonsignificant changes in superoxide dismutase, catalase, reduced glutathione and nitric oxide levels, whereas it significantly decreased glutathione peroxidase and malondialdehyde levels. In the epididymis, GSC significantly decreased superoxide dismutase and nitric oxide levels, but caused a significant increase in glutathione peroxidase and reduced glutathione levels. Furthermore, at ×200 magnification, testicular morphology appeared normal at all doses, however, extravasation of the germinal epithelium of the epididymis was observed at doses of 200 and 400 mg/kg GSC. Conversely, at ×400 magnification, spermatogenic arrest (testes) and chromatolytic alterations (epididymis) were observed at the higher doses (200 and 400 mg/kg GSC). This study reports on the effect of green-synthesized cellulose on testicular and epididymal histology and redox status and further extends the frontiers of research on cellulose. Full article
(This article belongs to the Special Issue Role of Oxidative Stress in Onset and Progression of Diseases)
Show Figures

Figure 1

Article
ACE2 Protein Landscape in the Head and Neck Region: The Conundrum of SARS-CoV-2 Infection
Biology 2020, 9(8), 235; https://doi.org/10.3390/biology9080235 - 18 Aug 2020
Cited by 22
Abstract
The coronavirus pandemic raging worldwide since December 2019 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which invades human cells via the angiotensin-converting enzyme 2 (ACE2) receptor. Although it has already been identified in many organs, ACE2 expression remains largely [...] Read more.
The coronavirus pandemic raging worldwide since December 2019 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which invades human cells via the angiotensin-converting enzyme 2 (ACE2) receptor. Although it has already been identified in many organs, ACE2 expression remains largely unknown in the head and neck (HN) sphere. Thus, this study aims to investigate its protein expression in several sites of the upper aerodigestive tract in order to highlight potential routes of infection. We compared ACE2 immunohistochemical expression between 70 paraffin-embedded specimens with two different antibodies and reported the quantified expression in each histological location. Surprisingly, we obtained different results depending on the antibody, an absence of labeling having been observed with a monoclonal antibody raised against the extracellular domain, whereas the polyclonal, against the cytoplasmic part of the protein, revealed enriched ACE2 expression, particularly in sinuses, vocal cords, salivary glands and oral cavity epithelial cells. The interpretation of these discordant results has brought several exciting lines of reflection. In conclusion, this study provides possible routes of entry for the SARS-CoV-2 in HN region and, above all, has led us to encourage caution when studying the ACE2 expression which is currently at the center of all attention. Full article
(This article belongs to the Special Issue Molecular Targets and Targeting in Biomedical Sciences)
Show Figures

Figure 1

Article
Calligonum polygonoides L. Shrubs Provide Species-Specific Facilitation for the Understory Plants in Coastal Ecosystem
Biology 2020, 9(8), 232; https://doi.org/10.3390/biology9080232 - 17 Aug 2020
Cited by 2
Abstract
Plant facilitation has a pivotal role in regulating species coexistence, particularly under arid environments. The present study aimed to evaluate the facilitative effect of Calligonum polygonoides L. on its understory plants in coastal habitat. Forty Calligonum shrubs were investigated and the environmental data [...] Read more.
Plant facilitation has a pivotal role in regulating species coexistence, particularly under arid environments. The present study aimed to evaluate the facilitative effect of Calligonum polygonoides L. on its understory plants in coastal habitat. Forty Calligonum shrubs were investigated and the environmental data (soil temperature, moisture, pH, salinity, carbon and nitrogen content, and light intensity), vegetation composition, and diversity of associated species were recorded under- and outside canopies. Eight of the most frequent understory species were selected for evaluating their response to the facilitative effect of C. polygonoides. Bioactive ingredients of Calligonum roots were analyzed using gas chromatography-mass spectrometry (GC-MS), and mycorrhizal biodiversity in their rhizosphere soil was also assessed. The effect of Calligonum on understory plants ranged between facilitation and inhibition in an age-dependent manner. Old shrubs facilitated 18 and inhibited 18 associated species, while young shrubs facilitated 13 and inhibited 9 species. Calligonum ameliorated solar radiation and high-temperature stresses for the under canopy plants. Moreover, soil moisture was increased by 509.52% and 85.71%, while salinity was reduced by 47.62% and 23.81% under old and young shrubs, respectively. Soil contents of C and N were increased under canopy. This change in the microenvironment led to photosynthetic pigments induction in the majority of understory species. However, anthocyanin, proline contents, and antioxidant enzyme activities were reduced in plants under canopy. Thirteen mycorrhizal fungal species were identified in the rhizospheric soil of Calligonum with the predominance of Funneliformis mosseae. Thirty-one compounds were identified in Calligonum root extract in which pyrogallol and palmitic acid, which have antimicrobial and allelopathic activities, were the major components. The obtained results demonstrated that facilitation provided by Calligonum is mediated with multiple mechanisms and included a set of interrelated scenarios that took place in a species-specific manner. Full article
(This article belongs to the Special Issue Role of Oxidative Stress in Onset and Progression of Diseases)
Show Figures

Figure 1

Article
Quercetin Caused Redox Homeostasis Imbalance and Activated the Kynurenine Pathway
Biology 2020, 9(8), 219; https://doi.org/10.3390/biology9080219 - 10 Aug 2020
Cited by 1
Abstract
The search for new and better antimicrobial therapy is a continuous effort. Quercetin is a polyphenol with promising antimicrobial properties. However, the understanding of its antimicrobial mechanism is limited. In this study, we investigated the biochemical mechanistic action of quercetin as an antibacterial [...] Read more.
The search for new and better antimicrobial therapy is a continuous effort. Quercetin is a polyphenol with promising antimicrobial properties. However, the understanding of its antimicrobial mechanism is limited. In this study, we investigated the biochemical mechanistic action of quercetin as an antibacterial compound. Isolates of Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia, and Staphylococcus aureus were initially exposed to quercetin for antibacterial evaluation. Subsequently, S. aureus (Gram-positive) and E. coli (Gram-negative) cells were exposed to quercetin with or without ascorbic acid, and cells were harvested for selected biochemical assays. These assays included redox homeostasis (lipid peroxidation, total thiol, total antioxidant capacity), nitric oxide, and kynurenine concentration as well as DNA fragmentation. The results revealed that quercetin caused lipid peroxidation in the bacterial isolates. Lipid peroxidation may indicate ensuing oxidative stress resulting from quercetin treatment. Furthermore, tryptophan degradation to kynurenine was activated by quercetin in S. aureus but not in E. coli, suggesting that local L-tryptophan concentration might become limiting for bacterial growth. These findings, considered together, may indicate that quercetin restricts bacterial growth by promoting oxidative cellular stress, as well as by reducing the local L-tryptophan availability by activating the kynurenine pathway, thus contributing to our understanding of the molecular mechanism of the antimicrobial action of quercetin. Full article
(This article belongs to the Special Issue Role of Oxidative Stress in Onset and Progression of Diseases)
Show Figures

Figure 1

Article
Expanding the Limits of Computer-Assisted Sperm Analysis through the Development of Open Software
Biology 2020, 9(8), 207; https://doi.org/10.3390/biology9080207 - 05 Aug 2020
Cited by 1
Abstract
Computer assisted sperm analysis (CASA) systems can reduce errors occurring in manual analysis. However, commercial CASA systems are frequently not applicable at the forefront of challenging research endeavors. The development of open source software may offer important solutions for researchers working in related [...] Read more.
Computer assisted sperm analysis (CASA) systems can reduce errors occurring in manual analysis. However, commercial CASA systems are frequently not applicable at the forefront of challenging research endeavors. The development of open source software may offer important solutions for researchers working in related areas. Here, we present an example of this, with the development of three new modules for the OpenCASA software (hosted at Github). The first is the Chemotactic Sperm Accumulation Module, a powerful tool for studying sperm chemotactic behavior, analyzing the sperm accumulation in the direct vicinity of the stimuli. This module was validated by comparing fish sperm accumulation, with or without the influence of an attractant. The analysis clearly indicated cell accumulation in the treatment group, while the distribution of sperm was random in the control group. The second is the Sperm Functionality Module, based on the ability to recognize five sperm subpopulations according to their fluorescence patterns associated with the plasma membrane and acrosomal status. The last module is the Sperm Concentration Module, which expands the utilities of OpenCASA. These last two modules were validated, using bull sperm, by comparing them with visual counting by an observer. A high level of correlation was achieved in almost all the data, and a good agreement between both methods was obtained. With these newly developed modules, OpenCASA is consolidated as a powerful free and open-source tool that allows different aspects of sperm quality to be evaluated, with many potential applications for researchers. Full article
(This article belongs to the Special Issue Factors Affecting In Vitro Assessment of Sperm Quality)
Show Figures

Graphical abstract

Article
CoVid-19 Pandemic Trend Modeling and Analysis to Support Resilience Decision-Making
Biology 2020, 9(7), 156; https://doi.org/10.3390/biology9070156 - 07 Jul 2020
Cited by 2
Abstract
Policy decision-making for system resilience to a hazard requires the estimation and prediction of the trends of growth and decline of the impacts of the hazard. With focus on the recent worldwide spread of CoVid-19, we take the infection rate as the relevant [...] Read more.
Policy decision-making for system resilience to a hazard requires the estimation and prediction of the trends of growth and decline of the impacts of the hazard. With focus on the recent worldwide spread of CoVid-19, we take the infection rate as the relevant metric whose trend of evolution to follow for verifying the effectiveness of the countermeasures applied. By comparison with the theories of growth and recovery in coupled socio-medical systems, we find that the data for many countries show infection rate trends that are exponential in form. In particular, the recovery trajectory is universal in trend and consistent with the learning theory, which allows for predictions useful in the assistance of decision-making of emergency recovery actions. The findings are validated by extensive data and comparison to medical pandemic models. Full article
(This article belongs to the Special Issue Coronavirus Disease 2019 (COVID-19))
Show Figures

Figure 1

Article
Norpa Signalling and the Seasonal Circadian Locomotor Phenotype in Drosophila
Biology 2020, 9(6), 130; https://doi.org/10.3390/biology9060130 - 16 Jun 2020
Cited by 1
Abstract
In this paper, we review the role of the norpA-encoded phospholipase C in light and thermal entrainment of the circadian clock in Drosophila melanogaster. We extend our discussion to the role of norpA in the thermo-sensitive splicing of the per 3′ UTR [...] Read more.
In this paper, we review the role of the norpA-encoded phospholipase C in light and thermal entrainment of the circadian clock in Drosophila melanogaster. We extend our discussion to the role of norpA in the thermo-sensitive splicing of the per 3′ UTR, which has significant implications for seasonal adaptations of circadian behaviour. We use the norpA mutant-generated enhancement of per splicing and the corresponding advance that it produces in the morning (M) and evening (E) locomotor component to dissect out the neurons that are contributing to this norpA phenotype using GAL4/UAS. We initially confirmed, by immunocytochemistry and in situ hybridisation in adult brains, that norpA expression is mostly concentrated in the eyes, but we were unable to unequivocally reveal norpA expression in the canonical clock cells using these methods. In larval brains, we did see some evidence for co-expression of NORPA with PDF in clock neurons. Nevertheless, downregulation of norpA in clock neurons did generate behavioural advances in adults, with the eyes playing a significant role in the norpA seasonal phenotype at high temperatures, whereas the more dorsally located CRYPTOCHROME-positive clock neurons are the likely candidates for generating the norpA behavioural effects in the cold. We further show that knockdown of the related plc21C encoded phospholipase in clock neurons does not alter per splicing nor generate any of the behavioural advances seen with norpA. Our results with downregulating norpA and plc21C implicate the rhodopsins Rh2/Rh3/Rh4 in the eyes as mediating per 3′ UTR splicing at higher temperatures and indicate that the CRY-positive LNds, also known as ‘evening’ cells are likely mediating the low-temperature seasonal effects on behaviour via altering per 3′UTR splicing. Full article
(This article belongs to the Special Issue Biological Clocks)
Show Figures

Figure 1

Article
Period of Boar Ejaculate Collection Contributes to the Yearly Intra-Male Variability of Seminal Plasma Cytokines
Biology 2020, 9(5), 105; https://doi.org/10.3390/biology9050105 - 20 May 2020
Cited by 2
Abstract
The concentrations of cytokines in seminal plasma (SP) fluctuate over time in healthy males, weakening their practical usefulness as diagnostic tools. This study evaluated the relevance of intra-male variability in SP cytokines and to what extent the period of the year when ejaculate [...] Read more.
The concentrations of cytokines in seminal plasma (SP) fluctuate over time in healthy males, weakening their practical usefulness as diagnostic tools. This study evaluated the relevance of intra-male variability in SP cytokines and to what extent the period of the year when ejaculate is collected contributes to such variability. Thirteen cytokines (GM-CSF, IFNγ, IL-1α, IL-1β, IL-1ra, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-18, and TNFα) were measured using the Luminex xMAP® technology for 180 SP samples of ejaculate collected over a year from nine healthy and fertile boars. The SP samples were grouped into two annual periods according to decreasing or increasing daylight and ambient temperature. Intra-male variability was higher than inter-male variability for all cytokines. All SP cytokines showed concentration differences between the two periods of the year, showing the highest concentration during the increasing daylength/temperature period, irrespective of the male. Similarly, some cytokines showed differences between daylength/temperature periods when focusing on their total amount in the ejaculate. No strong relationship (explaining more than 50% of the total variance) was found between annual fluctuations in SP-cytokine levels and semen parameters. In conclusion, the period of the year during which ejaculates were collected helps explain the intra-male variability of SP-cytokine levels in breeding boars. Full article
(This article belongs to the Section Immunology)
Show Figures

Graphical abstract

Article
Isolation and Identification of Fusarium spp., the Causal Agents of Onion (Allium cepa) Basal Rot in Northeastern Israel
Biology 2020, 9(4), 69; https://doi.org/10.3390/biology9040069 - 02 Apr 2020
Cited by 8
Abstract
Over the past decade, there have been accumulating reports from farmers and field extension personnel on the increasing incidence and spread of onion (Allium cepa) bulb basal rot in northern Israel. The disease is caused mainly by Fusarium species. Rotting onion [...] Read more.
Over the past decade, there have been accumulating reports from farmers and field extension personnel on the increasing incidence and spread of onion (Allium cepa) bulb basal rot in northern Israel. The disease is caused mainly by Fusarium species. Rotting onion bulbs were sampled from fields in the Golan Heights in northeastern Israel during the summers of 2017 and 2018. Tissue from the sampled onion bulbs was used for the isolation and identification of the infecting fungal species using colony and microscopic morphology characterization. Final confirmation of the pathogens was performed with PCR amplification and sequencing using fungi-specific and Fusarium species-specific primers. Four Fusarium spp. isolates were identified in onion bulbs samples collected from the contaminated field: F. proliferatum, F. oxysporum f. sp. cepae, and two species less familiar as causative agents of this disease, F. acutatum and F. anthophilium. Phylogenetic analysis revealed that these species subdivided into two populations, a northern group isolated from white (Riverside cv.) onion bulbs, and a southern group isolated from red (565/505 cv.) bulbs. Pathogenicity tests conducted with seedlings and bulbs under moist conditions proved that all species could cause the disease symptoms, but with different degrees of virulence. Inoculating seeds with spore suspensions of the four species, in vitro, significantly reduced seedlings’ germination rate, hypocotyl elongation, and fresh biomass. Mature onion bulbs infected with the fungal isolates produced typical rot symptoms 14 days post-inoculation, and the fungus from each infected bulb was re-isolated and identified to satisfy Koch’s postulates. The onion bulb assay also reflected the degree of sensitivity of different onion cultivars to the disease. This work is the first confirmed report of the direct and primary cause of Fusarium onion basal rot disease in northeastern Israel. These findings are a necessary step towards uncovering the mycoflora of the diseased onion plants and developing a preventive program that would reduce the disease damage. Full article
(This article belongs to the Special Issue Plant-Pathogen Interaction)
Show Figures

Figure 1

Communication
Assessing Autophagy in Archived Tissue or How to Capture Autophagic Flux from a Tissue Snapshot
Biology 2020, 9(3), 59; https://doi.org/10.3390/biology9030059 - 21 Mar 2020
Cited by 4
Abstract
Autophagy is a highly conserved degradation mechanism that is essential for maintaining cellular homeostasis. In human disease, autophagy pathways are frequently deregulated and there is immense interest in targeting autophagy for therapeutic approaches. Accordingly, there is a need to determine autophagic activity in [...] Read more.
Autophagy is a highly conserved degradation mechanism that is essential for maintaining cellular homeostasis. In human disease, autophagy pathways are frequently deregulated and there is immense interest in targeting autophagy for therapeutic approaches. Accordingly, there is a need to determine autophagic activity in human tissues, an endeavor that is hampered by the fact that autophagy is characterized by the flux of substrates whereas histology informs only about amounts and localization of substrates and regulators at a single timepoint. Despite this challenging task, considerable progress in establishing markers of autophagy has been made in recent years. The importance of establishing clear-cut autophagy markers that can be used for tissue analysis cannot be underestimated. In this review, we attempt to summarize known techniques to quantify autophagy in human tissue and their drawbacks. Furthermore, we provide some recommendations that should be taken into consideration to improve the reliability and the interpretation of autophagy biomarkers in human tissue samples. Full article
(This article belongs to the Special Issue Autophagy in Cancer)
Show Figures

Figure 1

Back to TopTop