Antibiotics Resistance in Animals and the Environment, 2nd Edition

A special issue of Antibiotics (ISSN 2079-6382). This special issue belongs to the section "Mechanism and Evolution of Antibiotic Resistance".

Deadline for manuscript submissions: 31 July 2025 | Viewed by 480

Special Issue Editor


E-Mail
Guest Editor
Pikes Peak State College, Colorado Springs, CO 80906, USA
Interests: infectious disease and public health; antimicrobial resistance; infectious disease pathophysiology; immunology and vaccine development
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The first volume of the Special Issue “Antibiotics Resistance in Animals and the Environment” was published in 2024. It is a successful issue with 11 published papers and has encouraged us to publish a second edition on the same topic.

As a continuation of the Special Issue published in 2024, this second edition will also search for the development and spread of antibiotic resistance, particularly within the context of animals and the environment. We welcome submissions related to, but not limited to, the following:

  • Antibiotic resistance in wildlife
  • Development and spread of antibiotic resistance;
  • Novel interventions and strategies to break the transmission cycle in animals and the environment;
  • Intrinsic and horizontal transfer mechanisms of resistance from animals;
  • Isolation of microbes harboring novel mutations and mobile genetic elements associated with extended spectrum beta-lactams, carbapenems, methicillin, and vancomycin;
  • Quantitative determinations in antimicrobial resistance research.

Dr. Anil Poudel
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antibiotics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • antimicrobial resistance
  • environment
  • epidemiology
  • genomics
  • multi-drug resistance
  • sympatric
  • wildlife

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 2386 KiB  
Article
Antimicrobial Susceptibility and Toxin Gene Profiles of Commensal Clostridium perfringens Isolates from Turkeys in Hungarian Poultry Farms (2022–2023)
by Ádám Kerek, Ábel Szabó, Franciska Barnácz, Bence Csirmaz, László Kovács and Ákos Jerzsele
Antibiotics 2025, 14(4), 413; https://doi.org/10.3390/antibiotics14040413 - 17 Apr 2025
Viewed by 318
Abstract
Background: The global spread of antimicrobial resistance (AMR) remains one of the greatest challenges of our time, necessitating collaboration among professionals in both the animal and public health sectors. One bacterial species that is developing AMR is Clostridium perfringens. It causes serious [...] Read more.
Background: The global spread of antimicrobial resistance (AMR) remains one of the greatest challenges of our time, necessitating collaboration among professionals in both the animal and public health sectors. One bacterial species that is developing AMR is Clostridium perfringens. It causes serious bacterial infections and continues to cause significant economic losses in the poultry industry. Methods: This study aimed to evaluate the antimicrobial susceptibility profiles of commensal C. perfringens strains isolated from large-scale turkey flocks in Hungary using minimum inhibitory concentration (MIC) determination. We complemented our research with polymerase chain reaction (PCR) analysis to detect the major and minor toxin genes that are characteristic of the species and to explore the potential associations between gene presence and antimicrobial resistance profiles. Results: A total of 146 commensal isolates were examined. Sensitivity to penicillin was reduced, with only 44.5% of isolates remaining susceptible, whereas 87.7% of isolates were sensitive to amoxicillin. The PCR results revealed that all isolates carried the alpha major toxin gene, 23.9% harbored the beta major toxin gene, 15.8% the beta2 minor toxin gene, 3.4% the NetB minor toxin gene, and 2.7% the epsilon major toxin gene. No statistically significant associations were observed between the presence of toxin genes and the antimicrobial susceptibility profiles of the isolates; the MIC values showed no correlation with the presence of toxin-producing genes. Conclusions: Clostridium perfringens isolates retained susceptibility to beta-lactam antibiotics, which remain the primary choice for treatment. Regular monitoring can aid in establishing temporal trends. Future studies should include larger sample sizes and employ next-generation sequencing to further investigate multidrug-resistant strains. Full article
(This article belongs to the Special Issue Antibiotics Resistance in Animals and the Environment, 2nd Edition)
Show Figures

Figure 1

Back to TopTop