Special Issue "Advances on Structural Engineering"

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Civil Engineering".

Deadline for manuscript submissions: 15 June 2020.

Special Issue Editors

Assoc. Prof. Jong Wan Hu
E-Mail Website
Guest Editor
Department of Civil and Environmental Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406-840, Korea
Interests: steel structures; smart structures; disaster mitigation; nonlinear structural analysis; earthquake engineering; seismic retrofitting; performance-based design; structures analysis; health monitoring
Assoc. Prof. Junwon Seo
E-Mail Website
Guest Editor
Department of Civil and Environmental Engineering, South Dakota State University, Brookings, South Dakota, 57007, USA
Interests: image-based seismic vulnerability and resiliency assessment; multihazard simulation of renewable energy structures; structural behavior examination of irregular structures; self-consolidating concrete; structural health monitoring; reliability analysis; load rating estimation of various bridge types; field testing and computational analyses; and lateral live-load distribution factor examination

Special Issue Information

Dear Colleagues,

Structural engineering is centered on analysis, design, and evaluation of engineering structures. This Special Issue in Applied Sciences reports key findings from unpublished studies on advances and applications in all structural engineering fields.

Aware of the comprehensiveness of the suggested topic, we encourage you to send manuscripts containing scientific findings within the broad field of structural engineering, which include but are not limited to the following: structural analysis and design; bridge engineering; building assessment; earthquake engineering; wind engineering; impact engineering; reliability evaluation; structural monitoring; image analysis; noncontact sensors; control structures; multihazard simulation; computational analysis; lab and field testing; multiscale analysis; smart structures; disaster mitigation; and big data evaluation. Both theoretical and practice-oriented papers, including case studies and reviews, are encouraged.

Assoc. Prof. Jong Wan Hu
Assoc. Prof. Junwon Seo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • structural analysis and design
  • control structures
  • disaster mitigation
  • seismic design
  • structural monitoring
  • smart structures
  • big data evaluation
  • structural performance assessments
  • bridges

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Hybrid Simulation of Seismic Responses of a Typical Station with a Reinforced Concrete Column
Appl. Sci. 2020, 10(4), 1331; https://doi.org/10.3390/app10041331 - 16 Feb 2020
Abstract
During the 1995 Kobe earthquake, damages were observed in the Daikai subway station and adjacent tunnels. It was the first large-scale underground structure that failed under the earthquake excitation. Numerical and experimental analyses have been conducted to study the failure process of the [...] Read more.
During the 1995 Kobe earthquake, damages were observed in the Daikai subway station and adjacent tunnels. It was the first large-scale underground structure that failed under the earthquake excitation. Numerical and experimental analyses have been conducted to study the failure process of the Daikai station. However, the issue of the scale ratio still exists in the shaking table tests of underground structures. In order to tackle this issue, a hybrid simulation technique is developed here to study the seismic performance of a typical subway station. Based on the previous research, it is found that the central column is the critical component of the structure. Therefore, a reinforced concrete central column is physically tested in the hybrid simulation process. On the other hand, the remaining parts of the structure and soil domain are numerically modeled at the same time. Four hybrid simulation cases are conducted with peak ground accelerations of 0.01 g, 0.1 g, 0.22 g, and 0.58 g. The test results of displacement and shear force are compared with the analytical results. Moreover, the good agreement between the test results and numerical results validate the accuracy of the proposed hybrid test method. After the hybrid simulation process, a quasi-static test is conducted to illustrate the mechanical properties of the central column after the earthquake excitation. Full article
(This article belongs to the Special Issue Advances on Structural Engineering)
Show Figures

Figure 1

Open AccessArticle
Cyclic Behavior of Anchored Blind-Bolted Extended End-Plate Joints to CFST Columns
Appl. Sci. 2020, 10(3), 904; https://doi.org/10.3390/app10030904 - 30 Jan 2020
Abstract
As the square steel tube in the tension zone is always the weakest part of moment-resisting joints, modified blind bolts (Hollo-Bolts) and a locally strengthened steel tube in the panel zone were adopted to enhance the joint performance. Cyclic loading tests were carried [...] Read more.
As the square steel tube in the tension zone is always the weakest part of moment-resisting joints, modified blind bolts (Hollo-Bolts) and a locally strengthened steel tube in the panel zone were adopted to enhance the joint performance. Cyclic loading tests were carried out on eight anchored blind-bolted extended end-plate joints between square concrete-filled steel tube (CFST) columns and steel beams. The test parameters included the end-plate thickness, steel tube wall thickness, beam section size, local strengthening connection method, blind bolt anchorage method, and stiffeners. The failure mode, hysteretic behavior, stiffness, strength, ductility, strength degradation, stiffness degradation, and energy dissipation capacity of the joints were studied and analyzed. The test results showed that the application of anchored blind bolts and a locally strengthened steel tube can fully utilize the bolt strength and significantly improve the joint performance, especially in terms of strength and strength degradation. The test observations revealed three typical failure modes for the joints, and the failure mode depended on the weakest component. In addition, the local reinforcement of C-channel and change in the anchorage method had a limited effect on the initial stiffness. Greater end-plate thickness and the use of stiffeners significantly increased the joint stiffness and decreased the rate of stiffness degradation. The use of stiffeners also significantly enhanced the ductility and energy dissipation by moving plastic hinge outward from the joints. Finally, finite element analysis (FEA) models were developed and validated against the experimental results, and the stress distribution and force transfer pattern were investigated. Full article
(This article belongs to the Special Issue Advances on Structural Engineering)
Show Figures

Figure 1

Open AccessArticle
Analysis of the Cause and Mechanism of Hydraulic Gate Vibration during Flood Discharging from the Perspective of Structural Dynamics
Appl. Sci. 2020, 10(2), 629; https://doi.org/10.3390/app10020629 - 15 Jan 2020
Abstract
According to the results of a dynamic prototype test for the surface outlet radial gate on the Jinping high arch dam during the flood discharging process, a novel cause of vibration fundamentally different from the traditional causes of flow-induced radial gate vibration, is [...] Read more.
According to the results of a dynamic prototype test for the surface outlet radial gate on the Jinping high arch dam during the flood discharging process, a novel cause of vibration fundamentally different from the traditional causes of flow-induced radial gate vibration, is analyzed for the first time. Under the condition that the flood is discharged only from mid-level outlets, an accompanying vibration of the surface outlet gate is induced by the vibration of the closely spaced mid-level outlet gates. It is counterintuitive that the most intense vibration occurs when the surface outlet gate is closed and, on the contrary, the vibration is reduced when the gate is opened and subjected to flow excitation. In order to analyze and explain this accompanying vibration phenomenon, a theoretical model is developed based on the conventional theory of passive vibration absorbers. The difference between the proposed and conventional theoretical models is that more complex load and damping conditions are considered, and more attention was paid to the dynamic behavior of the accessory structure. Then, the cause and mechanism for the surface outlet gate vibration is clarified in detail, based on the proposed theoretical model. The comprehensive analysis and mutual verification of the prototype test, theoretical derivation and numerical simulation, indicate that the clarification and the proposed theoretical model is reasonable and accurate. The research reported in this paper will be beneficial for the design, operation and maintenance of the hydraulic gates installed on high arch dams. Full article
(This article belongs to the Special Issue Advances on Structural Engineering)
Show Figures

Figure 1

Open AccessArticle
Climate Change: Impacts on Climatic Actions and Structural Reliability
Appl. Sci. 2019, 9(24), 5416; https://doi.org/10.3390/app9245416 - 11 Dec 2019
Abstract
Climatic loads on structures are commonly defined under the assumption of stationary climate conditions; but, as confirmed by recent studies, they can significantly vary because of climate change effects, with relevant impacts not only for the design of new structures but also for [...] Read more.
Climatic loads on structures are commonly defined under the assumption of stationary climate conditions; but, as confirmed by recent studies, they can significantly vary because of climate change effects, with relevant impacts not only for the design of new structures but also for the assessment of the existing ones. In this paper, a general methodology to evaluate the influence of climate change on climatic actions is presented, based on the analysis of observed data series and climate projections. Illustrative results in terms of changes in characteristic values of temperature, precipitation, snow, and wind loads are discussed for Italy and Germany, with reference to different climate models and radiative forcing scenarios. In this way, guidance for potential amendments in the current definition of climatic actions in structural codes is provided. Finally, the influence of climate change on the long-term structural reliability is estimated for a specific case study, showing the potential of the proposed methodology. Full article
(This article belongs to the Special Issue Advances on Structural Engineering)
Show Figures

Figure 1

Open AccessArticle
Probabilistic Models for Vehicle Interactions in Fatigue Assessment of Bridges
Appl. Sci. 2019, 9(24), 5338; https://doi.org/10.3390/app9245338 - 06 Dec 2019
Abstract
Fatigue assessments of bridges depend on vehicle interactions, occurring when several vehicles travel simultaneously on the bridge or when two individual stress histories, caused by vehicles traveling in different times, generate a more damaging combined stress history. When interactions are significant, stress histories [...] Read more.
Fatigue assessments of bridges depend on vehicle interactions, occurring when several vehicles travel simultaneously on the bridge or when two individual stress histories, caused by vehicles traveling in different times, generate a more damaging combined stress history. When interactions are significant, stress histories cannot be directly determined using conventional fatigue load models provided in Codes, unless suitable theoretical models for vehicle interactions are available. In the paper, original approaches are proposed to study different aspects of the problem. Concerning interactions due to simultaneity, the novelty is to consider the bridge a service system. Since the process of vehicle arrivals is a Markov process, vehicle interactions can be studied in the framework of the queuing theory. In this way, in the appropriate context, interacting vehicles are equivalent to queued requests (vehicles) in the service system. The method considers two subcases, to be tackled in the given sequence, so that the solution is noticeably simplified. The first subcase refers to vehicles traveling simultaneously in one lane; the second subcase to vehicle and vehicle convoys traveling simultaneously on two or more lanes. In the first subcase the problem is solved considering each lane as a single channel system with a waiting queue, where the number of vehicles in the queue and the waiting time, depending on the number of vehicles in the queue, are limited. A modified vehicle flow on each bridge lane is thus obtained, composed by vehicles and vehicle convoys separately traveling the lane, which is, if relevant, the input for the second subcase. In the second subcase the multilane bridge is modeled as a multichannel system without the waiting queue. When the number of requests exceeds the number of channels, r , the surplus is lost and cannot reenter the system. The results regarding simultaneity are much more relevant than it appears at the first sight: Two relevant examples demonstrated that they can be fruitfully used to implement optimized Monte Carlo algorithms for artificial traffic generation, as well for adaptation of traffic measurements, when flows are modified. Finally, a “non-interacting traffic flow” is obtained, whose elements (vehicle, vehicle convoy, cluster of vehicles) travel individually on the bridge. The global stress history results thus a mere random assembly of the stress histories induced by each element of the non-interacting traffic flow. These stress histories can only combine, as simultaneity interactions are excluded for them. Combination of stress histories is a complex issue, especially when, as in the Eurocodes, fatigue load models are composed by a set of standardized lorries. In fact, questions concerning: Conditions for the combination; stress history which can combine; expected number of occurrences of combined stress histories and of the remaining individual ones; are still open. Really, they can be tackled resorting to sophisticated and time-consuming simulations based on Monte Carlo methods, but elementary solutions have not been proposed so far. The original method proposed here, whose practical application is illustrated referring to an important case study, allows to solve the problem providing simple recursive formulae. Finally, two relevant examples illustrate, with specific reference to the Eurocodes, some important implications of the study. Full article
(This article belongs to the Special Issue Advances on Structural Engineering)
Show Figures

Figure 1

Open AccessArticle
Stepped Spillways and Energy Dissipation: A Non-Uniform Step Length Approach
Appl. Sci. 2019, 9(23), 5071; https://doi.org/10.3390/app9235071 - 24 Nov 2019
Abstract
A stepped spillway, which is defined as a spillway with steps on the chute, can be used to improve the energy dissipation of descending water. Although uniform stepped spillways have been studied comprehensively, non-uniform stepped spillways need more attention. In the interest of [...] Read more.
A stepped spillway, which is defined as a spillway with steps on the chute, can be used to improve the energy dissipation of descending water. Although uniform stepped spillways have been studied comprehensively, non-uniform stepped spillways need more attention. In the interest of maximum energy dissipation, in this study, non-uniform stepped spillways were investigated numerically. To this end, within the range of skimming flow, four different types of non-uniform step lengths, including convex, concave, random, and semi-uniform configurations, were tested in InterFOAM. To evaluate the influence of non-uniform step lengths on energy dissipation, the height and number of steps in all models were fixed and equal to a constant number. The results indicated that in semi-uniform stepped spillways, when the ratio between the lengths of the successive steps is 1:3, a vortex interference region occurs within the two adjacent cavities of the entire stepped chute, and as a result, the energy dissipation increases by up to 20%. Full article
(This article belongs to the Special Issue Advances on Structural Engineering)
Show Figures

Figure 1

Back to TopTop