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Abstract: In this study, a surrogate Machine Learning (ML)-based model was developed, to predict
the load-bearing capacity (LBC) of concrete-filled steel square hollow section (CFSS) members,
considering loading eccentricity. The proposed Artificial Neural Network (ANN) model was trained
and validated against experimental data using the following error measurement criteria: coefficient of
determination (R2), slope of regression, root mean square error (RMSE) and mean absolute error (MAE).
A parametric study was conducted to calibrate the parameters of the ANN model, including the
number of neurons, activation function, cost function and training algorithm, respectively. The results
showed that the ANN model can provide reliable and effective prediction of LBC (R2 = 0.975,
Slope = 0.975, RMSE = 294.424 kN and MAE = 191.878 kN). Sensitivity analysis showed that the
geometric parameters of the steel tube (width and thickness) and the compressive strength of concrete
were the most important variables. Finally, the effect of eccentric loading on the LBC of CFSS members
is presented and discussed, showing that the ANN model can assist in the creation of continuous
LBC maps, within the ranges of input variables adopted in this study.

Keywords: concrete-filled steel square hollow section columns; compressive behavior; Machine
Learning; loading eccentricity; surrogate model; load-bearing capacity

1. Introduction

Composite materials are very widely employed in the construction industry, due to their
efficient structural performance (high strength and ductility) and reasonable cost [1]. In this context,
concrete-filled steel square hollow section (CFSS) members utilize the advantages of both steel
and concrete. They comprise a steel hollow section of square shape, filled with plain concrete.
On the one hand, they may be used as columns and beam-columns in high-rise buildings [2,3].
On the other hand, CFSS members could serve as beams in low-rise infrastructures (i.e., industrial
buildings) [4]. Indeed, CFSS members have become increasingly popular in structural systems, due to
their favorable structural performance characteristics, including high strength and ductility, and easy
beam-to-column connection manufacturing process [5–10].

In terms of research and development, extensive investigations have been carried out on the
complex problem of concrete-filled steel tubular members over the last fifty years. One of the
first studies on the compressive behavior of CFSS was done in the 1970s by Tomii et al. [11],
showing that the load-bearing capacity (LBC) of CFSS members depended heavily on various
parameters: the width-to-thickness ratio of the steel tube, strength of the concrete core, etc. In the past
few years, with the increase in high-rise construction, the study of CFSS members under compression has
received growing amounts of attention from both engineers and scholars, including Aslani et al. [12],
Chen et al. [13], Khan et al. [14], Xiong et al. [15], Du et al. [16], Lai and Ho [8] and Yan et al. [17].
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These works revealed that CFSS members exhibited good strength, strong ductility and beneficial
construction characteristics. Although there are usually members under eccentric loading in buildings
(i.e., corner and side columns), there is a scant body of work examining the compressive behavior
of eccentrically loaded CFSS columns [18,19]. Therefore, it is absolutely crucial to study this type of
composite structures under eccentric loading, especially in predicting their LBC [20,21].

In recent decades, Machine Learning (ML) approaches have been extensively used for predicting
the behavior of structural members [22–24]. Such models exhibit significant advantages cannot be found
in traditional techniques (i.e., linear regression, regularization, response surface methodology and
multiple regression [25–27]). The main reason for such superiority is that ML techniques do not require
assumptions or predefined constraints about the form of the model (for instance between dependent
and independent variables) [25–28]. Nonetheless, several investigations have been proposed to relate
physical laws and ML techniques. For instance, Zhu et al. [29] discussed physics-constrained deep
learning in a high-dimensional surrogate model. Stewart et al. [30] proposed label-free supervision
for an Artificial Neural Network (ANN) model, under constraints derived from prior known laws
of physics. Berg et al. [31] trained an ANN to approximate the solution by minimizing the violation of the
governing Partial Differential Equations in complex geometries. Despite the lack of physical constraints
in ML models (could be considered as their major limitation), they are more and more used as a
surrogate model in various problems, especially for capturing and tracking nonlinear behavior between
inputs and outputs [32–34]. Many researchers have studied the enhanced capability of the ANN
and compared it with conventional models for various structural engineering applications, including
Sarir et al. [22], Tran et al. [24] and Nadepour et al. [33]. The results of these studies showed that ML
approaches outperformed the conventional models. The most common ML techniques used in civil
engineering problems include Support-Vector Machine [35], Regression Tree [36], Random forest [37]
and especially ANN [22,24,34,38–40].

The main objective of this work is to develop a surrogate ML-based model to predict the LBC
of CFSS columns considering the effect of eccentric loading. To this end, an ANN was developed,
because of its ability to deal with high-dimensional problems. The ANN model was optimized by
performing a parametric study, involving the ANN’s architecture (i.e., number of hidden layers and
number of neurons in hidden layers), activation function, cost function and training function. In order
to train and validate the ANN model, a range of error measurement criteria were used: coefficient
of determination (R2), slope of regression, Root Mean Squared Error (RMSE) and Mean Absolute
Error (MAE). A sensitivity analysis was also performed, to highlight the influence of each input variable
on the output response. In addition, an uncertainty analysis was applied to estimate the prediction
confidence intervals. We expect to provide a reliable contribution to progress in the modeling and
prediction of the compressive behavior of CFSS members.

2. Materials and Methods

2.1. Database

In the present paper, as the focus is on CFSS members under both concentric and eccentric
loading, the input data including the mechanical properties of steel and concrete (yield strength and
compressive strength, respectively), the cross-sectional width, column length, steel tube thickness,
loading eccentricities at the top and bottom of the member, were collected from the available literature.
A total of 443 tests on CFSS members under compression served as a database, involving 314 concentric
and 129 eccentric cases, respectively [41–43]. Figure 1 presents a diagram of CFSS members under
eccentric loading, together with their geometrical parameters. A primarily statistical analysis of the
database is shown in Table 1, including the min, average, max, standard deviation (StD) and coefficient
of variation (CV) of all variables. It is apparent that the yield strength of the steel tube varies from
194.18 MPa to 835 MPa, with a mean value of 472.79 MPa and StD of 192.91 MPa. The compressive
strength of the concrete core ranges from 7.9 MPa to 183 MPa, with a mean value of 59.84 MPa and
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StD of 36.50 MPa. The width of the cross section varies from 60 mm to 324 mm, with a mean value
of 147.18 mm and StD of 46.86 mm. The member’s length ranges from 195 mm to 4500 mm, with
a mean value of 1426.55 mm and StD of 1110.43 mm. The thickness of the steel tube varies from
0.7 mm to 12.5 mm, with mean value of 4.88 mm and StD of 2.17 mm. The loading eccentricity at the
top of the member ranges from 0 to 300 mm, with a mean value of 14.58 mm and StD of 37.10 mm.
The loading eccentricity at the bottom of the member varies from −25 to 300 mm, with a mean value
of 13.51 mm and StD of 37.02 mm. Figure 2 shows the corresponding histograms of variables in the
database. It is seen that, for several ranges of values, not enough data have been collected to ensure a
good homogeneity. Consequently, missing data should be completed in further researches. Finally,
investigations dealing with problem of inhomogeneity in the data can be referred to Wang et al. [44],
Busse and Buhmann [45], and Bühlmann and Meinshausen [46].

Appl. Sci. 2020, 10, x 3 of 22 

mm, with a mean value of 1426.55 mm and StD of 1110.43 mm. The thickness of the steel tube varies 

from 0.7 mm to 12.5 mm, with mean value of 4.88 mm and StD of 2.17 mm. The loading eccentricity 

at the top of the member ranges from 0 to 300 mm, with a mean value of 14.58 mm and StD of 37.10 

mm. The loading eccentricity at the bottom of the member varies from −25 to 300 mm, with a mean 

value of 13.51 mm and StD of 37.02 mm. Figure 2 shows the corresponding histograms of variables 

in the database. It is seen that, for several ranges of values, not enough data have been collected to 

ensure a good homogeneity. Consequently, missing data should be completed in further researches. 

Finally, investigations dealing with problem of inhomogeneity in the data can be referred to Wang et 

al. [44], Busse and Buhmann [45], and Bühlmann and Meinshausen [46]. 

 

Figure 1. Diagram of a concrete-filled steel square hollow section (CFSS) member: (a) under eccentric 

loading; (b) square cross section (et and eb are defined based on the Oexey coordinate system, in this 

example, et is positive and eb is negative, respectively); and (c) load-axial shortening curve. 

Table 1. Initial statistical analysis of the database. 

Variable Min Mean Max StD CV (%) Symbol Unit Type 

Yield strength of steel tube 194.18 472.79 835.00 192.91 40.80 fy MPa Input 

Compressive strength of concrete 7.90 59.84 183.00 36.50 61.00 f’c MPa Input 

Width of cross section 60.00 147.18 324.00 56.86 38.63 B mm Input 

Length of column 195.00 1426.55 4500.00 1110.43 77.84 L mm Input 

Thickness of steel tube 0.70 4.88 12.50 2.17 44.40 δ mm Input 

Loading eccentricity at the top 0.00 14.58 300.00 37.10 254.37 et mm Input 

Loading eccentricity at the bottom −25.00 13.51 300.00 37.02 274.01 eb mm Input 

Load-bearing capacity 105.40 2205.44 8990.00 2036.74 92.35 Fn kN Target 

Figure 1. Diagram of a concrete-filled steel square hollow section (CFSS) member: (a) under
eccentric loading; (b) square cross section (et and eb are defined based on the Oexey coordinate system,
in this example, et is positive and eb is negative, respectively); and (c) load-axial shortening curve.

Table 1. Initial statistical analysis of the database.

Variable Min Mean Max StD CV (%) Symbol Unit Type

Yield strength of steel tube 194.18 472.79 835.00 192.91 40.80 fy MPa Input
Compressive strength of concrete 7.90 59.84 183.00 36.50 61.00 f’c MPa Input

Width of cross section 60.00 147.18 324.00 56.86 38.63 B mm Input
Length of column 195.00 1426.55 4500.00 1110.43 77.84 L mm Input

Thickness of steel tube 0.70 4.88 12.50 2.17 44.40 δ mm Input
Loading eccentricity at the top 0.00 14.58 300.00 37.10 254.37 et mm Input

Loading eccentricity at the bottom −25.00 13.51 300.00 37.02 274.01 eb mm Input
Load-bearing capacity 105.40 2205.44 8990.00 2036.74 92.35 Fn kN Target
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Figure 2. Histogram of the data: (a) yield strength of steel tube, (b) compressive strength of concrete,
(c) width of cross section, (d) length of column, (e) thickness of steel tube, (f) loading eccentricity at
the top, (g) loading eccentricity at the bottom and (h) load-bearing capacity.
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2.2. Methods Used

2.2.1. Artificial Neural Network

One of the most widely used methods in the field of data mining and Machine Learning is ANN,
introduced in 1943 by McCulloch and Pitts [47]. This concept, inspired by the biological neural networks
of human brains, is an inter-connected group of artificial nodes performing computational tasks [48].
Similar to a biological neuron composed of dendrites, a cell body, axon and synapse [34], an artificial
neuron has inputs, variable weights and outputs [49]. Such an inter-connected system of nodes is
able to understand and solve complex problems that exhibit a nonlinear relationship between causal
factors and responses [50,51]. Indeed, the ANN model has relevant benefits not found in conventional
computational models. Hypotheses or pre-constraints during modelling are not necessary when
training the ANN model [28,52]. The technique is able to analyze and discover complex relationships
and processes in the data [53,54]. From a computational point of view, ANN is very efficient for
high-dimensional problems, because of its excellent capacity in parallel processing [55,56], however, it
is still very limited to real-time and industrial applications [57,58]. Nonetheless, the performance of
ANN is affected by other problems, including over-fitting [59], noisy data [60] and susceptibility to
training data [61].

The structure of an ANN model comprises three types of layer: input (variables), hidden
(functional layer), and output layers (network’s outcomes). These layers are connected by the artificial
computational neurons, which compute the weighting parameters of the model. ANN can contain
multiple hidden layers. For simplification purposes, the following description is presented for a
single hidden-layer neural network. The following nonlinear function is generalized by the ANN
model [62–65]:

Y = f (X), (1)

where X is the input vector and Y is the predicted variable. The function f can be fully detailed
as follows:

f (X) = f o(M× ( f h(b + W ×X)) + bo), (2)

where W, fh and b are the weight matrix, activation function and bias vector of the hidden layer; while M,
fo and bo are the weight matrix, activation function and bias vector of the output layer, respectively.
Figure 3 introduces the architecture of the ANN model involving one hidden layer. The ANN
model is trained (i.e., estimation of the weight matrix and bias vector) with an optimization method,
using backpropapagation as a gradient computing technique [66,67]. More precisely, the optimizer
allows locating the minimum of the cost function based on gradient descent, whereas the
backpropagation allows computing such gradient that the optimizer uses.

For a given ML problem, it is very difficult to determine which activation function and training
algorithm are appropriate. This depends on many factors, including the complexity of the problem, the
number of data points in the training set, the number of weights and biases in the network and the error
goal [68]. Therefore, in this study, a parametric study was conducted to select the most appropriate
parameters for the problem at hand. According to various works (e.g., [22,34,38]), one hidden layer
can solve any complex function in a network. Therefore, the number of hidden layers was fixed at
1 in this study. However, other parameters needing to be calibrated include the activation function,
cost function, training function and the number of neurons in the hidden layer.

In any ML model, activation functions could affect: (i) the output response, (ii) the accuracy
and (iii) the computational efficiency during the training process [69,70]. In this work, six activation
functions were evaluated, as highlighted in Figure 4 [69–72]:

• Hyperbolic tangent sigmoid function, denoted by tansig;
• Log-sigmoid function, denoted by logsig;
• Linear function, denoted by purelin;
• Positive linear function, denoted by rectilin;
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• Saturating linear function, denoted by satlin;
• Symmetric saturating linear function, denoted by satlins.
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Figure 4. Activation functions used in this study: (a) tansig, (b) logsig, (c) purelin, (d) rectilin, (e) satlin
and (f) satlins.

On the other hand, three cost functions during the process of optimizing the weight parameters of
the ANN model were employed: mean squared error, sum absolute error and mean absolute error [73].
The number of neurons in the hidden layer varied from 1 to 30 [68]. Finally, eight backpropagation
training algorithms were employed, as listed below:

• Levenberg-Marquardt [74], denoted by LM;
• Scaled conjugate gradient [75], denoted by SCG;
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• BFGS quasi-Newton [76], denoted by BFG;
• Resilient [77], denoted by RP;
• Conjugate gradient with Powell-Beale restarts [78], denoted by CGB;
• Conjugate gradient with Fletcher-Reeves updates [79], denoted by CGF;
• Conjugate gradient with Polak-Ribiére updates [79], denoted by CGP;
• One-step secant [80], denoted by OSS.

2.2.2. Monte Carlo Random Sampling Technique

The main idea of the Monte Carlo method is that the output is computed by repeating random
sampling of variables from the input space [81,82]. For this reason, the Monte Carlo method is widely
applied: (i) in order to propagate the variability of inputs on the output response; and (ii) based on
statistical analysis of output, several post-treatments such as robustness and/or sensitivity analyses can
be thoroughly conducted [83–85]. Using a Monte Carlo simulation, the higher the number of runs, the
higher the reliability of the response archived. For a random variable, if we have a sufficient number
of independent realizations, its expected value is closely related to its mean value. Therefore, the
convergence estimator for the mean value is unbiased, as demonstrated in the literature (e.g., [86,87]).
In this study, a statistical estimator for the mean value was used to quantify the convergence of a given
variable K. For the mean value, the estimator, denoted by Cm, is computed as follows [55,88–91]:

Cm(n) =
100
Kn

∑n

i=1
Ki, (3)

where K is the mean of the variable K and n is the number of Monte Carlo runs. It should be noticed
that K is calculated such as:

K =
1

nmax

∑nmax

i=1
Ki, (4)

where nmax was chosen as 1000 in this study (1 ≤ n ≤ nmax).

2.2.3. Quality Assessment Criteria

In order to train and validate the ML model, several quality assessment criteria can be used.
In this study, three criteria—namely Root Mean Squared Error (RMSE), Mean Absolute Error (MAE)
and Coefficient of Determination (R2)—were used. The expressions of these criteria are [92–97]:

RMSE =

√√√ N∑
i=1

(y0 − yp)
2/N (5)

MAE =
1
N

N∑
i=1

∣∣∣y0 − yp
∣∣∣ (6)

R2 =

N∑
j=1

(
y0, j − y

)(
yp, j − y

)
√

N∑
j=1

(
y0, j − y

)2 N∑
j=1

(
yp, j − y

)2
, (7)

where N is the dimension of the input space, y represents the mean value of the outputs y, y0 and
yp,represent the actual and predicted values, respectively. Finally, the Slope criterion is defined as the
slope of the linear regression fit between predicted and observed vectors.
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3. Results and Discussion

3.1. Convergence of Random Samples

In order to evaluate the random sampling effect (i.e., variability in the input space), 1000 random
combinations of data index were generated following a uniform distribution (to obtain the training
and testing datasets with a ratio of 70/30). For each considered configuration of the ANN model (i.e.,
training function, activation function, number of neurons, etc.), 1000 Monte Carlo simulations were
performed using these 1000 datasets. Therefore, 1000 values of R2, RMSE, MAE and Slope criteria
were obtained by computing the deviation between the testing target and the corresponding output
for each configuration of ANN model. The statistical convergence of error measurement criteria R2,
Slope RMSE and MAE is analyzed in this section (also see Equation (3) for the calculation of that
convergence). Figure 5a,b show the convergence estimation for (R2, Slope) and (RMSE, MAE) over
1000 Monte Carlo random sampling runs, respectively. In Figure 5, various curves are associated with
the configurations of the parametric study. Figure 5 shows that R2 and Slope exhibit a lower order of
fluctuation than do RMSE and MAE. This could be because RMSE and MAE measure the standard
deviation of the prediction errors, whereas R2 and Slope indicate the degree of linear correlation
between the target and predicted LBC. Consequently, random sampling was necessary, in order to
estimate the statistical fluctuation with respect to all error measurement criteria, especially in terms of
RMSE and MAE. It can be concluded that 1000 Monte Carlo random sampling runs is sufficient to
obtain a representative convergence estimation, ready for subsequent statistical analysis, as seen in
Figure 5b (a fluctuation of 1% around the mean value was reached from 900 simulations).
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Figure 5. Statistical convergence for (a) R2 and Slope, (b) root mean square error (RMSE) and mean
absolute error (MAE), over 1000 random sampling runs. Various curves are associated with the
configurations of the parametric study.

3.2. Results of Parametric Study

3.2.1. Results in Terms of Training Function

As reliable results were obtained as shown in Figure 5, this section presents the influence of using
different training algorithms on the performance of the ANN model. To this end, other parameters,
such as activation function, was fixed as tansig, number of neurons was fixed as 20 and cost function
was fixed as mean square error. Figure 6a–d present the evaluation of R2, Slope, RMSE and MAE,
respectively, as a function of the training algorithms. It should be noted that, as shown in Figure 6,
the box plot was adopted to represent the probability distribution of error criteria over 1000 random
sampling runs, including median, mean, 25%–75% and 9%–91% percentiles. The performance was
ranked based on the median value of the distribution. Results showed that the BFG and LM algorithms
exhibited the best performance, with respect to R2, Slope, RMSE and MAE, respectively. Furthermore,
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regarding R2, RMSE and MAE, BFG and LM also produced a lower level of fluctuation than other
algorithms, as can be seen in terms of the 25%–75% percentiles of the distribution. Finally, the LM
algorithm was selected as it provided the highest median value with respect to R2, and the lowest
median value with respect to RMSE and MAE.
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These observations of superior performance of the LM algorithm were in accordance with the
literature. This algorithm was developed, in combining the conventional gradient descent technique and
Gauss-Newton algorithm, in order to enhance the efficiency of the training process [54]. As a result, the
LM technique has been widely used in various investigations in different areas of research [24,37,43,63].

3.2.2. Results in Terms of Activation Function

This section explores the influence of using different activation functions on the performance of the
ANN model. To this end, other parameters such as training function was fixed as Levenberg-Marquardt,
number of neurons was fixed as 20 and cost function was fixed as mean square error. Figure 7a–d
show the box plot distribution of R2, Slope, RMSE and MAE, respectively, as a function of the six
activation functions used. The presentation is the same as Figure 6—median, mean, 25–75% and
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9–91% percentiles of the probability distribution over 1000 random sampling runs are highlighted.
The performance was ranked based on the median value of the distribution. Results showed a poor
performance for the purelin activation function. On the other hand, the logsig, tansig and rectilin
offered superior performance for the ANN model, especially the rectilin activation function. Therefore,
ultimately, the rectilin function was chosen as optimal.
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3.2.3. Results in Terms of Number of Neurons

In this section, the influence of the number of neurons in the hidden layer on the performance
of the ANN model is explored. To this end, other parameters such as training function was fixed as
Levenberg-Marquardt, activation function was fixed as tansig and cost function was fixed as mean
square error. Figure 8a–d show the box plot distribution of R2, Slope, RMSE and MAE, respectively,
as a function of number of neurons, which was ranked from one to 30 with a resolution of one.
The presentation is the same as in Figure 6: median, mean, 25–75% and 9–91% percentiles of the
probability distribution over 1000 random sampling runs are shown. Results showed that a small
number of neurons (i.e., fewer than five) gave a poor performance for the ANN model, with respect
to all error measurement criteria (in both median and standard deviation). However, all the median
values formed a concave curve, which indicated greatest performance around 15 artificial neurons.
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This observation confirmed that there is an optimal number of neurons for the given problem (i.e.,
beyond a certain point, increasing the number of neurons does not always improve performance).
Therefore, the optimal number of neurons was finally chosen as 15.
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The influence of cost functions on the performance of the ANN model was also evaluated. However,
all considered cost functions produced similar results on the ANN’s performance. Mean square error
was finally selected.

3.2.4. Optimal Parameters

As calibrated previously, the final ANN model exhibits (see Figure 9):

• 15 neurons in the hidden layer;
• A rectilin activation function;
• A LM training algorithm;
• Mean square error as a cost function.
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3.3. Analysis of Performance of the Final ANN Model

In this section, the final ANN model is presented, including regression, uncertainty and
sensitivity analyses.

3.3.1. Regression Analysis

Figure 10a,b show the regression graphs between actual and predicted LBC of CFSS members
using the training and testing data, respectively. All values of error measurement criteria are indicated
in Table 2. In Figure 10, the linear fit is also presented, corresponding to a slope indicated in Table 2.
A slope of 0.980 and 0.975 for the training and testing data, respectively, was obtained, corresponding
to an angle between the linear fit line and the horizontal line of 44.429◦ and 44.263◦, respectively. It is
shown that for two data points, the linear fit is very close to the diagonal line (i.e., 45◦), which confirmed
that the coefficient of determination R2 is very good (i.e., R2 = 0.989 and 0.975, for training and
testing data, respectively). In terms of RMSE and MAE, the ANN model exhibits a strong prediction
performance. As indicated in Table 2, RMSE = 217.717 kN and 294.424 kN; MAE = 139.685 kN and
191.878 kN, using training and testing data, respectively. In addition, error analysis shows that the
ErrorMean is close to zero, whereas an ErrorStD of 218.062 kN and 295.445 kN is explored. The values
of ErrorMean close to zero indicates that there is no sign of over- or under-estimation of LBC, i.e.,
the data points are located uniformly around the diagonal line, as shown in Figure 10. Moreover,
as observed in Figure 10, the values of the predicted LBC are not systematically too high or too low
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anywhere in the observation space. Indeed, the values of MAE show that the average magnitude of the
residuals between the predicted and target LBC is lower than 200 kN. On the other hand, the standard
deviation of such residuals is characterized by RMSE and ErrorStD (which approximately represent
the same value, even though there is a different in the formula). As indicated in Table 2, the values of
RMSE and ErrorStD are higher than ones of MAE (about 100 kN), showing that there is about 100 kN
of variance in the individual residuals. From overall error measurements, good agreement between
the predicted and the actual values of LBC of compressive CFSS members is obtained.
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Table 2. Summary of performance of the ANN model.

Data Used RMSE (kN) MAE (kN) Error Mean (kN) Error StD (kN) R2 Slope Slope Angle (◦)

Training 217.717 139.685 −1.712 218.062 0.989 0.980 44.429

Testing 294.424 191.878 −7.358 295.445 0.975 0.975 44.263

3.3.2. Uncertainty Analysis

In addition, uncertainty analysis was performed to quantify the uncertainty of the ANN model
during prediction. Nineteen classes of the target LBC were introduced, ranging from 0 to 9.5 MN with
a resolution of 0.5 MN. The corresponding data in each level were deduced, and then used to compute
the standard deviation. Figure 11 presents the 70%, 95% and 99% confidence intervals, together with
the average curve, for the prediction of LBC using ANN, respectively. In this figure, the numbers of
data points in each class are also indicated. When the LBC is lower than 4 MN, a low level of uncertainty
is achieved. However, where the LBC is greater than 4 MN, the level of uncertainty is almost tripled.
This is attributable to the fact that for an LBC lower than 4 MN, there are a high number of data points
in each class—for instance, there are 105 data points between 0.5 and 1 MN. On the contrary, not many
data points are distributed when the LBC is greater than 4 MN. Such an investigation could point out
the current limitations of the model. In future research projects, more data points should be considered
in order to obtain reliable representation, especially for classes greater than 4 MN.
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3.3.3. Sensitivity Analysis

In this section, sensitivity analysis based on Individual Conditional Expectation (ICE) [98] is
introduced, in order to explore the influence of each input variable on the output response of the
ANN model. By definition, ICE is able to display how the output response changes when an input
variable changes. Figure 12 shows the results of sensitivity analysis for each input variable, including
the raw curve obtained by ICE, the most appropriate fit of the raw curve and the normalized area
of the covered surface. It demonstrates that all input variables have an impact on the LBC of CFSS
members, but to varying degrees and with differing effects. In terms of positive effect, the LBC of CFSS
members increases with increasing fy following a linear equation; f’c, B and δ following a nonlinear
form. In terms of negative effect, the LBC of CFSS members decreases with increasing L, et and eb

following a nonlinear equation. In addition, it seems to have a minimum point in the graphs of eb

and et. The descent stage allows confirming the negative effect of loading eccentricities on the LBC.
However, the ascent stage should be checked in further studies, by investigating more configurations
of loading eccentricities (see also Figure 2f,g). Regarding the normalized area of covered surface, B, f’c,
δ, fy, L, eb and et exhibit 38.7%, 19.3%, 17.9%, 9.4%, 7.7%, 3.8% and 3.2%, respectively. This means that
the most influential input variables are the geometric parameters of the steel tube and the compressive
strength of the concrete core. These remarks are in close accordance with experimental studies in
the literature [11,15,18,99]. Moreover, the sensitivity analysis indicates that linear correlation is not
enough to describe the relationship between the inputs and the LBC, especially in the case of geometric
parameters of the cross section. From physical point of view, such observation is in good agreement
with the literature, as the LBC depend on the cross-sectional areas of the steel tube (As = (B−2δ)2)
and the concrete core (Ac = B2

−(B−2δ)2), respectively [100,101]. Overall, without solving complex
equations, an approach using an interpretable ANN model could indicate the relationships between
input variables and output response in an efficient manner and avoiding excessive computational cost.
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3.4. Discussion on Effect of Eccentric Loading

In addition to a reliable prediction of LBC, as presented above, the ANN model can also assist
in creating LBC continuous curves (i.e., maps), within the ranges of the input variables adopted in
this study. In this section, several scenarios concentrating on varying B, δ, f’c and et are presented,
aiming to explore the effect of eccentric loading on the LBC of CFSS members. For the other input
variables, L is fixed at 2000 mm, eb is fixed at 0, and fy is fixed at 400 MPa, respectively. Figure 13a
shows the distribution of LBC as a function of et using f’c = 40 MPa, δ = 2 mm, B = 100, 150, 200, 250
and 300 mm, and et varies from 0 to 100 mm, respectively. Figure 13b shows the distribution of LBC
as a function of et using f’c = 40 MPa but δ = 6 mm. Figure 13c shows the distribution of LBC as a
function of et using δ = 2 mm, but f’c = 80 MPa. Figure 13d shows the distribution of LBC as a function
of et using δ = 6 mm but f’c = 80 MPa. In all configurations, the LBC of CFSS members decreases when
increasing et, which confirms the negative effect of this variable on the macroscopic behavior of the
composite structures. These distributions also confirm the effect of B, δ and f’c as identified previously
in the sensitivity analysis. The distributions presented herein aim exclusively to demonstrate the
advantage of the proposed ANN model in providing efficient continuous mapping of LBC.
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4. Conclusions and Outlook

In this work, a surrogate ANN model was proposed and optimized for prediction of the LBC of
CFSS members. The ANN model was trained and validated against experimental data. A parametric
study was performed to calibrate the parameters of the model, including the number of neurons,
activation function, cost function and training algorithm, respectively. Statistical analysis based on
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Monte Carlo random sampling techniques was conducted to track the variability of the input space.
The main conclusions of this study are as follows:

• For the considered problem, the optimal ANN model includes 15 neurons, rectilin activation
function, mean squared error cost function and LM training algorithm;

• The proposed ANN model offers reliable prediction in terms of various performance indicators:
R2 = 0.975, Slope = 0.975, RMSE = 294.424 kN and MAE = 191.878 kN, respectively;

• By performing sensitivity analysis based on the ICE technique, the geometric parameters of the
cross section (B and δ), together with the compressive strength of the concrete (f‘c), have been
found to be the most influential variables on the LBC;

• The effect of eccentric loading on the LBC of CFSS members is explored, within the ranges of the
input variables adopted in this study;

• The proposed ANN model is able to assist the initial phase of research and design of CFSS
members before any experiments are carried out.

However, there are several limitations of the current model, including the lack of data points in
several classes of values of input variables. Updated data must be collected through further studies
in order to enhance the model’s performance. For comparison and validation purposes, the effect of
loading eccentricities should be compared with mathematical models and/or experimental results in
further works. In addition, in terms of practical application, a Graphical User Interface, especially one
based on Microsoft Excel, should be developed and provided for researchers and engineers, and to
support the teaching and interpretation of the compressive behavior of CFSS members.
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