Special Issue "Antibiotic Resistance in Wastewater and Its Treatment"

A special issue of Antibiotics (ISSN 2079-6382). This special issue belongs to the section "Antibiotics Use and Antimicrobial Stewardship".

Deadline for manuscript submissions: closed (31 July 2021).

Special Issue Editor

Dr. Lucia Bírošová
E-Mail Website
Guest Editor
Faculty of Chemical and Food Technology, Slovak University of Technology, 581243 Bratislava, Slovakia
Interests: environmental and food microbiology; antibiotic resistance; molecular biology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The phenomenon of antibiotic resistance is still an emerging problem worldwide. It makes the treatment of common diseases difficult. It also increases financial demands for treatment. So, antibiotic resistance is a global socio-economic problem. Wastewater contains a mixture of different pharmaceuticals and bacteria, and so it represents an important hotspot for the development and dissemination of antibiotic-resistant bacteria and antibiotic resistance genes. These bacteria together with their genes can spread further into the environment and food chain, endangering humans and animals. At this point, it is important to focus on innovative technologies which help us to eliminate the problem of antibiotic resistance in wastewater. Therefore, the main subject of this Special Issue includes the monitoring and characterization of antibiotic resistance in wastewater and its recipients, as well as the description of novel technologies for wastewater treatment with a view to eliminating the problem of antibiotic resistance. This Special Issue seeks manuscript submissions that further our understanding of antimicrobial resistance in wastewater and which design novel strategies to solve this problem.

Dr. Lucia Bírošová
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antibiotics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • antibiotics
  • wastewater
  • microorganisms
  • antibiotic resistance
  • wastewater treatment plant
  • treantment technologies
  • recipient surface water
  • environment
  • water pollution

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

Article
Environmental and Pathogenic Carbapenem Resistant Bacteria Isolated from a Wastewater Treatment Plant Harbour Distinct Antibiotic Resistance Mechanisms
Antibiotics 2021, 10(9), 1118; https://doi.org/10.3390/antibiotics10091118 - 16 Sep 2021
Viewed by 910
Abstract
Wastewater treatment plants are important reservoirs and sources for the dissemination of antibiotic resistance into the environment. Here, two different groups of carbapenem resistant bacteria—the potentially environmental and the potentially pathogenic—were isolated from both the wastewater influent and discharged effluent of a full-scale [...] Read more.
Wastewater treatment plants are important reservoirs and sources for the dissemination of antibiotic resistance into the environment. Here, two different groups of carbapenem resistant bacteria—the potentially environmental and the potentially pathogenic—were isolated from both the wastewater influent and discharged effluent of a full-scale wastewater treatment plant and characterized by whole genome sequencing and antibiotic susceptibility testing. Among the potentially environmental isolates, there was no detection of any acquired antibiotic resistance genes, which supports the idea that their resistance mechanisms are mainly intrinsic. On the contrary, the potentially pathogenic isolates presented a broad diversity of acquired antibiotic resistance genes towards different antibiotic classes, especially β-lactams, aminoglycosides, and fluoroquinolones. All these bacteria showed multiple β-lactamase-encoding genes, some with carbapenemase activity, such as the blaKPC-type genes found in the Enterobacteriaceae isolates. The antibiotic susceptibility testing assays performed on these isolates also revealed that all had a multi-resistance phenotype, which indicates that the acquired resistance is their major antibiotic resistance mechanism. In conclusion, the two bacterial groups have distinct resistance mechanisms, which suggest that the antibiotic resistance in the environment can be a more complex problematic than that generally assumed. Full article
(This article belongs to the Special Issue Antibiotic Resistance in Wastewater and Its Treatment)
Show Figures

Graphical abstract

Article
New Insight on Antibiotic Resistance and Virulence of Escherichia coli from Municipal and Animal Wastewater
Antibiotics 2021, 10(9), 1111; https://doi.org/10.3390/antibiotics10091111 - 14 Sep 2021
Viewed by 785
Abstract
Antibiotic resistance of the indicator microorganism Escherichia coli was investigated in isolates from samples collected during the course of one year from two wastewater treatment plants treating municipal and animal wastes in Slovakia, respectively. The genes of antibiotic resistance and virulence factors in [...] Read more.
Antibiotic resistance of the indicator microorganism Escherichia coli was investigated in isolates from samples collected during the course of one year from two wastewater treatment plants treating municipal and animal wastes in Slovakia, respectively. The genes of antibiotic resistance and virulence factors in selected resistant E. coli isolates were described. A high percentage of the isolates from municipal and animal wastewater were resistant to ampicillin, streptomycin, tetracycline, ceftiofur, ceftriaxone, and enrofloxacin. In the selected E. coli isolates, we detected the following phenotypes: ESBL (20.4% in animal wastewater; 7.7% in municipal wastewater), multidrug-resistant (17% of animal and 32% of municipal isolates), high resistance to quinolones (25% of animal and 48% of municipal samples), and CTX-M (7.9% of animal and 17.3% of municipal isolates). We confirmed an integro-mediated antibiotic resistance in 13 E. coli strains from municipal and animal wastewater samples, of which the Tn3 gene and virulence genes cvaC, iutA, iss, ibeA, kps, and papC were detected in six isolates. One of the strains of pathogenic E. coli from the animal wastewater contained genes ibeA with papC, iss, kpsII, Int1, Tn3, and Cit. In addition, one blaIMP gene was found in the municipal wastewater sample. This emphasises the importance of using the appropriate treatment methods to reduce the counts of antibiotic-resistant microorganisms in wastewater effluent. Full article
(This article belongs to the Special Issue Antibiotic Resistance in Wastewater and Its Treatment)
Show Figures

Figure 1

Article
Analysis of Wastewater Reveals the Spread of Diverse Extended-Spectrum β-Lactamase-Producing E. coli Strains in uMgungundlovu District, South Africa
Antibiotics 2021, 10(7), 860; https://doi.org/10.3390/antibiotics10070860 - 15 Jul 2021
Viewed by 663
Abstract
Wastewater treatment plants (WWTPs) are major reservoirs of antibiotic-resistant bacteria (ARB), favouring antibiotic resistance genes (ARGs) interchange among bacteria and they can provide valuable information on ARB circulating in a community. This study characterised extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli from the influent and [...] Read more.
Wastewater treatment plants (WWTPs) are major reservoirs of antibiotic-resistant bacteria (ARB), favouring antibiotic resistance genes (ARGs) interchange among bacteria and they can provide valuable information on ARB circulating in a community. This study characterised extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli from the influent and effluent of four WWTPs in uMgungundlovu District, KwaZulu-Natal, South Africa. E. coli was enumerated using the membrane filtration method and confirmed using the API 20E test and real-time polymerase chain reaction. ESBL-producers were phenotypically identified by their susceptibility to the third-generation cephalosporins using the disc diffusion and the double-disc synergy methods against cefotaxime (30 µg) with and without 10 µg clavulanic acid. Genotypic verification was by PCR of the TEM, SHV, and CTX-M genes. The clonality of isolates was assessed by ERIC-PCR. The highest E. coli count ranged between 1.1 × 105 (influent) and 4.3 × 103 CFU/mL (effluent). Eighty pure isolates were randomly selected, ten from the influent and effluent of each of the four WWTP. ESBLs were phenotypically confirmed in 49% (n = 39) of the isolates, of which 77% (n = 30) were genotypically confirmed. Seventy-three percent of the total isolates were multidrug-resistant (MDR). Only two isolates were susceptible to all antibiotics. Overall, resistance to first and second-generation cephalosporins was higher than to third and fourth generation cephalosporins. Also, 15% of the isolates were resistant to carbapenems. The CTX-M-type ESBL (67%; n = 20) was the most common ESBL antibiotic resistance gene (ARG) followed by TEM (57%; n = 17) and SHV-types (27%; n = 8). Also, a substantial number of isolates simultaneously carried all three ESBL genes. ERIC-PCR revealed a high diversity of isolates. The diversity of the isolates observed in the influent samples suggest the potential circulation of different ESBL-producing strains within the studied district, requiring a more comprehensive epidemiological study to prevent the spread of ESBL-producing bacteria within impoverished communities. Full article
(This article belongs to the Special Issue Antibiotic Resistance in Wastewater and Its Treatment)
Show Figures

Figure 1

Review

Jump to: Research, Other

Review
Hospital Wastewater—Source of Specific Micropollutants, Antibiotic-Resistant Microorganisms, Viruses, and Their Elimination
Antibiotics 2021, 10(9), 1070; https://doi.org/10.3390/antibiotics10091070 - 04 Sep 2021
Cited by 1 | Viewed by 699
Abstract
Municipal wastewaters can generally provide real-time information on drug consumption, the incidence of specific diseases, or establish exposure to certain agents and determine some lifestyle consequences. From this point of view, wastewater-based epidemiology represents a modern diagnostic tool for describing the health status [...] Read more.
Municipal wastewaters can generally provide real-time information on drug consumption, the incidence of specific diseases, or establish exposure to certain agents and determine some lifestyle consequences. From this point of view, wastewater-based epidemiology represents a modern diagnostic tool for describing the health status of a certain part of the population in a specific region. Hospital wastewater is a complex mixture of pharmaceuticals, illegal drugs, and their metabolites as well as different susceptible and antibiotic-resistant microorganisms, including viruses. Many studies pointed out that wastewater from healthcare facilities (including hospital wastewater), significantly contributes to higher loads of micropollutants, including bacteria and viruses, in municipal wastewater. In addition, such a mixture can increase the selective pressure on bacteria, thus contributing to the development and dissemination of antimicrobial resistance. Because many pharmaceuticals, drugs, and microorganisms can pass through wastewater treatment plants without any significant change in their structure and toxicity and enter surface waters, treatment technologies need to be improved. This short review summarizes the recent knowledge from studies on micropollutants, pathogens, antibiotic-resistant bacteria, and viruses (including SARS-CoV-2) in wastewater from healthcare facilities. It also proposes several possibilities for improving the wastewater treatment process in terms of efficiency as well as economy. Full article
(This article belongs to the Special Issue Antibiotic Resistance in Wastewater and Its Treatment)
Show Figures

Graphical abstract

Other

Jump to: Research, Review

Study Protocol
Antibiotic Resistance in Wastewater Treatment Plants and Transmission Risks for Employees and Residents: The Concept of the AWARE Study
Antibiotics 2021, 10(5), 478; https://doi.org/10.3390/antibiotics10050478 - 21 Apr 2021
Viewed by 864
Abstract
Antibiotic resistance has become a serious global health threat. Wastewater treatment plants may become unintentional collection points for bacteria resistant to antimicrobials. Little is known about the transmission of antibiotic resistance from wastewater treatment plants to humans, most importantly to wastewater treatment plant [...] Read more.
Antibiotic resistance has become a serious global health threat. Wastewater treatment plants may become unintentional collection points for bacteria resistant to antimicrobials. Little is known about the transmission of antibiotic resistance from wastewater treatment plants to humans, most importantly to wastewater treatment plant workers and residents living in the vicinity. We aim to deliver precise information about the methods used in the AWARE (Antibiotic Resistance in Wastewater: Transmission Risks for Employees and Residents around Wastewater Treatment Plants) study. Within the AWARE study, we gathered data on the prevalence of two antibiotic resistance phenotypes, ESBL-producing E. coli and carbapenemase-producing Enterobacteriaceae, as well as on their corresponding antibiotic resistance genes isolated from air, water, and sewage samples taken from inside and outside of different wastewater treatment plants in Germany, the Netherlands, and Romania. Additionally, we analysed stool samples of wastewater treatment plant workers, nearby residents, and members of a comparison group living ≥1000 m away from the closest WWTP. To our knowledge, this is the first study investigating the potential spread of ESBL-producing E. coli, carbapenemase-producing Enterobacteriaceae, and antibiotic resistance genes from WWTPs to workers, the environment, and nearby residents. Quantifying the contribution of different wastewater treatment processes to the removal efficiency of ESBL-producing E. coli, carbapenemase-producing Enterobacteriaceae, and antibiotic resistance genes will provide us with evidence-based support for possible mitigation strategies. Full article
(This article belongs to the Special Issue Antibiotic Resistance in Wastewater and Its Treatment)
Show Figures

Figure 1

Back to TopTop